# Correlation of Antenatal and Postnatal Umblical Coiling Index for Determining the Perinatal Outcome

Dr.AnubhaBansal<sup>1</sup>, Dr.Swati Garg<sup>2</sup>, Dr.Urvashi Sharma<sup>3</sup>, Dr.Samta Bali Rathore<sup>4</sup>

<sup>1,2,3,4</sup>(Obstetrics And Gynaecology, Mahatma Gandhi Medical College, Jaipur, Rajasthan, India)

#### Abstract:

**Objective(s):** To correlate antenatal early third trimester and postnatal UCI with perinatal outcome and to analyse if antenatal early third trimester UCI measurement could predict adverse perinatal outcome. **Method(s):** 200 pregnant woman fulfilling the inclusion criteria are recruited into the study. PostnatalyUCI was calculated. Early third trimester fetal anatomic sonographic survey is done. The UCI index defined as reciprocal of distance between two adjacent coils. Hypocoiled cordswere those having UCI less than 10th centile, and hypercoiled cords those having UCI more than 90th centile. Data were analyzed in PRIMER and SPSS version 20 Statistical software. Results-In present study the mean AUCI was  $0.39\pm0.09$  and mean PUCI was  $0.17\pm0.02$ The optimum cut off level for AUCI was 0.485 with SN 15%, SP 98%. A 0.185, area under the curve (AUC = 0.539) optimal cut-off value of PUCI, with a sensitivity of 19.8% and a specificity of 91.2%, was determined with SE 0.42. The association of AUCI with adverse perinatal outcome was statistically significant(p=0.011) Conclusion. Abnormal umbilical coiling index is associated with adverse perinatal outcome.

Keywords: hypercoiling umbilical cord, hypocoiling umbilical cord, umbilical coiling index(UCI)

### I. Introduction

The umbilical cord, also known as 'the birth cord' or 'funiculusumbilicalis' is the life line for the foetus developing inside the uterus, as it is the only means of supply of oxygen and nutrients to the foetus as well as removal of toxic wastes from the foetus, which is vital for its survival. As such any abnormality in the umbilical cord is very much likely to affect the well being of the foetus.

The most distinctive feature of the umbilical cord, the helical pattern of its vessels, was first recorded in 1521 by Berengarius. As reported by Edmonds<sup>1</sup>. Edmonds<sup>1</sup>, in 1954, was the first to describe a method for quantification of cord coiling. He called it the 'index of twist', which was the ratio of twists to the length of the cord, giving positive and negative values to the twists if the direction of coiling changed from left to right, where sinistral turns counterbalance dextral turns. Strong<sup>2</sup>, in 1994, was the first to simplify this method. He developed the ''umbilical coiling index'', which is the ratio of twists to the length of the cord, irrespective of the direction of coiling.Later modifications of his work resulted in the concept of ''Umbilical Coiling Index (UCI)'' which is calculated by dividing the total number of coils by the total length of the cord immediately after delivery.

Antenatally coiling can be determined ultrasonographically.<sup>2</sup> Studies have established correlation between both high and low coiling third trimester Umbilical coiling index (UCI)and postnatal UCI(true UCI) with adverse perinatal outcome like preterm labor, IUGR, IUD, foetal distress.

Coiling of umbilical vessels develops as early as 28 days after conception and is present in about 95% of foetuses by 9 weeks of conception. The helices may be seen by ultrasound as early as the first trimester.<sup>3</sup>The number of twists seen in first trimester is roughly the same as seen in term cords. Since lengthening of cord occurs from the foetal end, perhaps coiling of cord represents a long term record of foetal well being.<sup>4</sup>

If the antenatal UCI is compared with true UCI results obtained after birth. A statistically significant correlation between aUCI (antenatal UCI) and true UCI was found with p value <0.001.6. The UCI measured in early third trimester is useful in predicting the birth of small for gestational age infant and may serve as a marker for subsequent growth restriction.<sup>5</sup>

The hypocoiling of umbilical cord during the earlr third trimester of pregnancy suggests the high risk of preterm delivery and hence delivery of low birth weight neonates and admission to NICU is high. Hypocoiling may give way to kinking and compression. The hypocoiled cords or UCI <10th percentile is associated with meconium staining, Apgar score at 1 min <4 and Apgar score at 5 min <7. Hypercoiling may give way to occlusion in cases with cord entanglement. The hypercoiled cord or UCI >90th percentile is also associated with intra uterine growth restriction.

