Efficacy of Somatostatin Analogues Combined With Conventional Treatment Versus Conventional Treatment For Adhesive Intestinal Obstruction: A Meta-Analysis In China

Haiyang Yu^{a#}, Youquan Shi^{b,C#}, Jixiang Chen^d, Dong Tang^c, Qingquan Xiong^{e,C}, Yuqin Huang^{b,C} And Daorong Wang^{c*}

^aSchool of medicine ,Jiangsu university, ZhenJiang, P. R. China; ^bDalian Medical University, DaLian, P. R. China; ^cDepartment of Gastrointestinal Surgery, Subei People's Hospital of Jiangsu Province, Yangzhou, P.R. China; ^dAffiliated Hospital of Jiangsu University, ZhenJiang, P. R. China; ^eXiangya School of Medicine, Central South University, Changsha, P. R. China [#]These authors contributed equally to this study and share first authroship. *Corresponding Address: Daorong Wang,

Abstract

Aim: To assess the efficacy of somatostatin analogues combined with conventional treatment as compared to conventional treatment for adhesive intestinal obstruction.

Methods: The Cochrane Library, Embase, Pubmed, Web of science, VIP, and Wanfang databases were systematically searched to select the relevant randomized controlled trials (RCT) and quasi-RCT. Study quality was assessed; relevant data were extracted. Inter-study heterogeneity was assessed using the Cochran Q test, l^2 test, and the Galbraith figure. The source of heterogeneity was determined using subgroup and sensitivity analyses. Publication bias was tested using funnel plots; funnel plot asymmetry was tested using Egger's and Begg's tests.

Results: Sixteen RCT including 1460 patients were included in this meta-analysis. The somatostatin group had obvious advantages in: (1) duration of abdominal pain and abdominal distension; (2) time of abdominal pain relief; (3) gastrointestinal decompression drainage amount; (4) hospitalization time. Following subgroup analysis based on somatostatin administration routes, i.e., subcutaneous injection and intravenous infusion, the somatostatin group had advantages for: (5) rate of conversion to surgery; (6) rate of effectiveness. The two groups had identical time of abdominal distension relief.

Conclusions: Somatostatin analogues combined with conventional treatment is superior to conventional treatment alone for intestinal obstruction.

Keywords: Adhesive intestinal obstruction; somatostatin; conventional treatment; efficacy; meta-analysis

Date of Submission: 26-03-2018

Date of acceptance: 09-04-2018

I. Introduction

Intestinal obstruction is a common surgical acute abdomen [1]; it refers to the inability of the intestinal contents to pass smoothly through the intestinal tract. Adhesive intestinal obstruction is the most common type. Postoperative adhesions are associated with abdominal injury, pelvic surgery, infection, and abdominal inflammatory disease [2,3]. Adhesion may lead to various diseases, including acquired female infertility, small intestinal obstruction, and organ damage during repeat surgery [4-9]. The risk of postoperative adhesions is highest in ovarian surgery and colorectal surgery, where the risk of readmission within 10 years is up to 7.5% and 8.8%, respectively, due to complications associated with direct adhesion [10–12]. When adhesive intestinal obstruction occurs, a large amount of digestive juices are retained in the intestinal tract, where it can lead to a series of pathological and pathophysiological changes, affecting the patient's quality of life. The main clinical manifestations of intestinal obstruction include abdominal pain, vomiting, abdominal distension, and stopping the exhaust and defecation [13-16]. The physiological activity of somatostatin analogues is similar to that of somatostatin, including visceral vasoconstriction, which promotes the absorption of water and electrolytes in the gastrointestinal tract, suppressing intestinal and pancreatic secretions and changes in gastrointestinal motility [17]. In recent years, there has been much clinical research on the combination of somatostatin with conventional treatment versus conventional treatment alone for adhesive intestinal obstruction [18–33]. Currently, there is a lack of systematic and rigorous meta-analyses of somatostatin analogues treatment for adhesive intestinal obstruction. In this study, we used Cochrane system evaluation, and performed a comprehensive search for randomized controlled trials (RCT) of somatostatin analogues combined with

conventional treatment versus conventional treatment for adhesive intestinal obstruction.

II. **Materials And Methods**

2.1. Search strategy

We searched the Cochrane Library, Embase, Pubmed, Web of science, CNKI, VIP, and Wanfang databases up to August 2017 to find the relevant RCT and quasi-RCT. The search terms included "intestinal obstruction" OR "bowel obstruction" OR "ileus" and "somatostatin" OR "stilamin" OR "octreotide" OR "lanreotide". We performed a manual search to supplement the relevant articles. We did not restrict the publication language.

2.2. Study selection

The inclusion criteria were: Diagnosed with adhesive intestinal obstruction in the clinic; compared somatostatin analogues treatment and conventional treatment; had objective and relevant indicators that could be monitored; no study setting, age, gender, race, language, or publication status restrictions. The exclusion criteria were: Duplicate publications; other types of intestinal obstruction; treatment group used methods other than somatostatin or somatostatin analogues, e.g., hormones, ileus tube, traditional Chinese medicine; control group was treated with somatostatin or somatostatin analogues; non-RCT.

2.3. Data extraction

Two investigators independently screened, extracted, and cross-checked the data. Differences between the two researchers were resolved by a third reviewer. The information extracted from the included studies was: patient demographics (age, sex, country), interventions, outcome measure, details concerning study design (sample size, study quality).

2.4. Quality assessment

We assessed the quality of the included studies using the Cochrane risk of bias tool. The assessment of bias risk involved the following six aspects: Adequacy of random sequence generation; participant and personnel blinding; allocation concealment; incomplete outcome data and blind outcome assessment; selective outcome reporting.

