Speciation of Coagulase Negative Staphylococci and Their Antibiogram

RajyalakshmiGunti¹, DurgaraniArava², RajasekharKoppada³

^{1, 2, 3} Assistant professors, Department of Microbiology, Rangaraya Medical College, Kakinada, Andhrapradesh

Abstract: Coagulase Negative Staphylococci (CoNS) have surfaced as important pathogens, preying primarily on patients with some sort of prosthetic or indwelling device. They are currently the most frequent agents of nosocomial bacteraemia. Recovery of these organisms from specimens should always be correlated with the clinical condition of the patient before their role in an infectious process can be established. With the increasing number of Staphylococcus species being recognised in human infections and the finding of resistance to multipleantimicrobial agents, it is imperative that the clinical microbiologist be familiar with current methods for characterising these organisms. This study was undertaken to identify the prevalence of clinical isolates of CoNS, their speciation using a simple schemeof biochemical reactions and to determine their antibiotic sensitivity/resistantpatterns. A total of 100 isolates were collected from different samples and subjected tobiochemical characterization using a simple scheme. Antimicrobial susceptibility testing was done by Kirby-Buer's disc diffusion method. The commonest species identified was S.epidermidis (42%) followed by S.haemolyticus (28%) and S.saprophyticus (18%). S.schleiferi constituted 4%, S.simulans 2%, S.cohnii, S.warneri and S.capitis 1% each. We could not identify 3 isolates using this scheme. Antibiotic susceptibility testing showed maximum resistance to penicillin (90%), Ampicillin (79%), Erythromycin (65%) and Cotrimoxazole (62%). Methicillin resistance was found to be 72% by using Cefoxitin disc. The increased recognition of pathogenic potential in CoNS and emergence of drug resistance among them demonstrates the need to adopt simple laboratory methods to identify the species and determine the antibiotic resistantpatterns. It will help the clinicians in treating the infections caused by CoNS.

Keywords: Coagulase negative Staphylococcus, Mannose, Novobiocin resistance, Ornithine decarboxylase, Urease.

I. Introduction

Coagulase negative Staphylococci (CoNS) historically have been regarded as saprophytes with little pathogenic potential¹.Since 1950, infections with these organisms have been reported with increasing frequency². Over the last two decades, however these organisms have become recognised as important agents of human disease³.

CoNS are common colonisers of the skin, anterior nares and ear canals of humans⁴. They act as opportunistic pathogens in debilitated, compromised patients often by colonising biomedical devices such as prostheses, implants and intravascular lines^{5,6}.CoNS has emerged as predominant pathogen in hospital acquired infections and vary in pathogenic potential⁷.

More than 30 species of CoNS are recognised but only a few are commonly incriminated in human infections⁸.

S.epidemidis is the CoNS species most frequently isolated from infections. In the reports of national survey, this species has been remarkably quoted as primary nosocomial pathogen⁹. It has been implicated as the etiological agent in infections of wounds, urogenital tract, respiratory tract, meninges, conjunctiva and intravenous catheter associated infections¹⁰.

S.haemolyticus has been documented in many studies as a clinically opportunistic pathogen and is usually the second most common CoNS species recovered from documented infection sites¹¹. It has been implicated in naïve-valve endocarditis, septicaemia, peritonitis, wound, bone and joint infections.

S.saprophyticus was shown to be an important cause of urinary tract infections in young females¹². It is second to colliforms as the most common cause of acute urethral syndrome¹³.

S. warneri is a well recognised cause of catheter related bacteraemia, naïve-valve endocarditis, haematogenous vertebral osteomyelitis and ventriculo-peritoneal shunt associated meningitis.S.hominis has occasionally been isolated from infections causing catheter related sepsis in immunocompromised hosts.S.simulans has been established as a cause of septicaemia, osteomyelitis, septic arthritis, vertebral osteomyelitis and prosthetic joint infections.S.schleiferi has been isolated from several human infections including brain empyema, wound infections, bacteraemia complicating vertebral osteitis, infection of hip prosthesis and indwelling catheter infections.S.lugdunensis has been isolated from abscesses in the pelvic girdle

region.S.cohnii is an emergent opportunistic agent having been reported as a cause of community acquired pneumonia.

Several commercial kit identification systems and automated instruments are available which can identify a number of Staphylococcus species accurately but are still out of reach of most of the laboratories in developing countries. Hence convenient, reliable and inexpensive identification methods are needed to identify most of the CoNS species, which can be utilised by most of the laboratories where automated methods are not yet available.

In the present study an attempt was made to identify the CoNS species isolated from various samples by using minimum number of testswhich were simple, inexpensive and easy to perform. Antibiogram of the isolates was also done.

II. Materials And Methods

The present study was conducted in the department of microbiology, Rangaraya Medical College, Kakinada for a period of 6 months from March to August 2015. A total of 100 clinically significant CoNS isolates wereidentified in different clinical samples (urine, sputum, blood, pus and CSF) and processed using conventional microbiological methods. The isolates were initially identified by colony morphology, Gram staining, catalase, slide and tube coagulase test³.