To calculate the UCI immediately after delivery, the umbilical cord is evaluated for complete vascular coiling, and the umbilical cord length is measured with a tape, from its insertion into the placenta up to the

neonatal umbilicus. A complete vascular coil is defined as a 360 degree complete round coiling of the vasculature, and the total number of these complete vascular coils is determined. Then the total number of vascular coils is divided by the total length of the cord in centimeters in order to determine the umbilical coiling index (UCI). On ultrasonography, in two adjacent coils, the distance from the outer surface of the vascular wall to its next twist is measured and calculated (antenatal UCI = 1/distance in centimeters).

The generally accepted method of assessing the degree of the umbilical cord coiling is by calculation of the umbilical coiling index (UCI), defined as the number of complete coils per centimetre length of cord. Using this criterion, studies to date have been remarkably consistent in reporting of the normal UCI, which is around 0.2 in the postpartum setting following examination of the delivered placenta and umbilical cord (pUCI) and 0.4 when determined antenatally by ultrasonography (aUCI).<sup>3</sup>

An abnormal umbilical coiling index (UCI) in the form of hypocoiling or hypercoiling has been reported to be related to adverse foetal outcomes. It appears that hypocoiled cords are predominantly associated with an increased frequency of intrauterine death and low Apgar score. Hypercoiling was found to be associated with intrauterine growth restriction, foetal acidosis and asphyxia.<sup>6</sup>

#### II. Materials And Methods

It was a prospective study conducted at department of Obstetrics and Gynecology, Mahatma Gandhi Medical College And Hospital,rajasthan.India.200 booked singleton pregnancies fulfilling the below mentioned inclusion criteria, attending regular antenatal check up and willing for institutional deliveries were evaluated ultrasonographically for umbilical coiling index at the time of routine foetal anatomical survey and postnatally at the time of delivery.

#### Inclusion Criteria

- Maternal age between 18-35 years.
- Intrauterine Singleton live pregnancy.
- Foetal anatomic survey at 28-32 weeks period of gestation.
- Willing for Institutional delivery at mgh.

#### **Exclusion Criteria**

- Multifoetal gestation.
- Breech presentation and delivery, Preterm deliveries
- Intrauterine deaths
- Single umbilical artery.
- Pre-existing maternal diseases like Hypertension, Diabetes, and Chronic renal disease.
- Smoking and Drug abuse. Anomalous foetus.

Early third trimester foetal anatomic ultrasonographic survey was done. The distance in centimetres between two adjacent coils was measured from inner edge of arterial or venous wall to the outer edge of next coil along the ipsilateral side of umbilical cord. The umbilical coiling index defined as reciprocal of distance between two adjacent coils (antenatal UCI = 1/distance in cm.

Postnatally umbilical coiling index was calculated by dividing the total number of complete vascular coils in given cord by the total length of the cord in centimeters. Healthy women with term gestation with singleton pregnancy, irrespective of their parity, who were in active labour and were admitted to labour room were taken for the study. Umbilical cord was clamped and cut as close as possible to placental end . The umbilical cord is measured in its entirety, including the length of placental end of the cord and the umbilical stump of the baby. The number of the complete coils or spirals were counted from the neonatal end towards the placental end of the cord and expressed per centimeters. After this umbilical coiling index was calculated, by dividing the total number of coils, by the total length of cord in centimeters. After calculating the umbilical coiling index, perinatal factors like meconium staining, foetal weight, apgar score, ponderal index were correlated with it.