2.5. Data synthesis and analysis

The data were analyzed using RevMan 5.3 and Stata 14.0. We used the Cochran Q test and I^2 test to assess inter-study heterogeneity. If there was obvious heterogeneity (P < 0.1, $l^2 > 50\%$), we applied the random effects model; otherwise, the fixed effects model was used. According to the Cochrane Handbook for Systematic Reviews of Interventions version 5.0, $I^2 < 40\%$ indicated low heterogeneity, $I^2 > 30\%$ and $I^2 < 60\%$ indicate moderate heterogeneity, $I^2 > 50\%$ and $I^2 < 90\%$ indicate substantial heterogeneity. $I^2 > 75\%$ indicates severe heterogeneity, and if $I^2 > 50\%$, we conducted subgroup analysis or meta-regression analysis; we performed sensitivity analysis when necessary. If there were >9 relevant studies, we tested publication bias by constructing a funnel plot, and tested the asymmetry of the funnel plot using Begg's test and Egger's test; an asymmetrical funnel plot and P < 0.05 indicated publication bias.

3.1. Study selection

III. **Results**

According to the search strategy, we retrieved an initial 2087 reports, and no additional records were identified through other sources. After removing duplicate studies, 1516 records remained; 1354 records were excluded because they were irrelevant (n = 904); case-control studies (n = 205); cohort studies (n = 183); case reports (n = 25), or were reviews, comments, letters, or editorials (n = 35). We assessed 162 full-text articles for eligibility, and excluded 146 articles because they were non-randomized (n = 60), had irrelevant interventions and outcomes (n = 22), or involved other types of intestinal obstruction (n = 64). An eventual sixteen RCTs [18–33] were included in the meta-analysis. Figure 1 shows flow diagram of study identification and selection.

3.2. Study characteristics

In the sixteen included RCTs, the total number of samples was 1460; the treatment group contained 731 cases, and the control group contained 729 cases. Table 1 shows the specific study characteristics. All studies had been conducted in China and had been published in 2012–2016; the sample size of each study was between 42 and 183. All patients were diagnosed with adhesive intestinal obstruction. The control group was treated with conventional treatment, including diet, effective gastrointestinal decompression, intravenous fluid replacement, correction of electrolyte disorder, parenteral nutrition support, antibiotics, and enema. The treatment group was treated with somatostatin based on conventional treatment.

3.3. Quality assessment

Of the sixteen studies [18-33], all reported that the treatment was randomized. Four studies [21,22,25,30] used the random number table method, one drew lots [33], and the remaining studies did not describe the methods of randomization and allocation concealment. Study quality was evaluated using the Cochrane risk assessment tool (Figure 2).

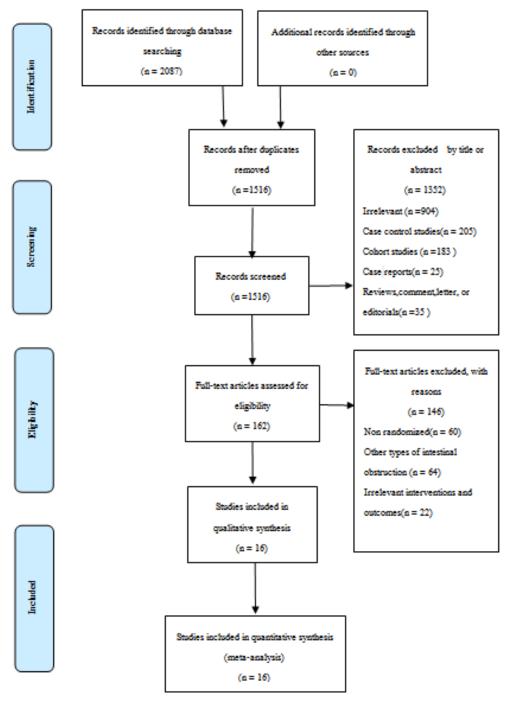


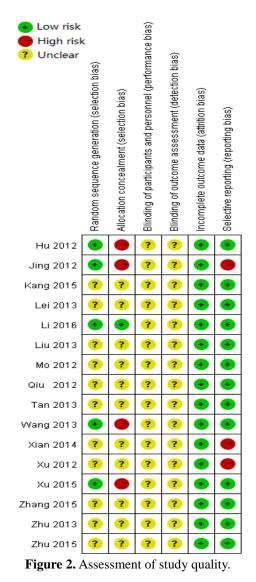
Figure 1 : PRISMA flow diagram.

Study	Sampl	le (n)	Ger	nder	Age (yr)	Interventio	n	Outcome measure
	Therapy	Control	Therap	Control	Therapy	Contr	Treatment	Contr	
	group	group	y group	Group	group	ol	group	ol	
			(M/F)	(M/F)		group		group	
Qiu et al[18]	35	35					Conventional	Conv	Abdominal pain
(2012)							treatment and	ention	score, time of
							octreotide	al	abdominal pain
							0.1mg	treatm	relief,
							subcutaneously,	ent	gastrointestinal
							once every 8h,		decompression
							treatment for 72		drainage amount,
							h.		establish supine
									abdominal plain
									film and clinical
									remission were
									observed.
Mo et al[19]	70	70					Conventional	Conv	Gastrointestinal
(2012)							treatment and	ention	decompression
							Octreotide 25	al	drainage
							µg /h	treatm	amount,duration
							continuous	ent	of abdominal pain
							intravenous		and abdominal
							injection,After		distension,
							the symptoms		hospitalization
							improved,		time,adverse
							somatostatin		reactions and
							0.1mg was		clinical effect.
							injected		
							subcutaneously		
							once every 8h		
Xu et al[20]	40	40	27/13	29/11	46±18	$47\pm$	Conventional	Conv	Duration of
(2012)						17	treatment and	ention	abdominal pain
							somatostatin	al	and abdominal
							6mg + 50 ml	treatm	distensionn,gastroi
							NS(normal	ent	ntestinal
							saline),		decompression
							continuous		drainage amount
							intravenous		during 48h ,
							infusion at a		number of cases of
							rate of 250 µg		conversion to
							/h.		surgery and
									hospitalization

