ASIC implementation of STM-1 Framer and De-Framer

Anand T¹, Dr. Siva S Yellampalli²

^{1,2}(VLSI Design and Embedded System, VTU Extn. Centre, UTL Technologies, INDIA)

Abstract : In this paper we present the ASIC implementation of STM-1 Framer and De-Framer. This paper mainly focuses on multiplexing digital data, transmitting and receiving the STM-1 frame. The design is implemented using Verilog HDL, simulated on Modelsim and Synthesized on Xilinx ISE 13.2. For power analysis and area calculation, the designed framer and de-framer are analysed using Cadence version 6.1.5. For debugging Chipscope Analyser has been used. The designed framer can be used for generation and analysis of STM-1 frame that has a data rate of 155.52Mbps.

Keywords - PRBS, STM-1 frame, Scrambler, Descrambler, BIP, SOH, POH.

I. INTRODUCTION

The SDH is a hierarchical set of digital transport structures, standardized for the transport of suitably adapted payloads over physical transmission networks. The SDH defines a structure which enables plesiochronous signals to be combined together and encapsulated within a standard SDH signal. The ITU-T recommendations define a number of transmission rates within the SDH. The first of these is 155.52 Mbit/s, normally referred to as STM-1 (where STM stands for 'Synchronous Transport Module') [1]. The recommendations also defines a multiplexing structure whereby an STM-1 signal can carry a number of lower bit rate signals as payload, thus allowing existing PDH signals to be carried over a synchronous network. The SDH defines a number of "containers" each corresponding to an existing plesiochronous rate. Information from the plesiochronous container is mapped into the relevant container. The way in which this is done is similar to the bit stuffing procedure carried out in a conventional PDH multiplexer. SDH is currently the dominant choice for metropolitan-area networks as well as for accessing wavelength division multiplexing networks in wide-area networks [7]. The purpose of this paper is to carry multiple digital signals on a single medium. The paper also describes whether the data that is transmitted is received correctly or not. The STM-1 frame is capable of transporting any PDH tributary signal (\leq 140 Mbit/s). The frame comprises of section overhead (SOH), pointer and the payload as shown in fig 1.

Figure 1: stm-1 frame structure [9]

DESIGN AND IMPLEMENTATION

According to the ITU-T standard G.707 the specification of STM-1 Frame are as follows:

Number of rows in a frame = 9 rows

Number of columns in a frame = 9+261 = 270 columns

П.

Number of bytes/frame = 9*270 = 2,430 bytes

Number of bits/frame = 9*270*8 = 19440 bits

Number of bits per second = 9*270*8*8000

- = 155,552,000 bits per second
- = 155.52 Mbits/s.

The implementation has Framer and the De-Framer module which is sub-divided as follows: For the Framer Module:

1. Design of the 23-bit PRBS Generator Module.

- 2. Design of Framer Generator Module.
- 3. Design of the Scrambler Module.

- 4. Design of B1 Calculation Module
- 5. Design of B2 Calculation Module
- 6. Design of B3 Calculation Module

For the De-Framer Module:

- 1. Design of Head Detector Module.
- 2. Design of Descrambler Module.
- 3. Design of Overhead detector and extractor.
- 4. Design of PRBS Detector Module.
- 5. Design of Clock Divider Module.
- 6. Design of BIP Error Detector Module

Figure 2: stm-1 framer

The figure 3.1 shows the block diagram of how an STM-1 frame is generated. The 8 bit PRBS data is used to fill the payload section of the STM-1 frame. At every positive edge of the clock the PRBS data is fed into the payload block. When the RESET signal is high the frame will be reset to the initial value. The Frame Generator block adds the overhead bytes at appropriate positions and fills the remaining payload section with the prbs data.

The B3 calculation block will calculate the even parity over all the bytes of the payload section of the previous frame before scrambling and will be placed in the B3 location of the current frame before scrambling.

The Regenerator section overhead and Multiplex section overhead values are also sent into the frame generator at appropriate locations to complete the frame.