Umbilical Coiling Index = <u>Number of Coils</u> Total length of the Umbilical Cord (cm)

| Descriptive Statis | stics     |           |           |           |       |           |           |       |
|--------------------|-----------|-----------|-----------|-----------|-------|-----------|-----------|-------|
|                    | Ν         | Minimum   | Maximum   | Mean      |       | Std.      | Skewness  |       |
|                    |           |           |           |           |       | Deviation |           |       |
|                    | Statistic | Statistic | Statistic | Statistic | Std.  | Statistic | Statistic | Std.  |
|                    |           |           |           |           | Error |           |           | Error |
| Age                | 200       | 18        | 35        | 26.37     | 0.31  | 4.44      | .307      | .172  |
| aUCI               | 200       | .13       | .64       | 0.39      | 0.01  | 0.09      | -1.036    | .172  |
| pUCI               | 200       | .12       | .23       | 0.17      | 0.00  | 0.02      | .439      | .172  |
| Baby weight        | 200       | 1.2       | 3.5       | 2.54      | 0.03  | 0.44      | 547       | .172  |
| Apgar at 5 min     | 200       | 3         | 9         | 7.26      | 0.10  | 1.42      | -1.593    | .172  |

III. Results TABLE 1:Descriptive Statistics of the variables

According to data and test of normality applied observed all mentioned data were parametric data. In my study the minimum aUCI was 0.13 and maximum aUCI was 0.64.

Minimum pUCI was 0.12 and maximum was 0.23.

Range-aUCI 0.13-0.64±0.09 ,pUCI 0.12-0.23±0.02

| TABL | E 2: | Association | of AUCI | with    | adverse | perinatal | outcome |
|------|------|-------------|---------|---------|---------|-----------|---------|
| INDL |      | issociation | or moor | ** 1011 | auverse | permatar  | outcome |

| AUCI    | Hypercoiling |     | Hypocoiling |       | Normal |        | Total |
|---------|--------------|-----|-------------|-------|--------|--------|-------|
|         | No           | %   | No          | %     | No     | %      | No    |
| Absent  | 37           | 50  | 1           | 14.29 | 76     | 63.87  | 114   |
| Present | 37           | 50  | 6           | 85.71 | 43     | 36.13  | 86    |
| Total   | 74           | 100 | 7           | 100   | 119    | 100.00 | 200   |

Chi-square = 8.979 with 2 degrees of freedom; p = 0.011S

Hypocoiling was significantly associated with adverse perinatal outcome (85.71%)

The association of AUCI with adverse perinatal outcome was statistically significant(p=0.011)

|         | IADLE 3      | Association  | of FUCI with | i auverse per | matal outcol | ne     |       |
|---------|--------------|--------------|--------------|---------------|--------------|--------|-------|
| PUCI    | Hypercoiling | Hypercoiling |              | Hypocoiling   |              |        | Total |
| ruci    | No           | %            | No           | %             | No           | %      | No    |
| Absent  | 7            | 36.84        | 15           | 55.56         | 92           | 59.74  | 114   |
| Present | 12           | 63.16        | 12           | 44.44         | 62           | 40.26  | 86    |
| Total   | 19           | 100.00       | 27           | 100.00        | 154          | 100.00 | 200   |

TABLE 3:Association of PUCI with adverse perinatal outcome

Chi-square = 3.645 with 2 degrees of freedom; p = 0.162

Hypercoiling was found more in babies with adverse Perinatal outcome. The association of PUCI with adverse perinatal outcome was statistically non significant(p=0.162)

Diagnostic performance of AUCI for the differential diagnosis of perinatal outcome at the optimal cutoff points of the ROC analysiscurves. Receiver operating characteristic (ROC) for aUCI showing (1-specificty) on the X axis and sensitivity on Y Axis exercising different cut off value to land at the choice ,the most apposite cut off point and which provide the greatest sum of sensitivity and specificity. Table 4 illustrate sensitivity, specificity, 1-specificity (False positivity rate) of AUCI at diverse level. The optimum cut off value was obtained by points of test values that grants the highest Youden Index that is (SN+SP)-1.

The optimum cut off level for aUCI was 0.485 with SN 15%, SP 98%. This level is excellent to use as a specific test. A  $\geq$ 0.485 index under the curve (AUC = 0.505) optimal cut-off value of aUCI, with a sensitivity of 15% and a specificity of 98%, was determined with SE 0.044.