Efficacy Of Somatostatin Analogues Com	bined With Conventional Treatment Versus
--	--

	20	20	10/17			10.50		G	
Hu et al[21]	30	30	13/17	14/16	41.15±	43.70	Conventional	Conv	Relief time of
(2012)					18.23	±	treatment and	ention	abdominal pain ,
						19.45	somatostatin	al	abdominal
							25µg / h micro	treatm	distension,nausea
							pump	ent	and vomiting,and
							intravenous		recovery time of
							injection		normal bowel
									sounds.
Jing et al[22]	40	43					Conventional	Conv	Fasting
(2012)							treatment and	ention	time,hospitalizatio
							somatostatin	al	n time, rate of
							3mg +250 ml	treatm	conversion to
							NS continuous	ent	surgery,gastrointes
							intravenous		tinal
							infusion(somato		decompression
							statin 0.25mg		drainage amount,
							slow shock		extubation time,
							injected for the		level changes of
							first time 5		glutamine, DAO
							min , then 0.25		and MDA in
							mg/h by		plasma.
							continuous		F
							infusion)		
Lei et al[23]	45	45	24/21	25/20	53.2±	51.4	Conventional	Conv	Abdominal pain
(2013)	-15	-13	24/21	25/20	6.4	± 6.3	treatment and	ention	score, time of
(2013)					0.4	-0.5	somatostatin	al	abdominal pain
							Subcutaneous	treatm	relief,
							injection of	ent	gastrointestinal
							0.1mg		decompression
									drainage amount .
Zhu et al[24]	22	20					Conventional	Conv	Gastrointestinal
(2013)							treatment and	ention	decompression
							somatostatin	al	drainage
							6mg + 48 ml	treatm	amount,duration
							NS, continuous	ent	of abdominal pain
							intravenous		and abdominal
							infusion for 24		distension,
							hours.		hospitalization
									time, rate of
									conversion to
									surgery and
									clinical effect.

Efficacy Of Somatostatin Analogues Combined With Conventional Treatment Versus
--

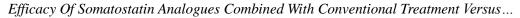

Wang at	34	34	19/15	20/14	45.1±	45.6	Conventional	Conv	Gastrointestinal
Wang et	54	54	19/15	20/14					
al[25]					5.2	±5.7	treatment and	ention	decompression
(2013)							Somatostatin	al	drainage amount,
							0.1mg	treatm	hospitalization
							subcutaneous	ent	time, rate of
							injection until		conversion to
							the anus to		surgery and
							restore		recurrence rate.
							defecation		
							exhaust or turn		
							to the surgical		
							treatment		
Tan et al[26]	93	90					Conventional	Conv	Relief time of
(2013)							treatment and	ention	abdominal pain ,
							somatostatin	al	abdominal
							0.6 mg + 48 ml	treatm	distension and
							NS, continuous	ent	vomiting, recovery
							pump for 24 h,		time of normal
							used for a		bowel sounds,
							period of 4 days		time to start
									eating, time of the
									level of liquid and
									gas disappear and
									rate of conversion
									to surgery.
Liu et al[27]	30	30	19/11	21/9	$50.21\pm$	52.9	Conventional	Conv	Fasting
(2013)					2.1	±0.9	treatment and	ention	time, hospitalizatio
							somatostatin	al	n time,number of
							6mg + 48 ml	treatm	cases of
							NS, continuous	ent	conversion to
							intravenous		surgery and
							infusion for 24		clinical effect.
							hours. the		
							dosage of		
							somatostatin		
							was determined		
							according to the		
							condition of		
							patients,Medica		
							tion time was		
							2.3 -6.5 d, with		
							an average of		
							3.7 d.		

Vien at all 201	49	49	25/24	26/22	<i>45</i> 1.⊥	17 -L	Convention-1	Conv	Controintactin-1
Xian et al[28]	49	49	25/24	26/23	45.1±	47±	Conventional		Gastrointestinal
(2014)					11.6	12.8	treatment and	ention	decompression
							somatostatin	al	drainage amount,
							3mg + 48 ml	treatm	rate of conversion
							NS ,take a	ent	to surgery, duration
							venous		of abdominal pain
							micropump		and abdominal
							Q12		distension,
							h,continuous		hospitalization
							pump for 24 h,		time and clinical
							the medication		effect.
							time was		
							determined		
							according to the		
							clinical		
							symptoms.		
Zhu et al[29]	39	39	20/19	19/20	$70.64\pm$	70.73	Conventional	Conv	Hospitalization
(2015)					5.21	±	treatment and	ention	time,
						5.34	somatostatin	al	gastrointestinal
							3mg + 48 ml	treatm	decompression
							NS ,take a	ent	drainage amount,
							venous		duration of
							micropump		abdominal pain
							Q12		and abdominal
							h,continuous		distension ,and
							pump for 24 h.		clinical effect.
Xu et al[30]	45	45	23/22	25/20	$46.7\pm$	47.1	Conventional	Conv	The changes of
(2015)					5.4	± 5.1	treatment and	ention	serum endotoxin,
							somatostatin	al	diamineoxi dase
							3mg + 48 ml	treatm	(DAO) and
							NS ,take a	ent	procalcitonin
							venous		(PCT) levels of
							micropump by		patients in two
							4 to 6 mL per		groups before and
							hour until the		5 days after
							patient anal		medical treatment
							exhaust or turn		were observed and
							to the surgical		compared, and the
							treatment to		clinical curative
							stop treatment.		effect and
									untoward effect
									were evaluated as
									well.