The B2 calculation block will calculate the parity of Multiplex Section and the payload section except for the first 3 rows of the Regenerator Section Overhead, and place the calculated value in the B2 bytes of the current frame before scrambling.

The B1 Calculation block calculates the even parity over all the bytes of the previous frame after scrambling, and places the calculated value in B1 location of the current frame before scrambling.

Finally the Scrambler block will scramble the incoming data and will then transmit the scrambled data.

The fig 3 shows the block diagram of STM-1 Deframer. The STM-1 Frame signal is fed to the Head Detector block which performs frame synchronization as per ITU-T G.707 [1]. It generates Loss-of-Frame (LOF) and Out-of-Frame (OOF) alarms.

The Received signal is descrambled and then fed to the Overhead detector which will detect the overhead. The overhead detector extracts the Regenerator Section Overhead and outputs it from the core. It also extracts the Multiplex Section Overhead and outputs it from the core. The block extracts Higher Order Path Overhead for all the configured VCs.

The PRBS detector block will compare the received payload data with the original data and will indicate if the data received is correct or not.

The BIP error detector block verifies the incoming B1 value and indicates the presence and number of any B1 errors. The BIP error detector block verifies the incoming B2 value and indicates the presence and

number of any B2 errors. It also calculates and verifies the B3 value for all VCs and indicates the presence and number of B3 errors.

III. Submodules Description

3.1 23 bit PRBS Generator.

Figure 4 shows the schematic of a 23 bit PRBS generator. Here the PRBS data is initialized to 1 when it is reset. At every clock cycle the values are shifted to the left and the xored values of the tappings are inserted to the first bit. Then the first eight bits of the PRBS sequence is fed as the input to the STM-1 frame.

The output of the LFSR is controlled by three parameters: clock, tap positions, and the initial value that is loaded into the LFSR or seed. For the 23 bit PRBS generator the seeds are used at 23^{rd} bit, 6^{th} bit and first bit according to [10].

3.2 STM-1 Frame Generator

When the reset signal is high the count is reset to zero and the memory is cleared. The scrambled data is sent as the output of the system and whenever the scrambled data changes the output is updated. The data that are being sent to the output depends on the value of count. The data's are sent in left to right fashion and are based on the ITU.T standard G707 [1].

3.3 SCRAMBLER

Scrambling of the bits in a synchronous transport module (SONET) frame is needed to keep the frequency content of the transmitted signals near the actual line rate [6].

There are two main reasons why scrambling is used

- To eliminate long sequences of zeros and ones.
- It eliminates the dependence of a signal's power spectrum upon the actual transmitted data, making it more dispersed to meet maximum power spectral density requirements.

The scrambler used in this implementation is a parallel scrambler shown in figure 5. The scrambler is reset to 1111111 at the start of the frame; by loading all seven flip flops with 1's.

Figure 5: 8 bit parallel scrambler

3.4 B2 Calculation Module

The B2 bytes are allocated for a multiplex section error monitoring function. This function shall be a Bit Interleaved Parity 24 code using even parity. The BIP-24 is computed over all bits of the previous STM-N frame except for the first three rows of SOH and is placed in bytes B2 of the current frame.

3.5 B3 Calculation Module

The B3 byte is allocated in each virtual container for path error monitoring function. This module calculates the Bit Interleaved Parity 8 using even parity over all the bits of the previous virtual container and is placed in the B3 byte of the current virtual container.

3.6 B1 Calculation Module

One byte is allocated for regenerator section error monitoring. This function shall be a Bit Interleaved Parity 8 (BIP-8) code using even parity. The BIP-8 is computed over all bits of the previous STM-N frame after scrambling and is placed in byte B1 of the current frame before scrambling.

3.7 Head Detector Module.

The Head Detector block is used at the Receiving end to determine whether the frame has started or not. This is done by comparing the first six bytes with A1 and A2 which is the Frame Alignment Word and is used to recognize the beginning of an STM-N frame. A1 has a default value of F6h and A2 has a default value of 28h. The head detector will wait for these values and whenever it encounters all the six values the head signal will be asserted to indicate the start of the frame. Once the head signal is asserted the STM data will be extracted [5, 8]. The state machine for implementing Head Detector module is shown in figure 6.