 TABLE 4: depicts diagnostic performance of AUCI for the differential diagnosis of perinatal outcome at the optimal cut-off points of the ROC analysis curves.

| Area Under the Curv           | ve                      |                              |                                   |             |  |  |  |  |  |
|-------------------------------|-------------------------|------------------------------|-----------------------------------|-------------|--|--|--|--|--|
| Test Result Variable(s): aUCI |                         |                              |                                   |             |  |  |  |  |  |
| Area                          | Std. Error <sup>a</sup> | Asymptotic Sig. <sup>b</sup> | Asymptotic<br>Confidence Interval | 95%         |  |  |  |  |  |
|                               |                         |                              | Lower Bound                       | Upper Bound |  |  |  |  |  |
| .505                          | .044                    | .895                         | .419                              | .592        |  |  |  |  |  |



Diagonal segments are produced by ties. figure 1: ROC plot of AUCI in reference to perinatal outcome

 TABLE 5 depicts diagnostic performance of PUCI for the differential diagnosis of perinatal outcome at the optimal cut-off points of the ROC analysis curves.

| Area Under th                 | e Curve                 |                              |                            |             |     |  |  |  |  |
|-------------------------------|-------------------------|------------------------------|----------------------------|-------------|-----|--|--|--|--|
| Test Result Variable(s): pUCI |                         |                              |                            |             |     |  |  |  |  |
|                               |                         |                              | Asymptotic                 |             | 95% |  |  |  |  |
| Area                          | Std. Error <sup>a</sup> | Asymptotic Sig. <sup>b</sup> | <b>Confidence Interval</b> |             |     |  |  |  |  |
|                               |                         |                              | Lower Bound                | Upper Bound |     |  |  |  |  |
| .539                          | .042                    | .347                         | .456                       | .622        |     |  |  |  |  |
|                               |                         |                              |                            |             |     |  |  |  |  |

ROC curve analysis was performed to determine the optimal cut-off values of significant variables PUCI detected between perinatal outcome (Fig 2). A 0.185, area under the curve (AUC=0.539) optimal cut-off value of PUCI, with a sensitivity of 19.8% and a specificity of 91.2%, was determined with SE 0.42.



Diagonal segments are produced by ties. Figure 2:ROC plot of PUCI in reference to perinatal outcome

|       | Hypercoi | Hypercoiling |    | Hypocoiling |     | Normal |     |
|-------|----------|--------------|----|-------------|-----|--------|-----|
| AUCI  | No       | %            | No | %           | No  | %      | No  |
| ≤5    | 11       | 14.86        | 5  | 71.43       | 13  | 10.92  | 29  |
| 6     | 0        | 0.00         | 1  | 14.29       | 4   | 3.36   | 5   |
| 7     | 39       | 52.70        | 1  | 14.29       | 53  | 44.54  | 93  |
| 8     | 22       | 29.73        | 0  | 0           | 43  | 36.13  | 65  |
| 9     | 2        | 2.70         | 0  | 0           | 6   | 5.04   | 8   |
| Total | 74       | 100.00       | 7  | 100         | 119 | 100.00 | 200 |

#### TABLE 6: Association of APGAR at 1 min with AUCI

Chi-square = 28.915 with 8 degrees of freedom; p < 0.001S

Hypocoiling was more associated with apgar score less than 5 as compared to hypercoiling. The correlation between APGAR at 1 min and AUCI was statistically significant (p<0.001)

| TABLE 7:Association of APGAR | at 1 min with PUCI |
|------------------------------|--------------------|
|------------------------------|--------------------|

| DUCI  | Hypercoi | Hypercoiling |    | Hypocoiling |     | Normal |     |
|-------|----------|--------------|----|-------------|-----|--------|-----|
| PUCI  | No       | %            | No | %           | No  | %      | No  |
| ≤5    | 6        | 31.58        | 6  | 22.22       | 17  | 11.04  | 29  |
| 6     | 1        | 5.26         | 1  | 3.70        | 3   | 1.95   | 5   |
| 7     | 8        | 42.11        | 14 | 51.85       | 71  | 46.10  | 93  |
| 8     | 3        | 15.79        | 6  | 22.22       | 56  | 36.36  | 65  |
| 9     | 1        | 5.26         | 0  | 0.00        | 7   | 4.55   | 8   |
| Total | 19       | 100.00       | 27 | 100.00      | 154 | 100.00 | 200 |