The tests which were simple, inexpensive and easy to perform, were selected from the scheme of Kloos and Shleifer to identify CoNS species^{14,15}. Speciation of CoNS was done by Novobiocin resistance, urease activity, ornithine decarboxylase & acid production from mannose as noted in TABLE I.

Antibiotic susceptibility of the isolates is done by Kirby Bauer's disc diffusion method following CLSI guidelines. Methicillin resistance was tested by using Cefoxitin disc.

One isolate from each species identified was confirmed on siemen's automated identification system.

III. Results

As per TABLE II, among 100 CoNS isolates the present scheme identified the commonest species as S.epidermidis (42%) followed by S.haemolyticus (28%) and S.saprophyticus (18%) together constituting 88% of the total CoNS species.S.schleiferi constitutes 4%, S.simulans 2%, S.cohnii, S.warneri and S.capitis 1% each. We could not identify 3 isolates may be because of aberrant reactions which were later identified on Siemenn'sautoscan as S.lugdunensis.

As per TABLE III majority showed resistance to penicillin (90%), Ampicillin (79%), Erythromycin (65%) and Cotrimoxazole (62%). Methicillin resistance in CoNS was found to be 72% which was identified by using Cefoxitin disc. Resistance to Vancomycin which is the drug of choice for methicillin resistant strains was also noted in 7% of cases, which is an alarming sign.

IV. Discussion

Infections with CoNS have been reported with increasing frequency. Because there is increasing pathogenecity and resistance of these organisms, CoNS should be identified to the species level by simple, reliable and preferably inexpensive methods possible.

In the present study 100 strains of CoNS were speciated by using a simple scheme and the results are compared with other studies as follows.

In our study the most common species isolated was S.epidermidis (42%) which is correlating with the studies by Shubhra Singh et al^{17} where the rate of isolation was 40%.

The next common species in our study was S.haemolyticus seen in 28%. Similar results were seen in other studies, Sheik and Mehdinejad et al¹⁸, samanthSharvani et al¹⁹ and Usha M G et al²⁰. But in other studies, Mohan et al²¹, N P Singh et al¹⁶, Shubhra Singh et al¹⁷, Surekha Y Asangi et al¹⁶ and Shubha D S etal²³ S. saprophyticuswas the second most common species.

In the present study antibiotic susceptibility testing showed multidrug resistance among the CoNS species. Methicillin resistance in our study was 72% which was nearly correlating with Surekha Y Asangiet al^{22} (67.7%).

Although many studies showed 100% sensitivity to Vancomycin, our study showed 7% resistance to Vancomycin. Emerging vancomycin resistant CoNS isolates have been reported from India and other countries.

V. Conclusions

CoNSis increasingly being implicated as a significant nosocomial pathogen. Many of the CoNS species are becoming resistant to antibiotics that are being indicated for Staphylococcal infections. Hence there is a need for identification of these isolates to species level by simple, inexpensive methodology. Italso helps in monitoring the reservoir and distribution of CoNS involved in nosocomial infection. We are able to identify

more than 90% of CoNS species by a simple scheme which can be employed in conventional diagnostic laboratories.