Figure 6: fsm for head detector

3.8 Descrambler

The Descrambler is required to retrieve the actual bytes that comprises SDH frame. It is similar to the scrambler used in the design. The descrambling operation is inverse of scrambling. The descrambler is used only after the first row of the scrambled SDH frame, until the end of the frame.

3.9 Clock Divider

The clock divider module is used to divide the system clock into different clock signals. These clock signals are used to output the overhead bytes at the receiver end.

3.10 Overhead Detector

The overhead detector module will detect the overhead bytes at their respective locations, extract the overhead byte and display them at the output. It also verifies the incoming BIP values with the calculated BIP value and indicates the presence and number of errors.

3.11 PRBS Detector

The PRBS detector module compares the incoming payload data with the original data and determines whether the data obtained is correct or not. If there is a difference between the received data and the calculated data of the payload section, the detector gives the number of bit that are inverted

3.12 BIP Error Detector

The BIP Error detector module compares the calculated value of BIP's and the extracted values of BIP and determines the type of error being encountered. If there is an error in B1 byte it tells the number of BIP violations happening in the frame. The error detection for B2 and B3 is similar to that of B1. The Error Detector also tests whether the received payload data is correct or not and if there is an error in the signal a Loss of data signal is indicated.

Verification And Simulation

IV.

The verification objective is the development of test cases to ensure that the design implements defined functionality. It was performed in each of the sub-modules of the architecture. Simulation tests were performed using Modelsim and Cadence NcLaunch. The design was synthesized on Xilinx 13.2 for device utilization summary, and implemented on Cadence RTL compiler for area and power calculations. Fig 7 shows the output of the prbs generator which is truncated and fed as the input to the STM-1 framer.

Figure 7: Verilog output of 23-bit PRBS

Fig 8 shows the structure and the output of STM-1 frame and the completion of a frame in 125us. It also shows the start of the next frame.

🖕 /new_framer_tb/Newframe/F2Data	St1												
🔶 /new_framer_tb/Newframe/H4Data	510			L		101							
🔶 /new_framer_tb/Newframe/F3Data	510	SI	ramble	0 0	udant	tur 🛛	📕 125us		Start of ne	ext frame			
🖕 /new_framer_tb/Newframe/K3Data	510		_	_				┛└					
🔷 /new_framer_tb/Newframe/clock	9:1												
🔷 /new_framer_tb/Newframe/reset	5t0												
) 🔷 /new_framer_tb/Newframe/cnt	0	2427	2428		2429	2430)	(12)[3)4)5	T
) 🔷 /new_framer_tb/Newframe/scram_in	00110010	01	100011	0	00011001	00110010		111110110			300101000		
				_	and the second								
) 🔷 /hew_framer_tb/Newframe/out	00110010	11	001110	í.	01010000	00101110	00110010	11110110			00101000		
} / hew_framer_tb/Newframe/out / /new_framer_tb/Newframe/N1Data	00110010 SKX	11	001110	1	01010000	00101110	00110010	11110110			00101000		
) / Inew_framer_tbjNewframejout / Inew_framer_tbjNewframejNIData # • Now	00110010 5X 200000000 ps	11	001110		01010000 ' ')00101110 	00110010	11110110	125200	000 ps	<u>)00101000</u>		

Figure 8: Verilog output of stm-1 framer

Fig 9 shows the output of the scrambler whose operation is as described in section 3.3. The STM-1 signal is fed as the input to the scrambler and the scrambled output is sent as the output of the STM-1 frame.

