I. Introduction

In India, malaria is a serious health problem which causes significant mortality and morbidity. Among all species of malaria, vivax malaria has been considered as a benign disease with rarely any complications but in the past few years there has been change observed in clinical manifestations of vivax malaria with many cases of severe vivax malaria and even some cases resulted in death although the exact cause of changes in the clinical profile of vivax malaria are uncertain. It was previously presumed that the severe disease with vivax infection is actually caused by coinfection of vivax and falciparum species however with application of the recently developed tests of malarial antigen and the nucleic acid amplification technique it has become evident that vivax monoinfection can be a cause of severe malaria and death(6). Hence this study was done to find out incidence of various complications of vivax in pediatric age group patients at Rajendra Institute of Medical Sciences, Ranchi, a tertiary care hospital.

Plasmodium vivax has the widest geographical distribution of the four human malarialas, with about 35% of the world’s population being at risk (1) There were an estimated 15.8 million symptomatic cases of P. vivax malaria globally in 2013 (uncertainty range 11.9–22.0 million), of which two thirds occurred in the WHO South-East Asia Region(2). The spectrum of disease associated with P. vivax infection ranges from asymptomatic parasitaemia, to uncomplicated febrile illness, to severe and fatal malaria (4,5). In non-immune individuals, P. vivax malaria gives rise to a well-defined paroxysmal fever with a periodicity of 24 or 48 hours, usually preceded by chills with rigour. Other symptoms and signs include headache, anorexia, myalgia, abdominal pain, cough, diarrhoea, restlessness, delirium and anaemia. P. vivax malaria causes severe anaemia,
particularly in infancy and in prolonged, untreated or recurrent infections. It has also been associated with malnutrition in childhood. Acute *P. vivax* disease has also been associated with severe malaria and death(6).

Clinical manifestations of severe *P. vivax* malaria include severe anaemia (<5 mg haemoglobin/dL), thrombocytopenia, acute pulmonary oedema and, less commonly, cerebral malaria, pancytopenia, jaundice, splenic rupture, haemoglobinuria, acute renal failure and shock. Coma and other neurological complications are rare, as is the case with severe *P. falciparum* malaria outside of Africa. Metabolic acidosis and coma occur less frequently in severe *P. vivax* malaria(6). Severe *P. vivax* malaria is characterized by lower blood-stage parasitaemia than is observed in severe cases of falciparum malaria. Unlike *P. falciparum* infection, *P. vivax*-associated pathogenesis is not associated with significant microvascular obstruction of vital organs. Nevertheless, low blood-stage parasitaemia may mask parasite sequestration outside the vascular system (e.g. in the spleen), which may explains development of complications at relatively low levels of parasitaemia. The severity of anaemia observed with low parasitaemia may also be due to the cumulative impact of multiple *P. vivax* relapses(6). Also enhanced inflammatory responses as well as the sequestration of parasitized red cells in microcirculation are thought to be the possible mechanisms as the inflammatory and immunological response plays a significant role in pathophysiology of severe vivax malaria(7).

II. Material and methods

It was a retrospective observational study carried out at department of pediatrics, Rajendra Institute of Medical Sciences, Ranchi. Study duration was one year (June 2016 – May 2017). A total of 55 cases admitted with acute onset fever and diagnosed as vivax malaria based on positive peripheral smear examination or malarial antigen (LDH) spot test were included in the study. Clinical history, examination findings and laboratory data including blood counts, general blood picture, liver function tests, renal functions tests, blood gas analysis, serum electrolytes, and blood glucose were recorded.

