Periodontal Microbes and Immunity

Dr. Rizwan M.Sanadi¹, Dr. Meenu V.Pillai², Dr. Medha Sawarkar³

Department of Periodontology,Y.M.T Dental College,Kharghar,Navi Mumbai India.¹ Department of Periodontology,Y.M.T Dental College,Kharghar,Navi Mumbai India.² Department of Periodontology,Y.M.T Dental College,Kharghar,Navi Mumbai India.³ Corresponding Author: Dr. Rizwan M.Sanadi

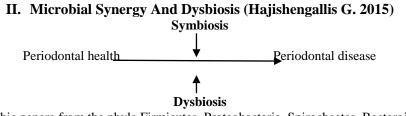
Abstract: Knowledge of how immune mechanisms and inflammatory responses are regulated is critical for understanding the pathogenesis of complex diseases, such as periodontitis. The pathogenesis of periodontal disease is mediated by the inflammatory response to bacteria in the dental biofilm. Unlike many infectious diseases, periodontal diseases appear to be infection mediated by the overgrowth of commensal organisms rather than by acquisition of an exogenous pathogen. Recent advances in cellular and molecular biology research have demonstrated the importance of the acquired immune system not only in fighting the virulent periodontal infections. Three basic mechanisms have been postulated to play a role in these interactions; metastatic infections, inflammation and inflammatory injury, and adaptive immunity. The potential role of each alone and together is considered in, in vitro and animal studies and in human studies when available. The present review is intended tohighlight the emerging role of neutrophil extracellular trap production in the regulation of immune response andits role in periodontal disease.

Keywords: dental biofilm, adaptive immunity, acquired immune system.

Date of Submission: 15-08-2018

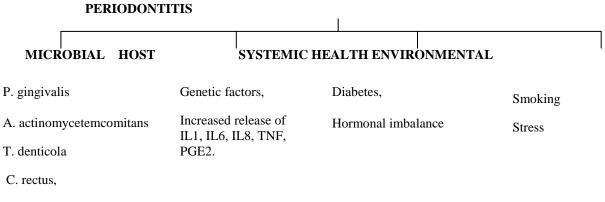
Date Of Acceptance: 03-09-2018

I. Introduction:

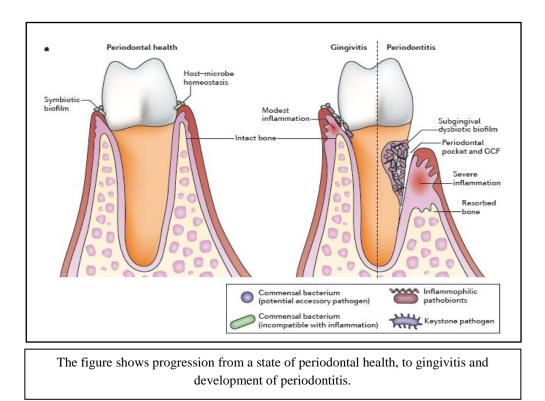

A great amount of effort and preparation is required prior to a theatrical production. Although the curtains may open to an apparently quiet and inanimate scene, all of the stage-hands, lighting staff, technical crews, actors and musicians know their places on the stage and respond to specific signals during the play.

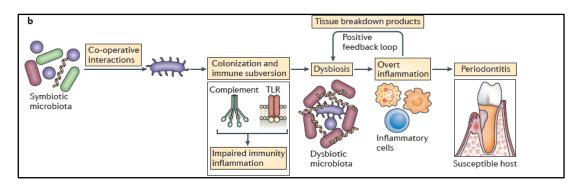
Periodontal health is a dynamic state that may be viewed as one scene in a play. As certainsignals are given, specific players respond in a practicedmanner and take their places in the scene. If disease-initiating signals are given, the players takepositions on the stage that allow them to participate in the disease scene.

Periodontitis is an inflammatory disease induced by bacterial biofilms that accumulate in the gingival margin, in which a series of aberrant inflammatory responses are initiated in periodontal tissues by a small subset of endogenous gram-negative periodontal bacteria, including Porphyromonas gingivalis, Aggregatibacter (Actinobacillus) actinomycetemcomitans, Tannerella forsythia (forsythensis) and Treponema denticola.