(clock	StO	L											
(scram_en	St1												
(reset	510												
	16	7	.(8	9	(10	11	12	13]14)15		16	
(scram_in	01011001	000.	(00000101		0001010) (1110101	0 (1101010	1 1010101	0101011	0)101011	00)	D1011	001
(scram_out	00010000	000.	(00000101		0100000	1 (0000110	0 (111110)	1 (001001)) (1110101	1)000110	IO1)	00010	00
(lfsr_q	1101101	Ш	1111			0101010	0100111	1110100	(111000))111110	1)	11011)1
(lfsr_c	0010010	010	1010			0100111	1110100	1110001	1111101)110110	1)	00100	0
/data_c	00010000	010.	(01010000		0100000	1 (0000110	0 [111110	1 (001001)) (1110101	1)000110	IO1)	00010	00
Now	5000000 ps	000	1	5000	1	6000	1111111111 10 ps	70000	nnnnn)ps	8000	00 ps		
Cursor 1	866890 ps											86689	0 ps

Figure 9: verilog output of scrambler

The figure 10 shows the output of detection and extraction of STM-1 overhead bytes. It shows the extraction of all the overhead bytes.

Inew_framer_tb/Newframe/Deframer/E1F1Cap(E1storage	00000001	000001
Inew_framer_tb/Newframe/Deframer/E1F1Cap(F1storage	00000010	0000010
Inew_framer_tb/Newframe/Deframer/J0Cap/JOstorage	00000011	0000011
Inew_framer_tb;Newframe;Deframer;DCC1Cap;DCC1storage	000001000000101	000001000000010100000110
Inew_framer_tblNewframe(Deframer/DCC2Cap)DCC2storage	0000011100001000	000001110000000000000000000000000000000
🔷 іпем_framer_tblNewframe(Deframer/J1Сар/J1storage	00010100	00010100
Inew_framer_tb,Newframe/Deframer/B1cap/B1storage	11010100	
Inew_framer_tb/Newframe/Deframer/82cap/82storage	0010010000101101	
🔷 ілем_framer_tb.Newframe(Deframer/83cap,183storage	10100101	0000000
Inew_framer_tb/Newframe/Deframer/C2Cap/C2storage	00010110	
Inew_framer_tb,Newframe(Deframer/G1Cap)(G1storage	00010111	UVerhead bytes are extracted and stored
Inew_framer_tb/Newframe/Deframer/F2Cap/F2storage	00011000	0001000
🔷 ,іпем_framer_tb,iNewframe;Юeframer,іН4Сар;Н4storage	00011001	0001000
Inew_framer_tb/Newframe/Deframer/F3Cap/F3storage	00011010	000(1010
Inew_framer_tblNewframe(Deframer/K1K2)K1storage	00010000	000,0000
Inew_framer_tb/Newframe/Deframer/K3K2/K2storage	00010001	001(001
Inew_framer_tb/Newframe/Deframer/K3Cap/K3storage	00011011	0001011
Inew_framer_tb/Newframe/Deframer/N1Cap/N1storage	00011100	000(1100
Inew_framer_tb/Newframe/Deframer/SIMLE2/S1storage	00010010	00000000
Inew_framer_bl/Newframe/Deframer/SIMIE2/M1storage	00010011	1001001
Inew framer tb.Newframe/Deframer/SIMIE2/E2storage	11100010	11100010
· · · · · · ·		

Figure 10: verilog output of overhead detector

Fig 11 shows the output of PRBS Detector, where the output error is zero for the whole frame indicating that the data has received correctly.

Figure 11: verilog output of prbs detector without error

Fig 12 shows the error being detected in the received data, where the error has been injected at the input and the output error will show the number of bits that are erroneous.

perramer/adva_advactor/a	10110100001111001	on to ta	a denormon,	ALCO	10100			on the second	- Alterior del	1	111
Deframer/data_detector/clock	St1										
Deframer/data_detector/reset	St0										
Deframer/data_detector/data_in	01101101	10011	. (0011011))(01	01101	(110110	1)1011	0110)0110110	1)11011	j11)10
Deframer/data_detector/error_bit	00000000	000000	00)1111	0001	(1001110	0)01000	11)11
Deframer/data_detector/prbs_data_p1	01101101	10011	(0011011))(01	01101	(110110	1 (1011	0110	(0110110	1 (11011	j11)10
Deframer/data_detector/prbs_8	01101101	10011	(0011011))(01	01101	(1101	00101010				
Deframer/data_detector/o_error	0000	0000							(0101	(0100	
uertaine (gosa_geector)	0	8	lf the error	error is de	data i tected	is introdu and disp	iced in th layed as	e inp shov	ut the vn above		

Figure 12: verilog output of prbs detector with error

Fig 13 shows the output of Head Detector Block, where the Head signal will be set when a sequence of 3 A1's and 3 A2's are detected, indicating the start of the frame.