Definition of severe vivax malaria (7)

Severe malaria was defined according to WHO definition, that is, presumptive diagnosis of malaria with documented plasmodium asexual parasitemia and one or more of the following features:

1. **Impaired consciousness**: Blantyre coma score ≤3 in children.
2. **Prostration**: Generalized weakness so that the patient is unable to sit, stand or walk without assistance.
3. **Multiple convulsions**: More than two episodes within 24 hours.
4. **Acidosis**: A base deficit of >8 mEq/L or, if not available, a plasma bicarbonate level of <15 mmol/L or venous plasma lactate ≥5 mmol/L. Severe acidosis manifests clinically as respiratory distress (rapid, deep, laboured breathing).
5. **Hypoglycaemia**: Blood or plasma glucose <2.2 mmol/L (<40 mg/dl).
6. **Severe malaria anaemia**: Haemoglobin concentration ≤5 g/dL or a haemotocrit of ≤15% in children <12 years of age with a parasite count of >10 000/μL.
7. **Renal impairment**: Plasma or serum creatinine >265 μmol/L (3 mg/dL) or blood urea >100 000/μL.
8. **Jaundice**: Plasma or serum bilirubin >50 μmol/L (3 mg/dL) with parasite count >100 000/μL.
9. **Pulmonary oedema**: Radiologically confirmed or oxygen saturation <92% on room air with a respiratory rate >30/min, often with chest indrawing and crepitations on auscultation.
10. **Significant bleeding**: Including recurrent or prolonged bleeding from the nose, gums or venepuncture sites; haematemesis or melaena.
11. **Shock**: Compensated shock is defined as capillary refill ≥3 s or temperature gradient on leg (mid to proximal limb), but no hypotension. Decompensated shock is defined as systolic blood pressure <70 mm Hg in children or with evidence of impaired perfusion (cool peripheries or prolonged capillary refill).

All patients received treatment based on WHO recommendations for antimalarial chemotherapy. Complicated vivax malaria was treated like falciparum malaria using artemisinin based combination therapy (ACT).

III. Result

Table 1 Age & Sex Distribution Of Cases Under Study (N = 55)

<table>
<thead>
<tr>
<th>SL. No.</th>
<th>Age distribution (in years)</th>
<th>Male</th>
<th>Female</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. of cases</td>
<td>%</td>
<td>No. of cases</td>
<td>%</td>
</tr>
<tr>
<td>1.</td>
<td>0 – 1</td>
<td>1</td>
<td>1.8%</td>
<td>0</td>
</tr>
<tr>
<td>2.</td>
<td>1 – 5</td>
<td>6</td>
<td>10.9%</td>
<td>7</td>
</tr>
<tr>
<td>3.</td>
<td>5 – 10</td>
<td>13</td>
<td>23.6%</td>
<td>10</td>
</tr>
<tr>
<td>4.</td>
<td>> 10</td>
<td>10</td>
<td>18.2%</td>
<td>8</td>
</tr>
</tbody>
</table>

DOI: 10.9790/0853-1608053639 www.iosrjournals.org
The present study showed that although vivax malaria once described as benign disease with no complications, is now causing severe illness including death. The exact cause of such change in presentation and laboratory confirmation of vivax malaria on the basis of thick and thin smears of blood film or malaria antigen (LDH) spot test, from the patients admitted in Department of Pediatrics, Rajendra Institute of Medical Sciences, Ranchi. Study showed that majority of patients that is 40% were in age group of 5-10 years, 32.7% cases were in age group of >10 years, 23.6% were 1-5 years of age. Only 1.8% cases were under 1 year of age. The table also shows that 54.5% were male and 45.5% were female. Among different age group incidence was found to be more in males than in females. Male child due to their frequent outdoor activities may be a cause of more frequent exposure. This is because some important vectors in P. vivax endemic areas have primarily early-biting, outdoor-feeding and outdoor-resting behaviours (3). Also female are better clothed than male child and have less outdoor activities as compared with male child. Lack of care and attention towards female child, neglect of females, illiteracy can also lead to less admission of female cases in hospital (6).