17 (1721)	24	24	15/10	16/10	42.10	40.75		G	
Kang et al[31]	34	34	15/19	16/18	43.12±	42.75	Conventional	Conv	Duration of
(2015)					11.30	±	treatment and	ention	abdominal pain
						11.57	somatostatin	al	and abdominal
							$750\;\mu g + 48\;ml$	treatm	distension ,
							NS, continuous	ent	hospitalization
							pump for 48		time, fasting time,
							h,if the		and rate of
							treatment si		conversion to
							invalid or the		surgery.
							condition is		
							aggravated,then		
							turn to the		
							surgical		
							treatment.		
Zhang et	82	82	45/37	43/39	62.0±	62.1	Conventional	Conv	Time of abdominal
al[32]					1.0	± 1.0	treatment and	ention	distension relief,
(2015)							somatostatin	al	hospitalization
							3mg +250 ml	treatm	time and clinical
							NS continuous	ent	effect.
							intravenous		
							infusion(somato		
							statin 0.25mg		
							slow shock		
							injected for the		
							first time 5		
							min, then 0.25		
							mg/h by		
							continuous		
							infusion ,the		
							interval of the		
							dressing change		
							was controlled		
							within 3 min.)		
Li et al[33]	43	43					Conventional	Conv	Abdominal pain
(2016)							treatment and	ention	score, time of
							somatostatin	al	abdominal pain
							0.1mg	treatm	relief,
							subcutaneous	ent	hospitalization
							injection, to		time and clinical
							strengthen the		effect.
							monitoring of		
							the indicators,		
							the		

			administration		
			of 72h within		
			should make a		
			careful		
			observation of		
			the patient, if		
			the clinical		
			symptoms and		
			signs without		
			any		
			improvement,		
			requires		
			immediate		
			surgical		
			treatment given.		

Table 1. Study characteristics.


Efficacy Of Somatostatin Analogues Combined With Conventional Treatment Versus...

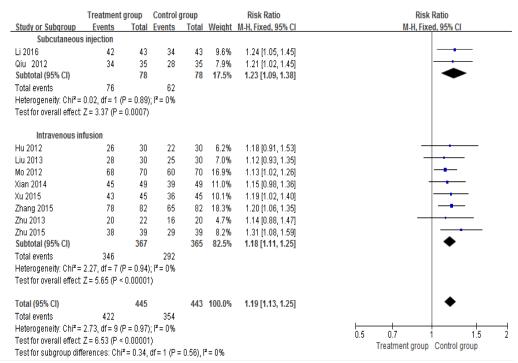

()		Treatn	_			ol group				n Difference		Mean Difference
(a)_	Study or Subgroup	Mean						_		, Fixed, 95% Cl		IV, Fixed, 95% Cl
	Mo 2012	2.34	1.56	70	3.65					1 [-1.91, -0.71]		
	Xian 2014	2.37	1.32	49	3.58					1 [-2.03, -0.39]		
	Xu 2012	2.7	0.9	40						0 [-1.64, -0.76]		
	Zhu 2013	2.45	1.24	22	3.67					2 [-2.38, -0.06]		
	Zhu 2015	2.42	1.32	39	3.73	2.31	39 13	2.4%	-1.3	1 [-2.14, -0.48]		
	Total (95% CI)			220		2	18 10	0.0%	-1.24	4 [-1.54, -0.95]		•
	Heterogeneity: Chi ² =	0.12, df=	= 4 (P =	1.00); P	²= 0%						<u> </u>	
	Test for overall effect:										-4	-2 U 2 4
				,								Treatment group Control group
		Treatm	nent gro	oup	Contr	ol group			Me	ean Difference		Mean Difference
(b)_	Study or Subgroup	Mean	SD	Total	Mean	SD To	tal We	eiqht		IV, Fixed, 95% CI		IV, Fixed, 95% CI
	Lei 2013	2.2	0.9	45	31.8	12.6	45 31	1.6%	-29.	60 [-33.29, -25.91]		
	Li 2016	2.3	0.8	43	31.9	12.5	43 30	0.7%	-29.	60 [-33.34, -25.86]		
	Qiu 2012	1.8	0.6	35	28.7	10.2	35 37	7.6%	-26.	90 [-30.29, -23.51]		-
	Total (95% CI)			123		1	23 10	0.0%	-28 4	58 [-30.66, -26.51]		•
	Heterogeneity: Chi ² =	1.52 df=	2 (P =		= 0%				2.011	[00100, 20101]	⊢	
	Test for overall effect:										-50	-25 0 25 50
	restror overall ellett.	2 - 20.00	, i . o.									Treatment group Control group
		Treatr	nent gr	oup	Confr	ol group			Mea	an Difference		Mean Difference
(c)	Study or Subgroup	Mean		Total			tal W	eiaht		Random, 95% Cl		IV. Random, 95% CI
	Kang 2015	2.33	0.56	34	3.72			8.4%		39 [-1.72, -1.06]		
	Zhang 2015	1.11	0.08	82	1.56			1.6%		45 [-0.47, -0.43]		- .
	Zhang 2013	1.11	0.00	02	1.50	0.00	02 3	1.0 %	-0.	40 [[0.47, -0.40]		_
	Total (95% CI)			116		1	16 10	0.0%	-0.	.91 [-1.83, 0.02]		
	Heterogeneity: Tau ² =	0.43; Ch	ni≊ = 31.	33, df =	1 (P < 0	.00001);	r = 979	6			-4	-2 0 2 4
	Test for overall effect:	Z = 1.93	(P = 0.0))5)							-4	-2 U 2 4 Treatment group Control group
												rreament group Control group
		Treat	ment qi	oup	Co	ntrol gro	up			Mean Difference		Mean Difference
(d)	Study or Subgroup	Mean	SD	Total	Mea	n ⁻ SE) Tota	I We	eight	IV, Fixed, 95% C		IV, Fixed, 95% CI
_	Wang 2013	374.2						1 13		-150.50 [-203.07, -97.93]		
	Xian 2014	252.62	83.52	49	453.5					-200.90 [-236.48, -165.32]		
	Xu 2012	424.75				5 108.07				-178.20 [-215.85, -140.55]		
	Zhu 2013	254.27			456.3					-202.11 [-258.36, -145.86]		
	Zhu 2015	241	96	39						-233.00 [-281.48, -184.52]		
	T-4-1/05% CD			40.4			400		0.0%	402 42 5 242 74 472 54		▲
	Total (95% CI)			184			182	2 100	0.0%	-193.12 [-212.74, -173.51]		▼
	Heterogeneity: Chi ² =										-500	-250 0 250 500
	Test for overall effect:	∠ = 19.3l) (P < U	.00001)								Treatment group Control group


