Clinical Study of Ocular Morbidity in Head Injury Patients At Tertiary Care Unit, Andhra Pradesh

Dr. Isvs Prasada Rao¹, Co-Authors: Dr. Pidakala Shyam Sundar², Dr. Vaidehi³
Dr. Parameswari³

¹Associate professor, Department of Ophthalmology, Andhra Medical College, Dr. NTR University of Health Sciences, India
²Assistant Professor, Department of Ophthalmology, Andhra Medical College, Dr. NTR University of Health Sciences, India
³Post Graduates, Department of Ophthalmology, Andhra Medical College, Dr. NTR University of Health Sciences, India

Abstract: Head trauma is common in our modern era of motorized transportation. Over 50% of all trauma deaths are associated with head injury and close to 60% of vehicular trauma deaths are due to head injuries¹. Head injuries are frequently associated with ophthalmic manifestations and consequent morbidity². The present study was undertaken to evaluate the pattern and clinical profile of ocular and visual complications in patients with Head injuries in Government Regional Eye Hospital, KGH, Visakhapatnam. The present study is a hospital based cross-sectional clinical study, done from January 2013- Jan 2015. A total Of 124 cases were included in the study.11 cases had bilateral involvement. So, total number of eyes was 135 eyes. Among 124 patients only 18 patients were female (14.51 %) and rest 88 were males (85.49 %).incidence of ocular manifestations in head injury patients are more common in young adult population i.e. 21 to 40 years. Both neuroophthalamic manifestations and bony injury to the orbit were more common in patients with severe head injuries with low GCS scores. Hence a keen and careful observation of the ocular features in a patient with head injury not only helps in managing the ophthalmic injuries but can also help in prognosis of the patient and as a result in better management of patient.

Keywords: Morbidity, Ocular Trauma, Road Traffic Accidents, Visual Acuity

I. Introduction
Head trauma is common in our modern era of motorized transportation. Over 50% of all trauma deaths are associated with head injury and close to 60% of vehicular trauma deaths are due to head injuries¹. Head injuries are frequently associated with ophthalmic manifestations and consequent morbidity². The role of ocular injuries secondary to head trauma in the causation of blindness has become a subject of immense importance. Early recognition and clinical correlation of ophthalmic manifestations is important in early localization of the site of injury, ongoing assessment management and prognosis of the patient with head injury. The present study was undertaken to evaluate the pattern and clinical profile of ocular and visual complications in patients with Head injuries in Government Regional Eye Hospital, KGH, Visakhapatnam.

II. Aim
To study the ocular morbidity in patients with Head injuries at a Tertiary care hospital

III. Objectives
3.1. To describe various patterns of ocular morbidity in patients with Head injuries.
3.2. To describe ocular morbidity in relation to age, sex and types of Head injuries

IV. Materials &Methods
4.1. Study Design: Hospital based cross-sectional clinical study.
4.2. Study Period: From January 2013- Jan 2015
4.3. Study Subjects: All the patients of head injury with ocular manifestations during the study period were included in the study
4.4. Study Setting: IPD&OPD’s of Neurosurgery, Surgery and Ophthalmology departments at King George Hospital, Visakhapatnam, AP.

V. Inclusion criteria
Head injury patients with ophthalmic manifestations

VI. Exclusion criteria

Very seriously ill patients and non cooperative patients

VII. Data collection

The present study was carried out after obtaining Approval from the Institutional Review Board (ethics committee of the institution), and consent from study participants.

A cross-sectional study of all patients of head injury with ocular manifestations attended at King George Hospital, Visakhapatnam during a period between January 2013-January 2015 was done. A total of 124 patients of which 11 patients had bilateral involvement and thus contributed total number of eyes affected 135 were identified. The following data was recorded – age, sex, type & duration of Head injury, ocular manifestations based on symptoms and signs Glasgow coma scale visual Acuity, Fundus examination by using direct or indirect ophthalmoscope. The following signs of head injury and ocular injury were looked for specifically. Vitreous haemorrhage, Posterior vitreous detachment, Papilloedema,Optic atrophy, Retinal edema/haemorrhages/tears, Retinal detachment, Choroidal rupture, Neuroimaging studies: X-ray, CT scan/MRI and B-scan as felt necessary in individual cases.