/FrameHeadDetect/datain	000000	11110	110	00101000		00	00000000	(00)11	.)11)11	. (10 (01.)10)01.)(10)(01
/FrameHeadDetect/reset	St0											
/FrameHeadDetect/clock	St1				\Box		лл					
FrameHeadDetect/Head	1						1					
/FrameHeadDetect/state	110	000	001 010)011)100)101	110)000					
/E1F1/HeadSignal	St1						1					
/E1F1/clock	St1			пп	\Box		лл	лл	лл			
/E1F1/clk_64K	St0		0	11 M	0							
/E1F1/reset	St0	Head	Signal = I wh	ieri state = Az	<u>_</u> ð							

Figure 13: verilog output of head detector

Fig 14 depicts the simulation result of BIP Error Detector where the error is zero indicating that the calculated and received BIP values are the same. Fig 15 depicts the simulation result of BIP error detector where the errors are forced manually and the difference can be seen between the received data and the calculated data. The difference is calculated and reported.

Figure 15: output of bip error detector with errors

The figure 16 shows the RTL schematic of STM-1 framer implemented on Xilinx ISE.

Figure 16: rtl schematic of stm-1 framer

Fig 17 shows the device utilization summary of STM-1 Framer implemented in Xilinx ISE 13.2 on Spartan 6 Evaluation board. It shows the number of LUT's occupied by the STM-1 framer.

Device Utilization Summary (estimated values)									
Logic Utilization	Used	Available	Utilization						
Number of Slice Registers	229	54576	0%						
Number of Slice LUTs	571	27288	2%						
Number of fully used LUT-FF pairs	116	684	16%						
Number of bonded IOBs	10	296	3%						
Number of BUFG/BUFGCTRLs	1	16	6%						

Figure 17: device utilization summary of stm-1 framer

Fig 18 shows the output of the STM-1 framer which is implemented on Chipscope, which is the tool used for debugging the output of a program.

Bus/Signal	х	0	?2 	423	424	425	426	427	428	429	430	431	432	433	434	435	436	437	438
∽ Datain	E7	E7) ()	99	32	6	4		F6			28		03	χo	5	(14) 3B	77
∽ <mark>Count</mark>	2005	2005	27)	2428	2429	2430	0	(1)	2	3	4)	5	6	7	8	9	(10	(11)	12
⊶ Dataout	56	56	E)	B9	C2	33	64		F6			28		03	χ_0	5	(8D	80	43
∽ B1	80	80		80				X				+			E				
с⊷ B2	CF27.	CF27	0	F275	С)	X							F99	38			
o- B3	D3	D3		63				X							6		L		
												Т							

Figure 18: chipscope output of stm-1 framer

The fig 19 shows the area report of STM-1 Framer generated using Cadence RTL Compiler. The total area occupied by the STM-1 Framer is 7270um².

$\mathbf{Instance}$	Cells	Cell Area	Net Area	Wireload
STML Frame Gen	1187	7270	0	<none> (D)</none>
Framer	1160	6916	0	<none> (D)</none>
BIP2Cal	284	1914	0	<none> (D)</none>
BIP3Cal	57	375	0	<none> (D)</none>
scram	60	332	0	<none> (D)</none>
BIP1Cal	25	284	0	<none> (D)</none>
prbs gen	27	354	0	<none> (D)</none>

(D) = wireload is default in technology library Figure 19: area report of stm-1 framer

Figure 20 shows the power consumption of STM-1 Framer generated using RTL Compiler. The total power consumed by STM-1 Framer is 0.112mW.