Figure 3. Forest plot: (a)Duration of abdominal pain and abdominal distension. (b)Time of abdominal pain relief.(c)Time of abdominal distension relief.(d) Gastrointestinal decompression drainage amount.

		Treatn	nent gro	oup	Cont	rol grou	ıp		Mean Difference	Mean Difference
(a)_	Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% Cl
	Subcutaneous	injection	n							
	Li 2016	6.6	2.4	43	10.3	2	43	9.6%	-3.70 [-4.63, -2.77]	
	Wang 2013	6	1.7	34	8.2	2.1	34	9.8%	-2.20 [-3.11, -1.29]	
	Subtotal (95% CI)			77			77	19.5%	-2.95 [-4.42, -1.48]	◆
	Heterogeneity: Tau ² =				1 (P = 0.	02); I² =	80%			
	Test for overall effect: 2	Z = 3.93	(P < 0.0	1001)						
	Intravenous inf	fusion								
	Jing 2012	9	1.6	40	11	2.5	43	9.9%	-2.00 [-2.90, -1.10]	- - -
	Kang 2015	7.38	1.82	34	11.2	2.31	34	9.2%	-3.82 [-4.81, -2.83]	
	Liu 2013	8.1	0.4	30	10.9	3.4	30	7.6%	-2.80 [-4.03, -1.57]	
	Mo 2012	7.12	3.26	70	10.34	4.12	70	7.5%	-3.22 [-4.45, -1.99]	
	Xian 2014	6.95	2.65	49	12.05	2.87	49	8.4%	-5.10 [-6.19, -4.01]	
	Xu 2012	7.3	1.3	40	10.3	2	40	11.2%	-3.00 [-3.74, -2.26]	
	Zhang 2015	8	0.6	82	10.8	1.2	82	14.6%	-2.80 [-3.09, -2.51]	•
	Zhu 2013	7.36	2.53	22	11.15	3.27	20	4.8%	-3.79 [-5.57, -2.01]	
	Zhu 2015	7.62	2.74	39	11.36	3.02	39	7.2%	-3.74 [-5.02, -2.46]	
	Subtotal (95% CI)			406			407	80.5%	-3.28 [-3.82, -2.73]	•
	Heterogeneity: Tau ² =).001);	r = 69	%		
	Test for overall effect: 2	Z = 11.88	8 (P < 0.	.00001)					
	Total (95% CI)			483			484	100.0%	-3.21 [-3.68, -2.73]	•
	Heterogeneity: Tau ² =	0.38° Ch	i ² = 30.3			0.0006				
	Test for overall effect: 2					0.0000	91 Y	0. 20		-10 -5 0 5 10
	Test for subgroup diffe					= 0.68),	l ² = 09	6		Treatment group Control group
		Treatm	ont aro		Control	aroun			Risk Ratio	Risk Ratio
(b)	Study or Subgroup	Event					\//oi		I, Fixed, 95% Cl	M-H. Fixed, 95% Cl
	Jing 2012		2	40	10	40			1.20 [0.05, 0.86]	
	Kang 2015		1	34	6	34			1.17 [0.02, 1.31]	
	Liu 2013		2	30	3	30			1.67 [0.12, 3.71]	
	Tan 2013	1		93	20	90			1.48 [0.24, 0.98]	_
	Wang 2013		3	34	10	34			1.30 [0.09, 1.00]	
	Xu 2012		5	40	18	40			1.28 [0.11, 0.68]	_ _
	Zhu 2013		2	22	4	20			.45 [0.09, 2.22]	
			_				-			
	Total (95% CI)			293		288	100	.0% 0	.35 [0.23, 0.53]	◆
	Total events	2	5		71					
	Heterogeneity: Chi ² = 3	2.87, df=	:6 (P=	0.83);	I² = 0%					
	Test for overall effect: 2									0.01 0.1 1 10 100 Treatment group Control group

Figure 4. Forest plot: (a)Hospitalization time.(b)Rate of conversion to surgery.

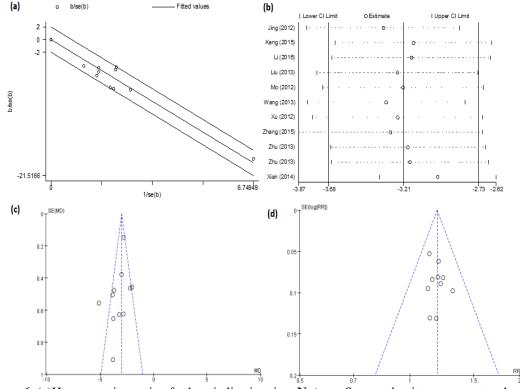


Figure 6. (a)Heterogeneity testing for hospitalization time. Notes Scattered points represent each study.