VIII. Results

Most of them were males(85.49%) and affected age group were 21-30 years(46%) followed by 31-40 years (41%)
Most of them were (81.65%) victims of RTA followed by Assaults(21.17%). Majority of RTA were two wheelers (54.99%) followed by four-wheeler (22.53%), Pedestrians (15.49%), Auto taxi passengers (7.04%)

Table 4: Categorywise distribution of RTA

<table>
<thead>
<tr>
<th>Category</th>
<th>Number</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two wheeler</td>
<td>39</td>
<td>54.99</td>
</tr>
<tr>
<td>Auto taxi</td>
<td>5</td>
<td>7.04</td>
</tr>
<tr>
<td>Four wheeler</td>
<td>16</td>
<td>22.63</td>
</tr>
<tr>
<td>Pedestrians</td>
<td>11</td>
<td>15.49</td>
</tr>
</tbody>
</table>

Majority of RTA were two wheelers (54.99%) followed by four-wheeler (22.53%), Pedestrians (15.49%), Auto taxi passengers (7.04%)

Figure 5: Distribution of various orbital injuries

Table 6: Different patterns of ocular morbidity

<table>
<thead>
<tr>
<th>Condition</th>
<th>UNILATERAL</th>
<th>BILATERAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lid laceration</td>
<td>13(9.62%)</td>
<td>1(0.74%)</td>
</tr>
<tr>
<td>Sub conjunctival heamorrhage</td>
<td>41(30.3%)</td>
<td>4(2.96%)</td>
</tr>
<tr>
<td>Echymosis</td>
<td>18(13.33%)</td>
<td>3(2.22%)</td>
</tr>
<tr>
<td>chemosis</td>
<td>12(8.88%)</td>
<td>2(1.48%)</td>
</tr>
<tr>
<td>Lid oedema</td>
<td>6(4.44%)</td>
<td>1(0.7%)</td>
</tr>
<tr>
<td>Sch+echymosis</td>
<td>16(11.85%)</td>
<td></td>
</tr>
<tr>
<td>Lid laceration+ sch</td>
<td>14(10.37%)</td>
<td></td>
</tr>
<tr>
<td>Chemosis+lid laceration</td>
<td>33(24.44%)</td>
<td></td>
</tr>
<tr>
<td>Sch+orbital injuries</td>
<td>14(10.37%)</td>
<td></td>
</tr>
<tr>
<td>Neuro+orbit+Sch</td>
<td>5(3.7%)</td>
<td></td>
</tr>
</tbody>
</table>

Most of the injuries were soft tissue injuries of globe and adnexa. Commonest finding was subconjunctival haemorrhage (30.3%) followed by chemosis and lid lacerations (24.4%).
Figure 7: Neuro ophthalmic manifestations

Of the neuroophthalmic findings pupillary abnormalities were most common seen in 23 (17%) cases. Ocular motor nerve palsies were second most common neuroophthalmic abnormalities. It accounted for 7 (5.18%) cases. Traumatic optic neuropathy was diagnosed in 18 (13%) cases with severe visual impairment. It manifested with loss of visual acuity in one eye accompanied with the presence of an ipsilateral afferent pupillary defect. Optic nerve avulsion was observed in one case only. Papilloedema was observed in 3 cases. Pupillary abnormality of various types were observed in 23 cases in the present study which was the most common neuroophthalmic finding in this study.

In the present study, optic nerve avulsion was found only in one case which had presented with a ring hemorrhage around the optic disc on ophthalmoscope. Traumatic optic neuropathy was found only in only 18 cases.

Figure 8: Different sites of orbital injuries

Legend:
- # ROOF
- # LATERAL WALL
- # MEDIAL WALL
- # FLOOR
- # MULTIPLE WALL
8.1. Neuroimaging
Among the 57 patients having neuroophthalmic manifestations 12 patients did not show any abnormality on neuroimaging.

8.2. Visual acuity
In the present study, visual acuity at the time of presentation was 6/36-6/60 in 61 eyes (45.18%), ≤6/60 in 29 eyes (21.48%) and 6/6-6/18 in 19 eyes (14.07%). Visual acuity could not be recorded in 26 eyes (25 cases) due to seriously ill condition of the patients.