Chi-square = 11.867 with 8 degrees of freedom; p = 0.157 NS

The correlation between APGAR at 1 min and PUCI bothhypercoiling and hypocoiling was statistically non significant (p=0.157)

### TABLE 8:Association of IUGR with AUCI

| AUCI        | AUCI Hypercoiling |        | Hypocoiling |        | Normal |        | Total |      |
|-------------|-------------------|--------|-------------|--------|--------|--------|-------|------|
| <u>IUGR</u> | No.               | %      | No.         | %      | No.    | %      | No.   | %    |
| Present     | 6                 | 8.11   | 2           | 28.57  | 5      | 4.20   | 13    | 6.5  |
| Absent      | 68                | 91.89  | 5           | 71.43  | 114    | 95.80  | 187   | 93.5 |
| Total       | 74                | 100.00 | 7           | 100.00 | 119    | 100.00 | 200   | 100  |

Chi-square = 6.960 with 2 degrees of freedom; p = 0.03S

Hypercoiling 6(8.11%). was found more in IUGR babies as compared to Hypocoiling 2 (28.57%).

The association of IUGR with AUCI was statistically significant (p=0.03)

#### TABLE 9:Association of IUGR with PUCI

| PUCI    | Hypercoiling |        | Hypocoiling |        | Normal |        | Total |      |  |
|---------|--------------|--------|-------------|--------|--------|--------|-------|------|--|
| IUGR    | No           | %      | No          | %      | No     | %      | No    | %    |  |
| Present | 0            | 0.00   | 4           | 14.81  | 9      | 5.84   | 13    | 6.5  |  |
| Absent  | 19           | 100.00 | 23          | 85.19  | 145    | 94.16  | 187   | 93.5 |  |
| Total   | 19           | 100.00 | 27          | 100.00 | 154    | 100.00 | 200   | 100  |  |

Chi-square = 4.501 with 2 degrees of freedom; p = 0.105NS.Hypocoiling was more in IUGR babies while no IUGR babies were there with hypercoiledcords.The association of IUGR with PUCI was statistically non significant(p=0.105)

|      | Baby Weight  | Ν   | Mean | Std.<br>Deviation | P Value<br>LS | 1vs2 | 2vs3 | 1vs3 |  |  |  |
|------|--------------|-----|------|-------------------|---------------|------|------|------|--|--|--|
|      | Hypercoiling | 74  | 2.52 | 0.42              |               |      |      |      |  |  |  |
| AUCI | Hypocoiling  | 7   | 2.09 | 0.68              | 0.014S        | S    | S    | NS   |  |  |  |
|      | Normal       | 119 | 2.58 | 0.42              |               |      |      |      |  |  |  |
|      | Hypercoiling | 19  | 2.47 | 0.63              |               |      |      |      |  |  |  |
| PUCI | Hypocoiling  | 27  | 2.55 | 0.45              | 0.726NS       | NS   | NS   | NS   |  |  |  |
|      | Normal       | 154 | 2.55 | 0.41              |               |      |      |      |  |  |  |
|      | Total        | 200 | 2.54 | 0.44              |               |      |      |      |  |  |  |

## TABLE 10:Association of Birth weight with UCI

In AUCI, mean birth weight was  $2.52\pm0.42$  in hypercoiling,  $2.09\pm0.68$  in hypocoiling,  $2.58\pm0.42$  in Normal. In PUCI, mean birth weight was  $2.47\pm0.63$  in hypercoiling,  $2.55\pm0.45$  in hypocoiling,  $2.55\pm0.41$  in Normal.Association of birth weight with AUCI index was observed significant (p=0.014). Association of birth weight with PUCI was found to be statistically non significant (p=0.726)

#### Discussion IV.

In present study the mean aUCI was 0.39±0.09 and mean pUCI was 0.17±0.02.Maximum and minimum aUCI were 0.13 and 0.64 respectively. Maximum and minimum pUCI were 0.12 and 0.23 respectively.

