Hepatitis B Virus DNA in Sera of Apparently Healthy Carriers Blood Donors with Anti-Hbc Total Positive

Thaer Kadhim Fayyadh¹, Fuying Ma¹

¹ College Of Life Science And Technology, Huazhong University Of Science And Technology, Wuhan City, Hubei province, China,
¹Key Laboratory Of Molecular Biophysics Of MOE, College Of Life Science And Technology, Huazhong University Of Science And Technology, Wuhan 430074, China

Abstract:

Objective this study was attempt to molecular estimation of Hepatitis-B Virus DNA (HBV-DNA) in sera of apparently healthy blood carriers donors with anti-Hbc Total positive alone and discussed the reasons that lead to disappearance of HBsAg in their sera. As well as evaluation of the routine screening method of HBV infection among blood donors by ELISA assay.

Methods A total of 100 sera samples were collected from HBsAg-negative blood donors who were attended to the blood bank in Baghdad and examined for anti-Hbc IgM, anti-Hbc Total and anti-HBsAg. Thereafter samples with anti-Hbc Total positive alone were separated and underwent molecular investigation for the presence of HBV-DNA by PCR technique.

Results Out of 100 samples 9 (9 %) had anti-Hbc Total positive and 0 % anti-Hbc IgM negative. Out of 9 anti-Hbc Total positive 6 (66.6 %) with anti-HBs positivity and 3 (33.33 %) were negative to anti-HBs. Furthermore, HBV DNA among HBsAg negative and anti-Hbc Total positive alone was investigated. One case 11.11 % of the latter group was detecting positive for HBV- DNA.

Conclusion HBV-DNA is present in sera of blood donors with HBsAg negative, anti-Hbc Total positive and anti-Hbs negative.

Keyword: HBV, occult HBV, HBsAg negative, blood donors

I. Introduction

Hepatitis B virus (HBV) infection represents a worldwide public health problem that can lead to chronic hepatitis, hepatic cirrhosis, and primary hepatic cancer (Song and Kim, 2016). According to World Health Organization (WHO) estimations, 2 billion of the global populations have contracted HBV infection and 450 million people are chronically infected with HBV and risk infection with hepatitis D virus (WHO, 2015; Li, et al., 2015). Serological markers for HBV infection consist of hepatitis B surface antigen (HBsAg), anti-HBs, hepatitis B envelope protein (HBcAg), anti-HBe, and hepatitis B core antibody (anti-Hbc) IgM and Total, these markers along with the viral load are particularly important in defining the stage of HBV infections and in their management (Li, 2009). The HBsAg is the main diagnostic serological marker for HBV infection as well as for the blood screening in the blood bank. Chronic carriers of HBV usually show HBsAg in their serum, which is considered the best marker for acute and chronic HBV infection. The HBsAg, however, sometimes underwent to escape mutation (core or pre-core mutation) might be as a result of post transcriptional effect of the mutation on HBsAg expression as described previously (Hass, et al., 2005). In those individuals, this antigen cannot be detected by routine serological assays (such as ELISA) despite the presence of virus in liver and peripheral blood. One reason for this lack of HBsAg might be mutation in the part of the molecule recognized by specific antibodies (Martínez, et al., 2015).

Although the risk for transfusion-associate HBV infection has been greatly reduced since the screening of blood for HBV serological markers and the exclusion of donors who engage in high-risk activities, the transmission of HBV infection is still possible when the blood donors are asymptomatic carriers with HBsAg negative (Luo, et al., 1993; Rios-Ocampo et al., 2014). Occult (Hidden) hepatitis B is defined by the presence of HBV-DNA in serum or liver in the absence of HBsAg (Hu, 2002; Raimondo, et al., 2008). Our study aims to estimate HBV-DNA among blood donors with anti-Hbc Total positive alone by PCR technique and determine the sensitivity of routine methods that were used in our laboratories for detection HBV infection.