References

- [1]. Sewell CM, Clarridge JE, Young EJ, Outhrie RK. Clinical significance of Coagulage negativeStaphylococci. J ClinMicrobiol 1982; 16(2):236-239
- [2]. Vijayalakshmi N, Mohapatra LN, Bhujwala RA. Biological characters and antimicrobial sensitivity of Staphylococcus epidermidis isolated from human source. Indian J Med Res 1980;72:16-22
- Koneman EW, Allen SD, JandaWM, Schreckenberger PC, Winn WC. Colour Atlas and Textbook of Diagnostic Microbiology. 5th ed. Philadelphia: Lippincott: 1997.
- [4]. Silvia Natoli, Carla Fontana et al. Characterisation of Coagulase negative Staphylicoccal isolates from blood with reduced susceptibility to glycopeptides and therapeutic options. J antimicrobechemother 1992; 29:459-4666.
- [5]. Humphreys H. Medial Microbiology. A guide to microbial infections, pathgenesis, immunity, laboratory diagnosis and control. 15th ed. Edinburgh: ELST with Churchill Livingstone;1997.
- [6]. Seetha KS, Santosh PK, Shivananda PG. Study of coagulase negative Staphylococciisolated from blood and CSF. Indian J PatholMicrobiol 2000;43(1):41-45
- Badwi JA, Memon AH, Soomro AA. Coagulase negative Staphylococcus (CONS) is the contaminant in the clinical specimen. Med Channel 2012;19:23-7
- [8]. Geary C, Jordens JZ, Richardson JF, Howcraft DM, Mitchell CJ. Epidemiological typing of Coagulase negative Staphylococci from nosocomial infections. J Med Microbiol 1997;46:195-203
- [9]. Fule RP, Later Iyer, Saoji AM. Study of pathogenicity markers of Staphylococci isolated from clinical specimens. Indian J PatholMicrobiol 1996;39(2):127-130
- [10]. Joshi JR, Pawar S, Joshi PJ, Samuel A. Biological characters and sensitivity of Staphylococcus epidermidis Indian J PatholMicribiol 1987;30:89-96.
- [11]. Schwalbe RS, Ritz WJ, Verma PR, Barranco EA, Gilligan PH. Selection for vancomycin resistance in clinical isolates of Staphylococcus haemolyticus. The J Infect Dis 1990; 161:45-51
- [12]. Marrie TJ, Kwan C, Noble MA, West A, Duffield L. Staphylococcus saprophyticus as a cause of urinary tract infections. J ClinMicrobiol 1982;16(3):427-431.
- [13]. Picket DA, Welch DF. Recognition of Staphylococcus saprophyticus in urine cultures by screening colonies for production of phosphatase. J ClinMicrobiol 1985;21:310-313
- [14]. BannermanTL. Staphylococcus, Micrococcus and other catalase positivecocci that grows aerobically Chapter 28. In: Manual of ClinicalMicrobiology, 8th ed. Murray PR, Baron EJ, Jorgensen JH, Pfaller MA, YolkenRH, editors. ASM press: Washington DC; 2003 p.384.
- [15]. De paulis AN, PredariSC. Five test simple scheme for the species level identification of clinically significant coagulase negative staphylococci. J ClinMicrobiol. 2003; 41: 1219-1224
- [16]. Surekha Y Asangi, Mariraj J, Satyanarayana M S, Nagabhushan, Rashmi. Speciation of clinically significant Coagulase Negative Staphylococci and their antibiotic resistant patters in a tertiary care hospital. Int J Biol Med Res. 2011;2(3):735-739.
- [17]. Shubhra Singh, Gopa Banerjee et al. Prevalence of MecA Gene positive coagulase negative Staphylococci in NICU of a tertiary care hospital. Biomedical Research. 2009; 20 (2): 94-98.
- [18]. Sheikh AF, Mehdinejad M. Identification and determination of coagulase negative Staphylococci species and antimicrobial susceptibility pattern of isolates from clinical specimens. Afr J Microbiol Res 2012;6:1669-74.
- [19]. SamanthSharvari A and Paichitra G. Evaluation of different detection methods of biofilm formation in clinical isolates of Staphylococci. Int J Pharm Bio Sci 2012 oct; 3(4): (B) 724-733.
- [20]. Usha M G, Shwetha D C, Vishwanath G. Speciation of coagulase negative Staphylococcal isolates from clinically significant specimens and their antibiogram. Indian J PatholMicrobiol, Jul-Sep 2013; 56 (3) 258-260.
- [21]. Mohan U, Jindal N, Agarwal P. Species distribution and antibiotic sensitivity pattern of coagulase negative Staphylococci isolated from various clinical specimens. Indian J Med Microbiol 2002;20(1):45-46
- [22]. Shubha D S, BanooSageeraSashidar, Fatima Farheen, Venkatesa D. Seciation and antibiogram of coagulase negative Staphylococci from various clinical specimens. Ind J public health Research andDevelopment. 2012, Volume: 3, Issue: 1.

Species	Clumping factor	Tube coagulase	Ornithine decarboxylase	Urease	Mannose	Novobiocin 5µg	
S.epidermidis	-	-	+	+	+	S	
S.haemolyticus	-	-	-	-	-	S	
S.saprophyticus	-	-	-	+	-	R	
S.warneri	-	-	-	+	-	S	
S.lugdunensis	+	-	+	+	V	S	
S.schleiferi	+	-	-	-	+	S	
S.simulans	-	-	-	+	+	S	
S.capitis	-	-	-	-	+	S	
S.cohnii	-	-	-	-	+	R	

Table.1: Identification of CoNS by simple scheme^{16, 3}

Table II: Frequency of different CoNS species isolated (n=100)

Species	Number isolated	Percentage		
S.epidermidis	42	42		
S.haemolyticus	28	28		
S.saprophyticus	18	18		
S.schleiferi	4	4		
S.simulans	2	2		
S.cohnii	1	1		

S.warneri	1	1
S.capitis	1	1
Unidentified	3	3

Tuble III. Blowing resistance pattern of Corts to various antibiotes									
SPECIES	Р	AMP	Е	CX	LZ	VA	G	AK	COT
S.epidermidis(42)	36	31	27	33	09	02	06	04	22
S.haemolyticus (28)	26	24	22	21	03	03	05	04	19
S.saprophyticus (18)	16	12	10	11	05	02	03	03	12
S.schleiferi (4)	04	04	03	03	01	00	01	01	03
S.simulans (2)	02	02	00	01	00	00	00	00	01
S.cohnii (1)	01	01	00	00	00	00	01	00	02
S.warneri (1)	01	01	00	00	00	00	00	00	01
S.capitis (1)	01	01	01	01	00	00	00	00	01
S.lugdunensis (3)	03	03	02	02	00	00	01	00	01
TOTAL(100)	90	79	65	72	18	7	17	12	62

Table III: Showing resistance pattern of CoNS to various antibiotics

P=Penicillin, AMP=Ampicillin, E=Erythromycin, Cx=Cefoxitin, LZ=Linezolid, VA= Vancomycin, G=Gentamicin, AK=Amikacin, COT=Cotrimoxazole