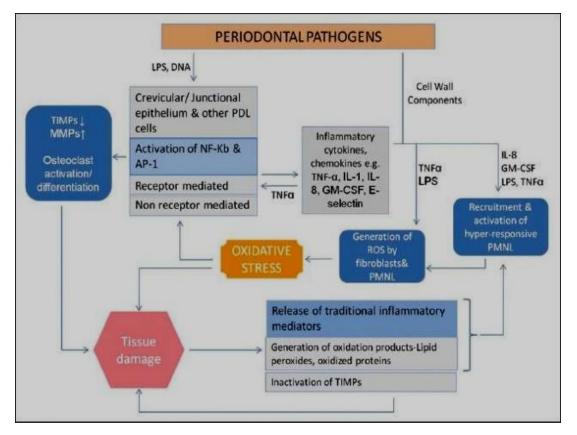

However, recent data from metagenomic, metatranscriptomic and mechanistic studies are consistent with a new model of periodontal disease pathogenesis, which suggests that a more diverse periodontitisassociated microbiota is involved in the disease than previously thought. (Abusleme, L. et al 2002, Hajishengallis, G. et al 2012)

Understanding how oral pathogens misdirect the host immune response can provide novel mechanistic insights into the pathogenesis of periodontitis and associated systemic conditions, as well as reveal new therapeutic targets.




(anaerobic genera from the phyla Firmicutes, Proteobacteria, Spirochaetes, Bacteroidetes)

Periodontitis has a complex aetiology that acts at multiple levels:


| Periodontitis is induced in susceptible hosts by a polymicrobial community, in which different members have distinct roles that converge synergistically to cause destructive inflammation

Host Defense Mechanism	Bacterial Species	Bacterial Property	Biologic Effect
Specific antibody	P. gingivalis P intermedia P. melaninogenica Capnocytophaga sp.	IgA and IgG degrading proteases	Degradation of specific antibody
Polymorphonuclear	A. actinomycetemcomitons	Leukotoxin	Inhibition of PNM function
leukocytes	F. mucleatum	Heat-sensitive surface protein	Apoptosis (programmed cell death) of PMN
	P. gingivalis	Capsule	Inhibition of phagocytosis
	P. gingivalis	Inhibition of	Decreased bacterial
	T. denticola	superoxide production	killing
Lymphocytes	A. actinomy cetem comitans	Leukotoxin	Killing of mature B and T cells nonlethal suppression of activity
	$A.\ actinomy cetem comitans$	Cytolethal distending toxin	mpairment of function by arresting of lymphocyte cell cycle
	F. mucleatum	Heat-sensitive surface protein	Apoptosis of mononuclear cells
	e. forsythus	Cytotoxin	Apoptosis of lymphocytes
	P. intermedia	Suppression	Decreased response to
	T. denticola		antigens and mitogens
	A. actinomycetem comitans		· ·
Release of IL-8	P. gingivalis	Inhibition of IL-8 production by epithelial cells	Impairment of PMN response to bacteria

Microbial virulence strategies of periodontal pathogens (Amona A, 2010)

Selected Bacterial Properties Involved in Evasion of Host Defense Mechanisms

III. Innate Immune Responses To Periodontal Infection

DOI: 10.9790/0853-1708126469

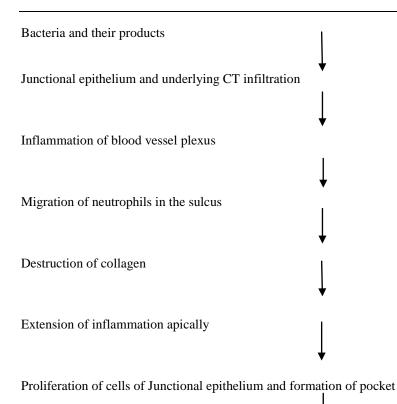
• The bacterial challenge induces changes in the epithelium to facilitate both vascular permeability and the influx of neutrophils

Junctional epithelium is the structure initially most directly challenged by bacteria. The cells express intercellular attachment molecule and leukocyte function antigen 3 on their surfaces even under healthy noninflammatory conditions (**Crawford JM,1992**) and intercellular attachment molecule 1 expression by keratinocytes can be upregulated by pro-inflammatory cytokines but not by lipopolysaccharide (**Tonetti MS 1996**)

• The bacterial products and epithelially derived cytokines also activate the local tissue mononuclear cells that shape the local immune response

Soon after inflammation starts, however, the exudate from the vessels becomes predominated bymononuclear cells. In addition to endothelial cell adhesion molecule 1, activated endothelial cells express vascular cell adhesion molecule 1, which selectively binds mononuclear cells, allowing them to exit the small blood vessels and become a part of the extravascular exudate. Very soon after the initiation of the acute inflammatory response, small lymphocytes consisting of both T cells and B cells predominate in the tissue infiltrate. Subsequently, in the presence of antigen and various cytokines, these lymphoid cells begin to enlarge and replicate to form clones of CD4' and CD8+ T cells, and the B cells are driven to differentiate into clones of antibody producing plasma cells

IV. Humoral Immunity In The Periodontium(Teng Yt, 2006)


• Future Perspective

There have been considerable interest and efforts in generating protective or effective mAbs as potential vaccines in treating P. gingivalis infection (Gibson et al., 2004; Kobayashi et al., 2004) than with any other periodontal pathogens

