Ventral Incisional Hernia Mesh Infection: Surgical Management

Dr. Mukesh Kumar*, Dr Nibha Kumari
*Department Of Surgery, VMMC & Safdarjung Hospital, New Delhi, INDIA

Abstract: Prosthetic mesh infection is catastrophic complication of ventral incisional Hernia (VIH) repair. Surgical literature was reviewed to determine the risk factor, microbiology and treatment of mesh infection.

Keywords: Mesh Infections; Hernial Repair Treatment

I. Introduction

Within the last few years the use of mesh for repair of various types of hernia has become a standard practice. The incidence of recurrence has gone down significantly making this a gold standard for hernia repair. However in the event of infection developing a series of catastrophic events ranging from localized swelling and redness to severe sepsis with fistula formation can develop. Identifying the various factors which may predispose to infection can prevent such septic calamities. A case of laparoscopic mesh infection treated by a two staged surgical procedure is presented with a review of literature.

II. Case Report

A 58 year old obese male patient was came to our hospital for the management of incisional hernia following exploratory laparotomy for small bowel perforation three year back. For which extraperitoneal hernia mesh repair done in our hospital. Four weeks after the surgery, the patient developed swelling and redness at the stitched line. There is seroma collection at side of main line incision and it was aspirated and the negative suction drain applied and coverage of antibiotic after fluid culture and sensitivity. Drain output was 250-270 CC per day and decreasing gradually to 65-80 cc per day. After sometime, it becomes purulent. Blood investigation revealed neutrophilic leukocytosis.

Figure 1: Infected PTFE Mesh with walled of fibrous cavity

Figure 2: Infected explanted mesh
Other blood investigations like blood sugar, liver function test and kidney function test were within normal limit. Firstly, wound was explored and necrotic skin was debrided and consequently dressing done. Pus becomes serosanguinous and sterile after proper antibiotic coverage. Second stage, explantation of infected PTFE mesh which was extra-peritoneal. The infected area was debrided and irrigated. The wound was left opened and negative suction applied. After that, regular dressing applied and wound healed by secondary intention. The patient is following up for last 6 months with no hernia.

Figure 3: Negative pressure wound therapy after mesh explantation

III. Discussion

Various factors play a significant role in the development of mesh infections.1-3 Risk factors like high BMI (obesity), chronic obstructive disease (COPD), prior surgical site infection, performance of other procedure via same incision at the time of repair, longer operative time, lack of tissue coverage of the Mesh, enterotomy and enterocutaneous fistula and use of larger, microporous or expanded polytetrafluoroethylene mesh.

Type of Mesh

The search for ideal material for a mesh continues, however none of material available till date can be described as ideal. Nature of material of the mesh is an important factor. PTFE meshes are associated with higher incidence of infection and fistula formation as was evident in the case presented. Nature of filament of the mesh also affects the chance of infection. Monofilament meshes such as polypropylene or light weight meshes are less prone to develop infections, however multifilament meshes such as polyesters lead to increase bacterial persistence or spread of infection as well.

Porosity of mesh

Micro porous meshes are associated with high rates of infection as well as development of seroma, whereas macro porous meshes are associated with lower incidence of infection but with higher incidence of adhesions and erosive events. Micro pore mesh has a pore diameter of less than 10 μm. As a result bacteria can penetrate the mesh easily, but leukocytes cannot as there mean size is 75 μm. The result is that these bacteria are shielded from the immunological defenses of the patient.

Water contact angle or wettability of a mesh determines the ease with which bacteria can get attached to the mesh. Mesh with high contact angle is considered hydrophobic and as a result the chances of bacterial attachment are significantly less. A material with low water contact angle exhibits a hydrophilic nature and so is more prone to attachment by bacteria. However mixed results have been observed with respect to this particular criterion. Awareness of the pathophysiology of microbiological aspects of mesh infections is important for treatment.4,5 Staphylococcus aureus is still the commonest organism.