Horizontal axis represents 1/SE of each study. Vertical axis represents the Z-value. The area between the top and bottom lines represents the 95%CI. A scatter point falling outside the lines indicates substantial heterogeneity.

(b) Sensitivity analysis of hospitalization time.**Notes** The middle vertical line (-3.21) refers to the total combined effect. The left and right vertical lines represent the 95%CI. The horizontal lines of each study correspond to the combined effect of the remaining studies after one study was removed. We used the following two strategies to determine the impact of a study on the total combined effect: (1) After removing a study, we

recalculated the combined effect and whether it fell outside the 95%CI of the total combined effect; (2) After removing a study, we recalculated the combined effect and whether it was significantly different from the total combined effect.

Funnel plot: (c) Hospitalization time.(d)Rate of effectiveness.

3.4. Data synthesis and analysis

3.4.1. Duration of abdominal pain and abdominal distension

Five studies [19,20,24,28,29] reported the duration of abdominal pain and abdominal distension. No statistical heterogeneity was found between the five studies (P = 1.00, $I^2 = 0\%$), so the fixed effects model was chosen. The results showed a statistically significant difference between the studies (MD = -1.24, 95% confidence interval [CI]: [-1.54, -0.95]) and that the treatment group had significantly shorter abdominal pain and abdominal distension relief time than the control group (Figure 3(a)).

3.4.2. Time of abdominal pain relief

Three studies [18,23,33] reported on abdominal pain. There was no heterogeneity between the three studies (P = 0.47, $I^2 = 0\%$), so the fixed effects model was chosen. The results showed a statistically significant difference between the studies (MD = -28.58, 95%CI: [-30.66, -23.51]) and that the treatment group had significantly shorter time of abdominal pain relief than the control group (Figure 3(b)).

3.4.3. Time of abdominal distension relief

Two studies [31,32] reported on abdominal distension. There was severe heterogeneity between the two studies (P < 0.00001, $I^2 = 97\%$), so the random effects model was chosen. The results showed no statistically significant difference between the studies (MD = -0.91, 95%CI: [-1.83, 0.02]) and no significant difference between the time of abdominal distension relief in the treatment and control groups (Figure 3(c)).

3.4.5. Gastrointestinal decompression drainage amount

Five studies [20,24,25,28,29] reported on the gastrointestinal decompression drainage amount after treatment. There was moderate heterogeneity between the studies (P = 0.20, $I^2 = 33\%$), so the fixed effects model was chosen. The results showed a statistically significant difference between the studies (MD = -193.12, 95% CI: [-212.74, -173.51]) and that the treatment group had significantly less gastrointestinal decompression drainage than the control group (Figure 3(d)).

3.4.6. Hospitalization time

Eleven studies [19,20,22,24,25,27–29,31–33] reported on hospitalization time after treatment. There was obvious heterogeneity between four studies (P = 0.0006, $I^2 = 67\%$). At the same time, we use the Galbraith figure to test the heterogeneity (Figure 6(a)); in the figure, three points in the regression line indicate heterogeneity. We performed subgroup analysis based on the routes of somatostatin administration: subcutaneous injection [25,33] and intravenous infusion [19,20,22,24,27–29,31,32]. Heterogeneity did not decrease following subgroup analysis (subcutaneous injection subgroup: (P = 0.02, $I^2 = 80\%$; intravenous infusion subgroup: P = 0.001, $I^2 = 69\%$). We did not find an obvious source of heterogeneity, so the random effects model was chosen. The results showed a statistically significant difference between the treatment group and control group (MD = -3.21, 95% CI: [-3.68, -2.73]) and that the treatment group had a significantly shorter hospital stay time than the control group (Figure 4(a)). We also conducted sensitivity analysis (Figure 6(b)). After removing one study [28], the change in the combined effect was obvious, i.e., from -3.21 to -2.99, and was significantly different from the total combined effect. There was moderate heterogeneity between 10 studies (P = 0.07, $I^2 = 43\%$); heterogeneity was decreased significantly. We did not find a significant source of sensitivity. We assessed publication bias using a funnel plot (Figure 6(c)), and used Begg's test (P = 1.000) and Egger's test (P = 0.931) to test the asymmetry of the funnel plot; as P > 0.05, it suggested no significant publication bias.

3.4.7. Rate of conversion to surgery

Seven studies [20,22,24-27,31] reported on the rate of conversion to surgery after treatment. There was no heterogeneity between the studies (P = 0.83, $I^2 = 0\%$), so the fixed effects model was chosen. The results showed a statistically significant difference between the studies (RR = 0.35, 95%CI: [0.23, 0.53]) and a significantly lower conversion rate in the treatment group than the control group (Figure 4(b)).

3.5. Rate of effectiveness

Ten studies [18,19,21,24,27–30,32,33] reported on the rate of effectiveness after treatment. There was no heterogeneity between the studies (P = 0.97, $I^2 = 0\%$). We found no heterogeneity between the subcutaneous injection subgroup [18,33] (P = 0.89, $I^2 = 0\%$) and intravenous infusion subgroup [19,21,24,27–30,32] (P = 0.94, $I^2 = 0\%$), so the fixed effects model was chosen. The results showed statistical significance between the

subgroups (RR = 1.19, 95%CI: [1.13, 1.25]) and that the rate of effectiveness was higher in the treatment group (Figure 5). We assessed publication bias using a funnel plot (Figure 6(d)), and used Begg's test (P = 0.858) and Egger's test (P = 0.995) to test the funnel plot asymmetry; as P > 0.05 for both tests, it suggested no significant publication bias.