II. Materials And Methods

Subjects and blood specimen’s collection

The study group was randomly selected from blood donation individuals in Baghdad, a total of 100 sera specimens were collected from healthy blood donors, adult males, with mean of ages 32.72 ± 7.074 and
HBsAg negative were identified by ELISA technique to determine the sero-prevalence of anti-HBe IgG and estimate HBV DNA. The detection limit of the HBsAg assay is 0.100 units/ mL (standards Paul Ehrlich Institute, Germany) and 0.125 IU/mL (International standards from the World Health Organization (WHO ref. 80/549) (Ferguson, 1985). From each individual, 5 ml of blood was collected as well as 15 positive HBsAg sera specimens were collected from different types of HBV infection patients; 5 specimens from acute hepatitis B (AHB), 5 specimens from chronic hepatitis B patients (CHB) and 5 specimens from apparently healthy carriers (AHC) as a control also to comparison between routine methods and PCR technique. The collected blood was placed in disposable plain tubes, the blood specimens were allowed for 15 min at room temperature (RT) for clotting. Then, the sera were separated by centrifugation the blood specimens at 3000 RPM for 5 min., thereafter divided into aliquots 250 µl (4 tubes for each sample) and stored at -80 °C until use. Each part of sera was used once to avoid repeated thawing and freezing. Materials (i.e. reagents and sera) were allowed to stand at RT before use. Specimens were anonymous and identified only by alphanumerical codes, after signing the informed consent provided by the blood bank.

Biochemical and Serological Assays

Liver function tests, including alanine aminotransferase test (ALT), (normal range, up to 13 u / l) and total serum bilirubin (TSB), (normal range, less than 1mg / dl) levels (Young, 1997), were done for all individuals from both groups blood donors and control at initial examination by using commercially available ELISA kits (Randox, UK). Serological markers for HBV were done for each specimen using commercially available ELISA kits (Bioelisa; Biokit, Spain) for HBsAg, anti-HBe IgM, anti-HBc Total and anti-HBs antibodies. The assay for each serological marker was done according to the manufacturer’s instruction, and then the ELISA reader was used to measure the absorbance at 450 nm and the results were interpreted based on the optical density (OD).

Statistical analysis

Statistical analysis was performed with SPSS software version 15, under windows XP and Mini. Tab programmers’. Data were analyzed using analysis of paired-samples T test for comparison between different groups. Results were reported as mean ± S.D and differences were considered as significant when P < 0.05.

Detection of HBV DNA by PCR technique

Sera specimens from each individual with HBsAg negative and “anti-HBc Total positive alone” in the blood donors group and control group were taken at initial examination and they were underwent tested for HBV DNA by using commercially available kit (AB ANALITICA; Italy), which based on the amplification of the core region of HBV DNA by specific primers. HBV DNA was extracted with a high pure viral nucleic acid extraction Kit (AB ANALITICA; Italy) according to manufacturer’s instruction. Briefly, in 1.5 ml tube an aliquot of 200 µl of serum, 450 µl of solution 1 (high affinity DNA Binding solution) and 50µl of solution 2 (Resin) were used for DNA extraction, the mixture was transferred to a filter column and then centrifuged at 12000 g for 2 min., The filter column that containing resin to which the DNA is bound was transferred into a new 2 ml tube, washed with 500µl of washing buffer, and re-centrifuged at 12000 g for 2 min. then the filter column was transferred to new and clean 1.5 ml tube, thereafter 80 µl of pre-heated (65 °C) sterile distilled water was used to elute the DNA that bound to the resin. An aliquot (0.2 µl) of AB Super Taq polymerase and 10 µl of extracted DNA elute was then added to each premixed tube. PCR direct amplification was performed for 37 cycles as in table (1)

| Table (1): Thermalcycler program of direct PCR amplification |
|----------------------------------|----------|----------|----------|
| **Step** | **No. of Cycles** | **Temp. (°C)** | **Time** |
| Initial denaturation | 1 | 94 | 5 minutes |
| Denaturation | 35 | 94 | 60 seconds |
| Annealing | 45 | 60 seconds |
| Extension | 72 | 60 seconds |
| Final extension | 1 | 72 | 5 minutes |
| Storage of amplified product | 4 | ∞ |

PCR amplitcons were separated by electrophoresis on an agarose 3% w/v gel, stained with ethidium bromide, and visualized under UV light. Standard procedure for reducing contamination was followed strictly. Furthermore, PCR assays for anti-HBc IgG positive alone were performed in duplicate to confirm reproducibility. The obtained results were compared with the reference DNA Molecular Weight Marker (501-489, 404, 353, 242, 190, 147, 110, 89, 67, 34, 26 bp) to determination the size of amplified products. Control results and band pattern products were interpreted as in table (2) and table (3).
Table (2): Interpretation of the control results