		Leakage	Dynamic	Total
$\mathbf{Instance}$	Cells	Power(nW)	Power(nW)	Power (nW)
STML Frame Gen	1187	18735.519	93521.381	112256.900
Framer —	1160	17673.796	80744.715	98418.512
BIP2Cal	284	4983.838	26526.821	31510.659
scram	60	965.798	3447.021	4412.819
BIP3Cal	57	959.981	4985.852	5945.833
BIP1Cal	25	865.635	5804.243	6669.878
prbs_gen	27	1061.723	8014.541	9076.263

Figure 20: power report of stm-1 framer

Figure 21 shows the RTL Schematic of STM-1 De-Framer implemented on Cadence RTL Compiler.

Figure 21: rtl schematic of stm-1 de-framer

Figure 22 shows the device utilization summary of STM-1 De-Framer implemented on Spartan 6 FPGA in Xilinx ISE 13.2.

Device Utilization Summary (estimated values)									
Logic Utilization	Used	Available	Utilizatio	n					
Number of Slice Registers	541	54576		0%					
Number of Slice LUTs	932	27288		3%					
Number of fully used LUT-FF pairs	481	992		48%					
Number of bonded IOBs	33	296		11%					
Number of BUFG/BUFGCTRLs	4	16		25%					

Figure 22: device utilization summary of stm-1 de-framer

The fig 23 shows the area report of STM-1 De-Framer generated using Cadence RTL Compiler. The total area occupied by the STM-1 De-Framer is 43996um².

-		Repo	ort Area				
Generated by: Encounter(F Generated on: Jun 20 2012 Module: Deframer Technology library: slow_nc Operating conditions: slow Wireload mode: enclosed	3) RTL C 2 15:43:0 ormal 1.0 (balance	ompiler RC9. 13 :d_tree)	1.205 - v09.1	0-s259_1 (Api	6 2011)		
Instance	Cells	Cell Area	Net Area	Total Area v	Wireload	WL Flag	
Deframer	6302	43996.28	0.00	43996.28	<none></none>	(D)	
Deframer/DCC2Cap	483	3724.86	0.00	3724.86	<none></none>	(D)	
Deframer/DCC1Cap	451	2908.48	0.00	2908.48	<none></none>	(D)	
Deframer/K1K2	363	2519.70	0.00	2519.70	<none></none>	(D)	- 6
Deframer/E1F1Cap	335	2394.10	0.00	2394.10	<none></none>	(D)	_
Deframer/J0Cap	369	2379.99	0.00	2379.99	<none></none>	(D)	
Deframer/F3Cap	318	2181.01	0.00	2181.01	<none></none>	(D)	_
Deframer/K3Cap	315	2168.31	0.00	2168.31	<none></none>	(D)	_
Deframer/G1Cap	310	2160.55	0.00	2160.55	<none></none>	(D)	_
Deframer/H4Cap	308	2158.43	0.00	2158.43	<none></none>	(D)	_
Deframer/N1 Cap	312	2157.72	0.00	2157.72	<none></none>	(D)	- 10
Deframer/C2Cap	307	2154.90	0.00	2154.90	<none></none>	(D)	- 8
Deframer/F2Cap	307	2149.26	0.00	2149.26	<none></none>	(D)	- 10
Deframer/J1 Cap Deframer/BIP2_Deframer	272	1986.26	0.00	1986.26	<none></none>	(B)	
Contailor Date Contailor	1 2.0.4	1010.001	0.00	1010.00			

Figure 23: area report of stm-1 de-framer

Fig 24 shows the power consumption of STM-1 De-Framer generated using RTL Compiler. The total power consumed by STM-1 De-Framer is 0.61mW.