In addition to S. aureus other organism encountered are Streptococcus species, Enterobacteriaceae and anaerobic bacteria such as Peptostreptococcus. Infections with atypical mycobacteria are encountered in laparoscopic procedures. The presence of a foreign material decreases the local immunity thereby decreasing the number of bacteria needed to cause infection.6 Co morbid medical conditions significantly hamper immunological defense mechanisms in the host.7 Bacteria get attached to foreign material. They proliferate and form a bio film all around the synthetic material. The bio film contains a wide spectrum of bacteria which release an exopolysaccha
ride component. This component provides an excellent skeletal structure which exerts a protective effect for bacteria not only against antibiotics but also against a host defense mechanism.

High grade sterilization of scopes may not be practised in all centres. Instead most centres rely on high grade disinfection with glutaraldehyde after rinsing with ordinary potable water. The chance of water born organism causing infection also increases. This includes atypical mycobacterium and pseudomomas. The use of disinfection without meticulous bacterial decontamination in this situation is another factor contributing to mesh infection. Adequate rinsing of instruments followed by vigorous sterilization ideally by autoclaving is essential for pre operation of infection by atypical mycobacterium. Despite use of povidone-iodine scrub yet infection continues to thrive especially at umbilical site. The use of fresh solution can help to reduce contamination there by reducing in infection rate in hernia surgery. Clinical manifestation of mesh infection develops anywhere from 2 weeks to 14 months. Clinical features typically suggestive of local inflammation characterized by pain, redness, tenderness, swelling and raised local temperature. Systemic features may be fever associated with chills and malaise. In a few cases mesh related infection may present as a fistula discharging pus or an intra-abdominal abscess as seen in laparoscopic mesh infection. An accurate diagnosis has to be made with respect to the extent and severity of infection. Involvement of adjacent organs in close vicinity especially in abdominal cases needs to be determined. Haematologic investigations will show anaemia in chronic infection and raised neutrophils. A contrast enhanced CT scan will identify the site of collection, extent of the induration mass, status of mesh and involvement of any adjacent organ system. A combined medical and surgical approach is the preferred strategy for management. Intravenous antibiotics are essential to begin with. However it may not lead to a complete cure as penetration of the fibrous capsule surrounding the mesh is difficult. Hence surgical approach is inevitable and mandatory.

Two stage surgical approach yields better success as was done in the case presented. The first stage comprises of a release incision to drain the pus in the infected area. This allows reduction in the inflammatory process there by reducing the severity of induration. Once volume of discharge decreases, the extent of induration is reduced and systemic signs of infection resolve one can proceed to the second stage of surgical intervention. The second stage comprises of removal of mesh. In majority of cases the mesh lies floating in a pool of pus and debris. This cavity has to be access followed by removal of mesh and evacuation of all purulent and particulate debris. A good scraping of abscess cavity will enhance the healing process. It is preferable to allow the wound to heal by secondary intention as it causes complete resolution of the infection process. Secondary suturing can be done once healthy granulation has set in. However in case of midline abdominal wall infections, primary closure needs to be done with acceptance of the fact that wound infection and development of anincisional hernia at a later date is inevitable in most cases. There is high likelihood of hernia recurrence after such a surgical intervention. Patience needs to be informed in advance of this outcome. A two staged approach is therefore the best option for the treatment of infected mesh. It reduces the chances of damage to adjacent and underlying viscera and also prevents ex cessive loss of overlying tissue including skin.

Preventive strategies
Preventive strategies are absolutely essential before embarking on a mesh repair for hernia. Proper selection of patient ensuring good control of comorbid medical conditions and absence of any sort of infection. Rig id sterilization of both instruments and scopes. Meticulous technique of dissection with periodic irrigation of the site with normal saline during the course of surgery. Meticulous haemostasis before closure. However if doubt still persist in cases which involve extensive dissection, it is advisable to keep a negative suction drain in order to prevent formation of a seroma which can serve as an ideal nidus for infection.

IV. Conclusion
Prevention is the best management, evolving on case by case from explantation towards mesh salvage, to prevent complication — hernial recurrence. A two stage surgical approach is the gold standard for treating mes h infections

References

DOI: 10.9790/0853-1603123437 www.iosrjournals.org