<table>
<thead>
<tr>
<th>Control</th>
<th>Results</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive control</td>
<td>Positive</td>
<td>Amplification correctly work</td>
</tr>
<tr>
<td>Negative control</td>
<td>Negative</td>
<td>Absence of contamination</td>
</tr>
</tbody>
</table>

Table (3): Interpretation of the band pattern products

<table>
<thead>
<tr>
<th>DNA Bands</th>
<th>Results</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>HBV band</td>
<td>Positive</td>
<td>Positive for HBV</td>
</tr>
<tr>
<td>HBV band</td>
<td>Negative</td>
<td>Proceed with nested amplification</td>
</tr>
</tbody>
</table>

III. Results

The study group of 100 blood donor specimens with HBsAg negative was males. The mean of ALT and TSB levels were 19.26 ± 1.51 IU/L, 0.85 ± 0.10 mg/L respectively and all specimens were underwent to further investigation with HBV serological markers as shown in table (4). Out of 100 samples 9 (9%) had anti-HBc Total positive and 9% anti-HBc IgM negative. Out of 9 anti-HBc Total positive, 6 (66.6%) was detected with anti-HBs positive, whereas 3 (33.33%) was detected negative to anti-HBs. Furthermore, molecular detection of HBV DNA among the latter group with HBsAg negative and anti-HBc Total positive alone was done, one case 11.11% of this group was positive for HBV DNA (Fig. 1).

Table (4): Seroprevalence of anti-HBc Total, anti-HBc IgM, anti-HBs and molecular estimation of HBV-DNA among HBsAg negative blood donors

<table>
<thead>
<tr>
<th>No. of HBsAg negative specimen</th>
<th>anti-HBc IgM positive</th>
<th>anti-HBc Total positive</th>
<th>anti-HBc Total positive and anti-HBs negative</th>
<th>anti-HBc Total positive and anti-HBs positive</th>
<th>HBV DNA positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>3</td>
<td>6 1.11</td>
</tr>
<tr>
<td></td>
<td>0%</td>
<td>0%</td>
<td>9%</td>
<td>33.33%</td>
<td>66.66%</td>
</tr>
</tbody>
</table>

As well as the control group (patients specimens) which was routinely tested for HBV serological markers by ELISA table (5), also underwent for HBV-DNA detection by PCR assay (Fig. 2).

Figure (1): HBV-DNA by PCR assay (1st amplification) among blood donors with HBsAg negative, anti-HBc total positive and anti-HBs negative. Length of the fragments obtained from direct amplification of HBV-DNA: 270 bp on 3% agarose gel at 100 v. for 45 min. The results were read on UV transilluminator. (M: Molecular Weight Marker, 1: HBV DNA 270 bp 2 and 3: negative sample. PC positive control, NC: negative control).

IV. Discussion

This result of serological markers table (4), shows out of 9% of blood donors who had HBsAg negative, anti-HBc Total positive and anti-HBs IgM negative, a 66.66% with a previous HBV infection and immunity to HBV regard to those who have together anti-HBc Total and anti-HBs positive together and this result is compatible with previously reported (Weinberger, et al., 2000; Jawetz, et al., 2007). While the latter group which accounted for 33.33% who were negative to anti-HBs and positive to anti-HBc Total, those possibilities include HBV infection in remote past; "low-level" HBV chronic carrier; "window" between disappearance of HBsAg and appearance of anti-HBs (CDC, 2008; WHO, 2013), although screening of HBsAg
Hepatitis B Virus DNA in Sera Of Apparently Healthy Carriers Blood Donors

in blood donors massively decreased the risk of HBV transmission by transfusion, but did not identify pre-seroconversion window period infection (WPI) (Biswas et al., 2003).

The results of PCR direct amplification showed (11.11%) of latter group was positive for HBV-DNA which signified for presence of virus despite the absence of HBsAg and still capable of transmitting infection. This result is in agreement with that was reported by Lebanese researchers in 2007, whom found that 5.4% of healthy blood donors with core antibody have detectable viral load (El-Zaatari et al., 2007) as well as our results compatible with that was previously reported by Iranian researchers in 2013 whom found half of anti-HBc Abs positive samples were also positive for HBV-DNA among Iranian blood donors (Vaezjalali et al., 2013). Also our results in line with recently published report in Malaysia, they were found that the 5.5% prevalence of occult hepatitis B among Malaysian blood donors (Hudu et al., 2016). The high percentage in this study may be due to the small size of the study population compared with above studies.