| TABLE 11: maximum and minimum values of umblical colling index in our study |         |         |               |                               |  |
|-----------------------------------------------------------------------------|---------|---------|---------------|-------------------------------|--|
|                                                                             | Maximum | Minimum | Mean          | Range                         |  |
| aUCI                                                                        | 0.64    | 0.13    | $0.39\pm0.01$ | $0.13 \text{-} 0.64 \pm 0.09$ |  |
| pUCI                                                                        | 0.23    | 0.12    | $0.17\pm0.00$ | $0.12  0.23 \pm 0.02$         |  |
|                                                                             |         |         |               |                               |  |

#### **TABLE 12:**Comparison of aUCI among different studies

| Year | Study                              | Mean aUCI                 |
|------|------------------------------------|---------------------------|
| 1999 | Otsuboet al 7                      | $0.39 \pm 0.03$ coils/cm  |
| 2001 | Shimon Deganiet al <sup>8</sup>    | $0.42 \pm 0.12$ coils/cm  |
| 2005 | MladenPredanicet al <sup>9</sup>   | $0.403 \pm 2$ SD coils/cm |
| 2005 | Perni <i>et al</i> <sup>9</sup>    | $0.40 \pm 0.10$ coils/cm  |
| 2006 | De Laat <i>et al</i> <sup>10</sup> | $0.30 \pm 0.09$ coils/cm  |
| 2015 | Present Study                      | $0.39 \pm 0.01$ coils/cm  |

|--|

| 1993 | Stronget al <sup>11</sup>            | $0.21\pm0.07$    |
|------|--------------------------------------|------------------|
| 1995 | Ranaet al <sup>12</sup>              | $0.19\pm0.1$     |
| 1996 | Ercal <i>et al</i> <sup>13</sup>     | $0.20 \pm 0.1$   |
| 2000 | Ezimokhai <i>et al</i> <sup>14</sup> | $0.26\pm0.09$    |
| 2005 | de Laat <i>et al</i> <sup>10</sup>   | $0.17 \pm 0.009$ |
| 2015 | Presentstudy                         | $0.17 \pm 0.00$  |

In our study the vaue of antenatal umblical coiling index is similar to that obtained by Otsubo et al<sup>7</sup> which is  $0.39 \pm 0.01$  coils/cm.whileumblical coiling index calculated after delivery was 0.17 which was same as obtained by de Laat et al

Hypocoiling has resulted in more LBW( <2.5 kg) babies (71.43%). No significant association was observed (p value >0.05) with AUCI.No significant association was observed (p value >0.05) with P UCI. Mean birth weight was significantly lower in hypocoiled cords as compared to hyper coiled and normal coiled cords. (P=0.014S).T. Chitra et al 2011<sup>20</sup> found that LBW (birth weight <2.5 kg) was significantly associated with both hypocoiled (P = 0.011) and hypercoiled (P = 0.001).27 Literature has found a consistent association between hypercoiled and LBW babies, as shown by Ranaet al<sup>12</sup>and de Laat et al.<sup>10</sup>

Hypercoiling 6(8.11%). was found more in IUGR babies as compared to Hypocoiling 2 (28.57%). The association of IUGR with AUCI was statistically significant (p=0.03). Hypocoiling was more in IUGR babies while no IUGR babies were there with hypercoiledcords. The association of IUGR with PUCI was statistically non significant(p=0.105) .Saksh et al  $2014^{21}$  demonstrated a significant association between IUGR babies and hypercoiling (P = 0.000). Ezimokhaiet al1<sup>14</sup> and de Laat et al1<sup>15</sup> obtained a similar result in their studies. However Strong et al<sup>18</sup> and Machin et al<sup>17</sup> found IUGR to be associated with hypocoiling. They summarized that since adequate coiling prevents compression of the cord, hypocoiling in the long run results in reduced fetoplacental circulation, thus resulting in growth restriction. Monique et al<sup>15</sup> also found that hypocoiling was associated with small for gestational age infants.

Hypocoiling was more associated with appar score less than 5 as compared to hypercoiling. The association between low APGAR at 1 min and AUCI was statistically significant (p<0.001). More cases were observed in hypercoiling group with apgar < 5(1 min) in PUCI.