IV. Discussion

4.1. Interpretation and conclusions

In this study, we included sixteen RCTs [18-33] according to our inclusion and exclusion criteria.

We evaluated the quality of each study according to the Cochrane risk of bias tool, and extracted the study characteristics. There was good consistency for aspects such as the source of participants and the intervention measures.

We used the Cochran Q test, I^2 test, and the Galbraith figure to assess inter-study heterogeneity. No heterogeneity was found for duration of abdominal pain and abdominal distension, time of abdominal pain relief, hospitalization time, rate of conversion to surgery, and rate of effectiveness. There was moderate heterogeneity for the amount of gastrointestinal decompression drainage. There was substantial heterogeneity for hospitalization time, and subgroup analysis and sensitivity analysis did not reveal an obvious source of heterogeneity. There was severe heterogeneity for time of abdominal distension relief. It is likely there are too few studies in this area to cause heterogeneity.

The meta-analysis revealed that the somatostatin analogues treatment group had obvious advantages for: duration of abdominal pain and abdominal distension; time of abdominal pain relief; gastrointestinal decompression drainage amount; hospitalization time; rate of conversion to surgery, and rate of effectiveness. There was no significant difference between the treatment and control groups for time of abdominal distension relief; too few studies included this outcome measure, so the results may not be meaningful. We divided the included studies into subcutaneous injection and intravenous infusion subgroups for subgroup analysis (Figure 4(a) and Figure 5). The subgroup analysis results were consistent with the total results, and showed no significant difference between the two subgroups. Somatostatin is a factor that inhibits growth hormone release from the hypothalamus, which is widely distributed in the nervous system and gastrointestinal tract [34]. Somatostatin can suppress the secretion of gastrointestinal, pancreas and bile, increase the absorption of intestinal canal, reduce the retention of fluid in the intestine, reduce the expansion, inflammation and necrosis of the intestinal canal, and promote intestinal recanalization [35]. It is beneficial to the recovery of the blood circulation of the intestinal wall, and the accelerated inflammatory response subsides [36]. Demetriades et al. [37] found that somatostatin significantly reduced abdominal distention and electrolyte loss in rats with small bowel obstruction. This is consistent with our meta-analysis results.

We performed sensitivity analysis for hospitalization time (Figure 6(b)), and one study had relatively high sensitivity. When we removed it, heterogeneity was reduced significantly. Despite careful reading of the literature, we did not find a source of heterogeneity.

When more than 10 studies are included in a meta-analysis, it is necessary to determine publication bias. We found no significant publication bias (Figure 6(c) and Figure 6(d)), as proved by both Egger's test and Begg's test.

4.2. Limitations

First, this meta-analysis did not search all databases, so relevant studies may have been omitted. Second, after completing the article retrieval according to the search strategy, we found that the RCT that met the inclusion criteria were all from China, which may have generated regional bias. Third, the RCT that could be included were not of high quality. Fourth, the included studies had small sample sizes.

4.3. The significance of this meta-analysis

Adhesive intestinal obstruction is a common complication after abdominal surgery, and it is also one of the most common surgical acute abdomen. The present meta-analysis compared the clinical efficacy of somatostatin treatment and conventional treatment for adhesive intestinal obstruction. There are few meta-analyses in this field at present. We hope that this meta-analysis provides feasible options to physicians facing a patient with adhesive intestinal obstruction, and somatostatin should be used more widely in this field.

4.4. Directions of future research

The present meta-analysis found that the clinical effect of somatostatin analogues was obviously better than that of conventional treatment, but further study of high-quality and large-sample RCTs are still needed. We hope that the relevant RCTs are not confined to China, and are performed in more countries or regions.