In regard to the patients groups (AHB, CHB and AHC), as shown in (Fig. 2) and table (5) the results of PCR amplification display insignificant differences (P > 0.05) between routine serological tests that were accomplished by ELISA and PCR assay. This exhibited the precise and sensitivity of routine serological by ELISA assay that were used. In contrast to the blood donors group who had negative HBsAg, positive anti-HBc Total and anti-HBs negative, the results of direct PCR amplification showed significant differences (P < 0.05) in comparison with routine serological test by ELISA assay.

Table (5): Comparison between routine serological test by ELISA and PCR assay

<table>
<thead>
<tr>
<th>Type of infection</th>
<th>No. of specimen tested</th>
<th>HBsAg positive by routine ELISA assay</th>
<th>Positive HBV-DNA by PCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>AHB patients</td>
<td>5</td>
<td>5</td>
<td>5*</td>
</tr>
<tr>
<td>CHB patients</td>
<td>5</td>
<td>5</td>
<td>5*</td>
</tr>
<tr>
<td>HC group</td>
<td>5</td>
<td>5</td>
<td>5*</td>
</tr>
<tr>
<td>Blood donors / HBsAg- negative</td>
<td>100</td>
<td>0</td>
<td>1**</td>
</tr>
<tr>
<td>Total</td>
<td>115</td>
<td>15</td>
<td>16</td>
</tr>
</tbody>
</table>

* Insignificant difference between the two assays when (P > 0.05)
** Significant difference between the two assays when (P < 0.05)

The results of blood donor who have HBV-DNA in the serum can be explanations through two possibilities; first suggestion, the antigen (HBsAg) is absent from the peripheral blood, and the absence could be due to mutations that block the export of the antigen, as described for certain pre-S deletion in HBV (Melegari et al., 1994). Mutations in the S region have been associated with reduced expression of HBV surface proteins. Subsequently, mutations in pre S1/ pre S2 promoters are frequently observed in occult HBV patients, which make HBsAg become undetectable (Chaudhuri et al., 2004; Vivekanandan et al., 2008). In addition, the prevalence of HBV-DNA is high in anti-HBc-Total positive, but anti-HBs-negative patients, that ranging from 6 % to 7 % in population were highly exposed to HBV infection (Brechot et al., 2001).

Second suggestion, The HBsAg is present but may not be detectable by standard enzyme immunoassay technique. It could be ascribed to the presence of circulating immune complex between HBsAg and anti-HBs which can worsen or even inhibit completely the detection of both the antigen and the antibody (Weinberger et al., 2000; Brechot et al., 2001). The first suggestion may be most likely explanation, because of routine methods seemed to be high sensitive when compared with PCR assay table (5). Occult hepatitis B is defined by the presence of HBV-DNA in serum or liver in the absence of HBsAg (Hu, 2002). And Occult hepatitis B

Figure (2): HBV-DNA in patient’s serum by nested amplification. HBV-DNA bands obtained by nested PCR on 3% agarose gel at 100 v. for 45 min. M: Molecular weight of marker. PC: positive control. NC: negative control. 1-5: DNA bands (258 bp) of 5 HBV patients.

DOI: 10.9790/0853-160103138142 www.irosjournals.org
infection is manifested by presence of very low levels (< 200 IU/mL) of HBV -DNA in the blood and the liver while exhibiting undetectable HBV HBsAg (Martinez, et al., 2015) and detection of the anti-HBc Total in 80% of the cases. Moreover, in 20% of the cases there is no evidence of any HBV serological marker (Raimondo, et al., 2008). This type of infection represents a potential transmission source of HBV via blood transfusion or organ transplantation (Makvandi, 2016).

V. Conclusions

The anti-HBc Total is an important serological marker for detection of cases of occult HBV infection and for reducing the residual risk of HBV transmission via blood or blood product transfusion. And HBV-DNA is present in sera of blood donors with HBsAg negative, anti-HBc Total positive and anti-HBs negative. As well as high sensitive methods that was used for routine blood donors screening by ELISA in our laboratories. In this study we identify on case of occult HBV infection in blood donors by molecular and serological tests.

Further screening studies of occult HBV infection in blood donors in different regions by using molecular detecting by PCR technique are necessary.

References