		8 1	
Microbial Species and Antigen Involved*	Clone (mAb)	Host Characteristics Tested	Reference/Year
P. gingivalis 381 Hemagglutinin-40 kDa	HMGD1	Higher antibacterial killing <i>in vitro</i> Inhibit hemagglutination	Kobayashi <i>et al.,</i> 200 Tagawa <i>et al.,</i> 2004
P. gingivalis A7436 Bacterial whole cells	serum IgG	Enhance bacterial clearance Induce protective immunity for alveolar bone loss in mice	Gibson <i>et al.,</i> 2004
P. gingivalis 33277 Hemoglobin	HA2	Stimulate immune protection in a rat (<i>via</i> IgG and Th2/Th1-driven response)	DeCarlo <i>et al.,</i> 2003
P. gingivalis DNA-Rgp vaccine		Protective lgs response in a mouse abscess model	Yonezawa <i>et al.,</i> 200
P. gingivalis	61BG 1.3	Selectively prevent bacterial recolonization for up to 9 months in human subjects with severe periodontitis	Booth <i>et al.,</i> 1996

Monoclonal Antibody or Igs Reported for Periodontal Protective Immunity

However, there is presently no mAb or Igs available to study the potential effects or therapeutic efficacy associated with A. actinomycetemcomitans infection in the periodontium, although a few potential targets have been suggested (Cao et al., 2004).

Deepening of periodontal pocket and destruction of alveolar bone

V. conclusion:

Periodontitis is an infectious disease process. Bacteriaand their products interact with the junctional epithelium and penetrate into the underlying connectivetissue. The small blood vessel plexus immediatelydeep to the junctional epithelium becomesinflamed, leukocytes exit the post-capillaryvenules and there is a very large increase in thenumbers of leukocytes, especially neutrophils, migratingthrough the junctional epithelium and into the sulcus or pocket. The collagen and other components of the perivascular extracellular matrix aredestroyed. As supragingival plaque extends apicallyinto the gingival sulcus, the coronal cells of the junctional epithelium are stimulated to proliferate, and agingival pocket is formed. Later on, the apical cells of the junctional epithelium are induced to proliferate extend apically along the root surface, subsequently be converted into an ulcerated pocket epithelium. At an early stage, there is an enlargingleukocyte infiltrate dominated by lymphocytes, includingB cells and T cells with characteristics ofboth T-helper 1 (Thl) and Th2 cells. Subsequently, the lesion becomes dominated by B cells but alsopresent are T cells, macrophages and neutrophils, allof which become activated. B and T cells are antigenicallyormitogenically activated to replicate togive rise to clones, and B cells are driven to differentiateinto clones of antibody producing plasma cells. As the disease worsens, periodontal pockets deepen, the components of the extracellular matrix of the gingiva and periodontal ligament are destroyed andalveolar bone is resorbed.

References:

- Hajishengallis G. Periodontitis: from microbial immune subversion to systemic inflammation. Nature Reviews Immunology. 2015 Jan;15(1):30.
- [2]. Abusleme, L. *et al.* The subgingivalmicrobiome in health and periodontitis and its relationship with community biomass and inflammation. *ISME J.* **7**, 1016–1025 (2013).
- [3]. Amano A. Host-parasite interactions in periodontitis: microbial pathogenicity and innate immunity. Periodontology 2000. 2010 Oct 1;54(1):9-14.
- [4]. Teng YT. Protective and destructive immunity in the periodontium: part 1—innate and humoral immunity and the periodontium. Journal of dental research. 2006 Mar;85(3):198-208.
- [5]. Kornman KS, Page RC, Tonetti MS. The host response to the microbial challenge in periodontitis: assembling the players. Periodontology 2000. 1997 Jun 1;14(1):33-53.
- [6]. Tonetti MS, Schuster M, Lang NI? Do gingival keratinocytes express the CD14 US receptor? J Dent Res 1996: 75(spec issue): 245 (abstr 1819).
- [7]. Tonetti MS, Imboden M, Gerber L, Lang NI? Compartmentalization of inflammatory cell phenotypes in normal gingiva and periimplant keratinized mucosa. J Clin Periodontol1995: 22: 735-742.

- [8]. Hedges S, Agace W, Svensson M, Sjogren AC, Ceska M, Svanborg C. Uroepithelial cells are part of arnucosal cytokine network. Infect Immun 1994: 62: 2315-2321.
- [9]. Crawford JM. Distribution of ICAh4-1, LFA-3 and HLA-DR in healthy and diseased gingival tissues. J Periodont Res 1992:27: 291-298.

Dr. Rizwan M.Sanadi. "Periodontal Microbes and Immunity."."IOSR Journal of Dental and Medical Sciences (IOSR-JDMS), vol. 17, no. 8, 2018, pp 64-69.