fechnology library: slow_nor Operating conditions: slow (Wireload mode: enclosed	mai 1.0 balanced_t	ree)			
Instance	Cella	Leakage (nW)	Internal (nW)	Net (nW)	Switching (nW) v
Deframer	6302	115448.81	383020.78	108796.22	491817.00
Deframer/DCC2Cap	483	9512.49	50984.98	8263.27	59248.25
Deframer/DCC1Cap	4.51	7365.04	20469.02	6947.44	35417.26
Deframer/B2cap	212	4861.76	30850.75	4141.23	34991.98
Deframer/BIP2_Deframer	284	4958.61	19676.82	4093.88	23770.69
Deframer/E1F1Cap	335	6200.22	18370.03	3721.57	22091.60
Deframer/JOCap	369	6091.58	15495.09	4793.77	20288.85
Deframer/N1 Cap	312	5658.01	14966.08	4330.76	19296.83
Deframer/F3Cap	310	5735.54	14564.46	4212.74	10777.20
Deframer/B1cap	171	3366.86	15447.20	3321.42	18768.62
Deframer/K3Cap	315	5697.23	14330.85	4035.02	18365.87
Deframer/G1Cap	310	5705.12	14225.64	3494.92	17720.55
Deframer/H4Cap	300	5600.60	14141.07	3516.12	17657.98
Deframer/F2Cap	307	5658.48	13891.03	3509.58	17400.61
Deframer/C2Cap	307	5656.60	13884.43	3466.34	17350.77

Figure 24: power report of stm-1 de-framer

Fig 25 shows the physical layout of STM-1 Framer generated using Cadence SOC Encounter.

Figure 25: physical layout stm-1 framer

Fig 26 shows the physical layout of STM-1 Framer generated using Cadence SOC Encounter.

Figure 26: physical layout stm-1 de-framer

Conclusion

V.

The development of the STM-1 framer core offers encapsulation of Plesiochronous Digital Hierarchy standards or support Asynchronous Transport Mode. It can be used for moving voice and data. The STM-1 Framer has been designed and can accommodate 2340 user data's that will be multiplexed in a single Frame. The STM-1 De-Framer has been designed and will extract the overhead bytes. The De-framer checks whether the obtained data is error free or not and also check the overhead bytes to determine the errors in the Section Overhead.

VI. Acknowledgement

We acknowledge Dr. V. Venkateswarlu, Principal, UTL Technologies for his guidance and suggestion and UTL Technologies for providing lab facility during the design and implementation.

References

- [1] ITU-T Recommendation G.707/Y.1322, Network node interface for Synchronous Digital Hierarchy (SDH), Telecommunication Standardization Sector of ITU. Geneva, January 2007.
- [2] Zhang Xiaoru and Zeng Lieguang, "An SDH STM-1 termination IC", ASIC 2 International Conference, pp 179-182, 1996.
- [3] ITU-T Rec. G.783, Characteristics of synchronous digital hierarchy (SDH) equipment functional blocks, Telecommunication Standardization Sector of ITU. Geneva, March 2006.
- G. Cariolaro, G. Iudicello, "Signal theory for SONET STM-1" Telecommunication symposium 1990. Its'90 symposium record, Sep 1990, pp 26 - 32.
- [5] D. Bajic, J. Stojanovic, FTN Novi Sad, Fruskogorska, Mobtel Beograd, "Frame Alignment Monitoring For STM-1 Frame", IEEE International Conference on Communications, 2001. ICC 2001, Vol. 10, pp. 2953-2957.
- [6] Srini W. Seetharam, Gary J. Minden, Joseph B. Evans, "A parallel SONET scrambler/descrambler architecture", Circuits and Systems, ISCAS, IEEE International Symposium, May 1993, vol 3, pp. 2011 - 2014.
- [7] R. Clauberg "Data aggregation architectures for single chip SDH/SONET framers", IBM J. RES & DEV. VOL. 47 NO.2/3 March/May 2003.
- [8] D.W. Choi, "Frame Alignment in a Digital Carrier System A Tutorial", IEEE Comm. Mag., pp. 47-54, Vol. 28, February 1990.
- [9] Cisco Systems, "Synchronous Digital Hierarchy (SDH) Graphical Overview", Oct 2006.
- [10] Wei-Zen Chen, Guan-Sheng Huang, "A Parallel Multi- pattern PRBS Generator and BER Tester for 40+ Gbps Serdes Applications", IEEE Asia-Pacific Conference on Advanced System Integrated Circuits, Aug 2004, pp. 318-321.