References

- Moradi Z, Besharat M, Minaiee B, et al. Avicenna's View on the Etiologies of Intestinal Obstruction. Iran Red Crescent Med J. 2016;18(2):e20034.
- [2]. Duron JJ. Postoperative intraperitoneal adhesion pathophysiology. Colorectal Dis. 2007;9 Suppl 2(s2):14-24.
- [3]. Van GH. Consequences and complications of peritoneal adhesions. Colorectal Dis. 2007;9(Supplement s2):25–34.
- [4]. Nieuwenhuijzen M, Reijnen MM, Kuijpers JH, et al. Small bowel obstruction after total or subtotal colectomy: a 10-year retrospective review. Br J Surg. 1998;85(9):1242-1245.
- [5]. Krabben AAVD, Dijkstra FR, Nieuwenhuijzen M, et al. Morbidity and mortality of inadvertent enterotomy during adhesiotomy. Br J Surg. 2000; 87(4):467–471.
- [6]. Swank D J, Van Erp W F, Oj RVD, et al. A prospective analysis of predictive factors on the results of laparoscopic adhesiolysis in patients with chronic abdominal pain. Surgical Laparoscopy Endoscopy & Percutaneous Techniques, 2003;13(2):88-94.
- [7]. Foster NM, Mcgory M L, Zingmond D S, et al. Small Bowel Obstruction: A Population-Based Appraisal. Journal of the American College of Surgeons, 2006;;203(2):170-6.
- [8]. Nakagawa K, Ohgi S, Horikawa T, et al. Laparoscopy should be strongly considered for women with unexplained infertility. Journal of Obstetrics & Gynaecology Research, 2007, 33(5):665-670.
- [9]. Godinjak Z, Idrizbegovic E. Should diagnostic hysteroscopy be a routine procedure during diagnostic laparoscopy in infertile women?. Bosn J Basic Med Sci. 2008;8(1):44-47.
- [10]. Ellis H, Moran BJ, Thompson JN, et al. Adhesion-related hospital readmissions after abdominal and pelvic surgery: a retrospective cohort study. 1999;353(9163):1476-1480.
- [11]. Lower AM, Hawthorn RJ, Ellis H, et al. The impact of adhesions on hospital readmissions over ten years after 8849 open gynaecological operations: an assessment from the Surgical and Clinical Adhesions Research Study. Bjog An International Journal of Obstetrics & Gynaecology, 2000;107(7):855.
- [12]. Parker MC, Ellis H, Moran BJ, et al. Postoperative adhesions: Ten-year follow-up of 12,584 patients undergoing lower abdominal surgery. Diseases of the Colon & Rectum, 2001,;44(6):822-829.
- [13]. Jackson PG, Raiji MT. Evaluation and management of intestinal obstruction. Am Fam Physician. 2011;83(2):159-65 .
- [14]. Longo D, Fauci A, Kasper D, et al. Harrison's principles of internal medicine. New York: McGraw-Hill; 2010.
- [15]. Cappell MS, Batke M. Mechanical obstruction of the small bowel and colon. Med Clin North Am. 2008;92(3):575–97.
 [16]. Markogiannakis H, Messaris E, Dardamanis D, et al. Acute mechanical bowel obstruction: clinical presentation, etiology, management
- and outcome. World J Gastroenterol. 2007;13(3):432-7. [17]. Murphy E, Prommer EE, Mihalyo M, Wilcock A. Octreotide. Journal of Pain & Symptom Management 2010; 40(1): 142-8.
- [18]. Jin Q, Xiaobao R, Xiangyu C, et al. Efficacy of octreotide for the treatment of acute adhesive intestinal obstruction. Progress in Modern Biomedicine. 2012;12(12):2319-2321.
- [19]. Yongxin M, Ping X. Efficacy of somatostatin for the treatment of adhesive intestinal obstruction after abdominal surgery. Strait Pharmaceutical Journal. 2012, 24(4):168-169.
- [20]. Dayong X. Application of somatostatin in acute adhesive intestinal obstruction. Chinese Journal of Clinical Research. 2012;25(3):256-257.
- [21]. Manjin H. Treatment of 30 cases of postoperative adhesive intestinal obstruction with somatostatin. China Pharmaceuticals.2012;21(13):74-75.
- [22]. Wutang J, Tiankang G, Yuan L, et al. Efficacy of somatostatin for the treatment of adhesive intestinal obstruction. Guide of China Medicine. 2012;10(20):482-484.
- [23]. Chenfang L. Efficacy of somatostatin for the treatment of acute adhesive intestinal obstruction after surgery. Guide of China Medicine, 2013;0(8):520-521.
- [24]. Min Z. Clinical efficacy analysis of somatostatin in adhesive intestinal obstruction. CHINA HEALTH CARE & NUTRITION. 2013;23(4):693-694.
- [25]. Hai Wang. Efficacy of somatostatin for the treatment of adhesive intestinal obstruction after abdominal surgery. Strait Pharmaceutical Journal. 2013;25(5):138-139.
- [26]. Shujin T. Efficacy of somatostatin in the treatment of postoperative adhesive intestinal obstruction in elderly patients. Chinese Journal of Practical Medicine. 2013;40(11):123-123.
- [27]. Puqiang L. Efficacy of somatostatin for the treatment of adhesive intestinal obstruction. Chinese and Foreign Medical Research. 2013;0(3):41-42.
- [28]. Shangfu X. Clinical efficacy observation of somatostatin in patients with adhesive intestinal obstruction after abdominal surgery. 2014,(13):127-128.
- [29]. Shirong Z, Wei Z. Observation of the curative effect of somatostatin in the treatment of elderly patients with adhesive ileus after operation. Chinese Community Doctors. 2015, 31(25):43-44.
- [30]. Liang X, Shengliang C. Curative effect of somatostatin on acute adhesive intestinal obstruction and its protection effect on intestinal mucous membrane barrier function. 2015;53(15):57-59.
- [31]. Zhiguang K. The value of somatostatin in the treatment of acute adhesive intestinal obstruction after operation. 2016;0(1):65-66.
- [32]. Mengyun Z, Wei L, Rong W. The Efficacy of Somatostatin in the Treatment of Adhesive Intestinal Obstruction. Drugs and Clinical.
- [33]. Bingyao L, Hengjun X. The effect of somatostatin in the treatment of acute adhesive intestinal obstruction. HeNan Medical Research, 2016;25(5):874-875.
- [34]. Brazeau P, Vale W, Burgus R, et al. Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone.[J]. Science, 1973, 179(4068):77-79.
- [35]. Gong J F, Zhu W M, Yu W K, et al. Conservative treatment of early postoperative small bowel obstruction with obliterative peritonitis.[J]. World Journal of Gastroenterology, 2013, 19(46):8722.
- [36]. Gong AY, Tietz PS, Muff MA, et al. Somatostatin stimulates ductal bile absorption and inhibits ductal bile secretion in mice via SSTR2 on cholangiocytes. Am J Physiol Cell Physiol. 2003;284(5):1205-14.
- [37]. Demetriades H, Kanellos I, Mantzoros I, et al. Effects of lanreotide on the healing of small bowel anastomoses following obstructive ileus in rats. Colorectal Disease. 2002;4(1):23-27.

Haiyang Yu "Efficacy of Somatostatin Analogues Combined With Conventional Treatment Versus Conventional

Treatment For Adhesive Intestinal Obstruction: A Meta-Analysis In China."."IOSR Journal of Dental and Medical

Sciences (IOSR-JDMS), vol. 17, no. 4, 2018, pp 61-74.