Hypocoiling was significantly associated with adverse perinatal outcome (85.71%). The association of AUCI with adverse perinatal outcome was statistically significant(p=0.011).Hypercoiling was found more in babies with adverse Perinatal outcome. The association of PUCI with adverse perinatal outcome was statistically non significant(p=0.162).

| FABLE 14:Studies Examining aUCI or pUCI Umbilica | l Cord Coiling Index and Adverse Pregnancy |
|--------------------------------------------------|--------------------------------------------|
| Outcomes                                         |                                            |

| Study                                     | Туре | Ν   | Hypocoiled                | Hypercoiled                     |
|-------------------------------------------|------|-----|---------------------------|---------------------------------|
| De Laat <i>et al</i> (2007) <sup>15</sup> | pUCI | 565 | IUD, fetal anomaly, low   | IUD, PTB, fetal anomaly, FTV,   |
|                                           |      |     | APGAR Score at 5 min      | hypoxia, low birth weight       |
| De Laat <i>et al</i> (2006) <sup>10</sup> | aUCI | 81  | -                         | Low Birth Weight                |
| Kashanianet al (2006) <sup>16</sup>       | pUCI | 699 | Low APGAR Score at 5 min, | Low APGAR Score at 5 min, AFI   |
|                                           |      |     | AFI < 5                   | < 5, meconium, low birth weight |
| De Laat <i>et al</i> (2006) <sup>10</sup> | pUCI | 885 | IUD, PTB, trisomy, low    | Asphyxia, pH < 7.05, SGA,       |
|                                           |      |     | APGAR Score at 5          | trisomy, SUA                    |

Correlation Of Antenatal And Postnatal Umblical Coiling Index For Determining The Perinatal...

| Study                                    | Туре | Ν    | Hypocoiled                     | Hypercoiled                       |
|------------------------------------------|------|------|--------------------------------|-----------------------------------|
|                                          |      |      | min, velamentous cord          |                                   |
|                                          |      |      | insertion.                     |                                   |
| Predanicet al (2005) <sup>9</sup>        | aUCI | 294  | Low birth weight, meconium,    | Low birth weight, meconium, fetal |
|                                          |      |      | fetal distress                 | distress                          |
| Deganiet al (2001) <sup>8</sup>          | aUCI | 124  | Low birth weight               | -                                 |
| Ezimokhaiet al (2000) <sup>14</sup>      | pUCI | 657  | -                              | Meconium, low birth weight, fetal |
|                                          | _    |      |                                | distress                          |
| Machinet al (2000) <sup>17</sup>         | pUCI | 1329 | IUD, fetal distress, low birth | IUD, fetal distress, low birth    |
|                                          | -    |      | weight                         | weight, FTV                       |
| Otsubo <i>et al</i> $(1999)^7$           | aUCI | 253  | Abnormal insertion             | -                                 |
| Strong <i>et al</i> (1996) <sup>11</sup> | pUCI | 200  | Nuchal cord                    | -                                 |
| Ercal <i>et al</i> (1996) <sup>13</sup>  | pUCI | 147  | Meconium, fetal distress, low  | -                                 |
|                                          | -    |      | APGAR Score at 5 min           |                                   |
| Rana <i>et al</i> (1995) <sup>12</sup>   | pUCI | 635  | Fetal distress                 | PTB                               |
| Strong <i>et al</i> (1994) <sup>18</sup> | pUCI | 100  | Aneuploidy, Meconium, fetal    | CTG abnormalities                 |
|                                          |      |      | distress                       |                                   |

#### V. Conclusion

Umblical coiling index was found as important predictor of adverse perinatal outcome.antenally calculated abnormal UCI was found with some perinantal complications in neonates. We found significant increase in the risk for a intra uterine growth restricted babies and interventional delivery for non-reassuring foetal status if hypercoiling was observed on ultrasonography. Also babies with low birth weight and NICU admissions had hypocoiled or hypercoiled cords at birth.Thus we can use UCI values determined ultrasnographically as predictor of adverse perinatal outcome and appropriate measures can be taken to prevent morbidity and mortality of neonates.To conclude, abnormal umbilical coiling index is associated with several adverse antenatal and neonatal features. The association shows wide variations among the various studies done so far.