IV. Discussion

In the present study, 55 cases of vivax malaria were selected on the basis of clinical features and laboratory confirmation of vivax malaria on the basis of thick and thin smears of blood film or malaria antigen (LDH) spot test, from the patients admitted in Department of Pediatrics, Rajendra Institute of Medical Sciences, Ranchi. Study showed that majority of patients that is 40% were in age group of 5-10 years, 32.7% cases were in age group of >10 years, 23.6% were 1-5 years of age. Only 1.8% cases were under 1 year of age. The table also shows that 54.5% were male and 45.5% were female. Among different age group incidence was found to be more in males than in females. Male child due to their frequent outdoor activities may be a cause of more frequent exposure. This is because some important vectors in P. vivax endemic areas have primarily early-biting, outdoor-feeding and outdoor-resting behaviours (3). Also female are better clothed than male child and have less outdoor activities as compared with male child. Lack of care and attention towards female child, neglect of females, illiteracy can also lead to less admission of female cases in hospital (6).

Study also showed that the incidence of falciparum malaria cases were found to be more in tribal population (67.3%) than in non-tribal population (32.7%). The high incidence of cases from malaria among tribal cases were mostly from tribal area. Type of housing, sleeping habits, outdoor activities, poor knowledge regarding health and treatment seeking behavior play an important role in the transmission of malaria and negligence towards seeking medical facilities immediately may result in increased severity of illness with many complications including death.

The present study showed that although vivax malaria once described as benign disease with no complications, is now causing severe illness including death. The exact cause of such change in presentation and complications is still not known with only few proposed mechanisms as mentioned earlier. Among all 55 vivax mono infection cases included in our study, 21 developed serious complications including 3 deaths. Thrombocytopenia was present in 38.2% cases, anemia was present in 20% cases, hypoglycemia in 10.9% cases, acidosis in 9% cases, cerebral malaria in 7.3% cases, shock was present in 5.5% cases, unconsciousness was found in 3.6% cases, pulmonary edema was present in 3.6% cases, acute renal failure in 3.6% of cases and 1.8% cases died of complications. One of the deaths was caused by severe hypoglycemia who was admitted at hospital in very late stage of illness. Other two deaths were caused by multi-organ failure again admitted in very late stage of disease. All cases were treated with IV or intramuscular (IM) artesunate for at least 24 hours, and until they can tolerate oral medication. Children weighing <20 kg were treated with a higher dose of artesunate (3 mg/kg body weight per dose) than larger children. Following parenteral artesunate for at least 24 hours, treatment was completed with a full treatment course of oral ACT or chloroquine. A full course of radical treatment with primaquine was given after recovery only after checking G6PD status of the patient.
V. Conclusion

The trend of disease with Plasmodium vivax malaria is changing. It is increasingly recognized that serious and life-threatening complications can occur with vivax malaria. There is an urgent need to re-examine the clinical spectrum and burden of P. vivax malaria so that adequate control measures can be implemented against this emerging but neglected disease. For successful control and elimination of P. vivax malaria, we need specific, additional interventions, notably against the liver stage of the parasite along with the vector control methods. Patients of vivax malaria should be monitored for occurrence of different complications as their early detection and treatment or referral to higher centre from peripheral health centres in rural areas of Jharkhand can be life saving.

Bibliography

[3]. Okell LC, Bousema T, Griffin JT, Ouedraogo AL, Ghani AC, Drakeley CJ.
[7]. Anstey NM, Douglas NM, Poespoprodjo JR, Price RN.
[9]. Douglas NM, Anstey NM, Angus BJ, Nosten F, Price RN.
[12]. The Study of Complications of Vivax Malaria in Comparison with Falciparum Malaria in Mumbai
[13]. JAPI • october 2012 • VOL. 60

*Dr. Divya Singh. “Study on Complications of Vivax Malaria in Tertiary Care Hospital, Ranchi” IOSR Journal of Dental and Medical Sciences (IOSR-JDMS), vol. 16, no. 08, 2017, pp. 36–39.