8.3. Glasgow Coma Scale (GCS) Score
All the patients of head trauma with ocular manifestations were evaluated for GCS score at the time of admission to hospital. Three groups were made according to the GCS scoring. The patients were classified into three groups
1. Mild Head Injury- Gcs [14-15]
2. Moderate Head Injury- Gcs [9-13]
3. Severe Head Injury- Gcs [3-8]

<table>
<thead>
<tr>
<th>Type Of Injury</th>
<th>GCS</th>
<th>No. Of Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mild Head Injury</td>
<td>14-15</td>
<td>79</td>
</tr>
<tr>
<td>Moderate Head Injury</td>
<td>9-13</td>
<td>28</td>
</tr>
<tr>
<td>Severe Head Injury</td>
<td>3-8</td>
<td>17</td>
</tr>
</tbody>
</table>

IX. Discussion
The present study showed that more than 2/3 of ocular morbidity seen in males because they involve more frequently in outdoor activities than females which was similar to other studies like N.S.D Raj et al\(^3\) and Odebode et al\(^4\) reported 64.9 males, 35.1% females respectively.

In our study, incidence of ocular manifestations in head injury patients was more common in young adult population i.e. 21 to 40 years. This finding was similar to the findings in other studies like A.R. Kulkarni et al\(^5\) showed young adult males (21-30 years) were more vulnerable.

Ocular and orbital injuries: The present study found soft tissue injuries of globe and adnexa were more common which was similar to other studies. The present study showed sub conjunctival haemorrhage was (67.4%) followed by chemosis of conjunctiva (54.8%), lid oedema (47.4%) lid ecchymosis (40%) and lid lacerations (14.1%). These findings were different from other studies like B.Sharma et al\(^6\) found, where ecchymosis was found to be (51.85%) followed by sub conjunctival hemorrhage (44.4%) lid edema (41.5%), lacerated wound (22.59%), AR Kulkarni et al\(^7\) found ecchymosis (27%) was the most common finding, followed by subconjunctival haemorrhage (19%).

Neuro-Ophthalmic injuries: The present study showed Neuro-ophthalmic morbidity was 42.2% which was higher than other studies like Keane et al\(^8\) where it was found to be 16.7%, Sabates et al\(^9\) and Kowalet al\(^9\) found to be 7.7% 26.1% respectively. In the present study only one patient was diagnosed with trochlear nerve palsy and it was unilateral and patient complained of diplopia. The abducent nerve was the most commonly affected nerve in the present study which was similar to other studies like B.Sharma et al\(^8\)and Smruthi et al\(^10\).

Bony orbital injury – in our study it was found to be 20.3%, which was higher than study conducted by Cossman et al\(^11\), where it was found to be 5%.

Glasgow coma scale (GCS) score
1. Mild Head Injury- Gcs [14-15]
2. Moderate Head Injury- Gcs [9-13]
3. Severe Head Injury- Gcs [3-8]

Mortality rate in our study was about 12.09%. It was similar to the finding of AR Kulkarni et al\(^8\) who found a mortality rate of 13%. All of them had ocular involvement with neurological significance.

Limitations of the study
1. VEP (visual evoked potential) could not be done due to its non-availability.
2. Long term manifestations of head injury and visual outcome could not be assessed due to irregular follow up visits of patients.
3. Neurosurgeon consultation is mandatory for each case of head injury.

DOI: 10.9790/0853-1511102126 www.iorsjournals.org 25 | Page
X. Conclusion

The present study reveals that soft tissue injuries to globe and adnexa like subconjunctival haemorrhage, eyelid oedema, chemosis, ecchymosis and eyelid lacerations are the most common ocular manifestations in head injuries. Neuroophthalmic manifestations were less commonly found, most common being pupillary abnormalities, followed by oculomotor nerve palsies. Both neuroophthalmic manifestations and bony injury to the orbit were more common in patients with severe head injuries with low GCS scores. Both these findings were also more common in patients who had fatal outcome. So, it is observed that patients with neuroophthalmic manifestations and bony orbital injuries have poor prognosis and should be managed carefully. Hence a keen and careful observation of the ocular features in a patient with head injury and also neurosurgeon consultation is mandatory for each case of ocular trauma. It not only helps in managing the ophthalmic injuries but can also help in prognosis of the patient and as a result in better management of patient.

References

[5]. A R Kulkarni1, S P Aggarwal1, R R Kulkarni2, M D Deshpande, P B Walimbe- and A S Labhsetwar- Ocular manifestations of head injury Eye (Lond). 2005 Dec;19(12):1257-63
[10]. Dr. Smruthi1 , Dr. Ajay S. Hatti2 : Ocular Manifestations in Head Injury at SSIMS & RC International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064