#### References

- [1]. Edmonds HW. The spiral twist of the normal umbilical cord in twins and in singletons. Am J ObstetGynecol 1954;67:102-120.
- [2]. Cunningham et al. Williams obstetrics. 20th ed. Stamford, Connecticut: Appleton and Lange; 1997.
- [3]. Blackburn W, Cooley NR. The umbilical cord. In: Stevenson RE, Hall JG, Goodman RM, editors. Human malformations and related anomalies, volume II, chapter 37. New York: Oxford University Press; 1993.
- [4]. Sherer DM, Anyaegbunam A. Prenatal ultrasonographic morphologic assessment of the umbilical cord: A review. Part I. ObstetGynecolSurv 1997;52(8):506-514.
- [5]. Fujikura T. Fused umbilical arteries near placental cord insertion. Am J ObstetGynecol 2003;188(3):765–767.
- [6]. Benirschke K, Kaufmann P. Pathology of the human placenta. New York: Springer; 1995.
- [7]. Otsubo Y, Yoneyama Y, Suzuki S, Sawa R, Anatomic survey and evaluation of umbilical cord insertion with umbilical coilin index. J Clin Ultrasound 1999;27:341-4.
- [8]. Degani S, Leibovich Z, Shapiro I, Gonen R, Ohel G. Early Second-Trimester Low Umbilical Coiling Index Predicts Small-for-Gestational-Age Foetuses. J Ultrasound Med. 2001 Nov;20(11):1183-8.
- [9]. Predanic M, Perni SC, Chasen ST, Baergen RN, Chervenak FA. Ultrasound evaluation of abnormal umbilical cord coiling in association with adverse pregnancy outcome. Am J Obstet Gynecol. 2005 Aug;193(2):387-94.
- [10]. DeLaat MW, Franx A, Nikkels PG, Visser GH. Prenatal ultrasonographic prediction of the umbilical coiling index at birth and adverse pregnancy outcome. Ultrasound Obstet Gynecol. 2006 Oct;28(5):704-9.
- [11]. Strong TH, Elliot JP, Radin TG. Non-coiled umbilical blood vessels: a new marker for the foetus at risk. ObstetGynecol 1993;81:409-411.
- [12]. Rana J, Ebert GA, Kappy KA. Adverse perinatal outcome in patients with an abnormal umbilical coiling index.Obstet Gynecol. 1995 Apr;85(4):573-7.
- [13]. Ercal T, Lacin S, Altunyurt S, Saygili U, Cinar O, Mumcu A. Umbilical coiling index: is it a marker for the foetus at risk. Br J ClinPract. 1996 Jul-Aug;50(5):254-6.
- [14]. Ezimokhai M, Rizk DE, Thomas L. Maternal risk factors for abnormal vascular coiling of the umbilical cord. Am J Perinatol., 2000; 17(8):441-446.
- [15]. Monique W. M. de Laat, Jacqueline J. CvanderMeij, Gerard H. A. Visser, ArieFranx, and Peter G. J. Nikkels (2007) Hypercoiling of the Umbilical Cord and Placental Maturation Defect: Associated Pathology. Pediatric and Developmental Pathology: August 2007;10(4):293-299.
- [16]. M. Kashanian, A. Akbarian, and J. Kouhpayehzadeh, "The umbilical coiling index and adverse perinatal outcome," International Journal of Gynecology& Obstetrics 2006;95:8–13.
- [17]. Machin GA, Ackerman J, Gilbert-Barness E. Abnormal umbilical cord coiling is associated with adverse perinatal outcome. PediatrDevlPathol 2000;3:462–471.
- [18]. Strong TH. Factors that provide optimal umbilical protection during gestation.ContempObstetGynecol 1996;42:82-105.
- [19]. Thomas H. Strong Jr, Denice L. Jarles, Juan S. Vega, David B. Feldman. The umbilical cord index. American Journal of Obstetrics &Gynecology. January 1994;170(1):29–32.
- [20]. Chitra T, Sushanth YS, Raghavan S. Umbilical Coiling Index as a Marker of Perinatal Outcome: An Analytical Study. ObstetGynecol Int. 2012; 2012:213689. doi: 10.1155/2012/213689.
- [21]. Agarwal S, Purohit RC, Jain G. Umbilical Cord Coiling Index and Perinatal Outcome in Normal and Abnormal Pregnancies. Sch. J. App. Med. Sci., 2014; 2(1D):447-450.