Evaluation of fetal weight with respect to placental thickness and gestational age using ultrasonography.

Dr.R.Rajesh Gowatham¹(resident), Dr K. Praveen Sharma ²(Associate professor)
Dr. N. Paartheepan³(Professor), Dr. C.R. Seena⁴(Prof and HOD).

¹Department of radio-diagnosis, Saveetha medical college and hospital, Saveetha university) India
²Department of radio-diagnosis, Saveetha medical college and hospital, Saveetha university) India
³Department of radio-diagnosis, Saveetha medical college and hospital, Saveetha university) India
⁴Department of radio-diagnosis, Saveetha medical college and hospital, Saveetha university) India

Corresponding Author: Dr.R.Rajeshgowtham

Abstract: The placental thickness can be a useful sonographic parameter. It tends to gradually increase with gestational age in a linear fashion (~ 1 mm per week) and therefore the thickness in mm can approximate the gestational age of the fetus as was also shown in animal studies. There was a strong positive correlation between placental thickness and gestational age. The measurement of the placental thickness is an important parameter for estimation of fetal age along with other parameters especially in the late mid trimester and early third trimester, where the exact duration of pregnancy is not known and other sonographic parameters also become less reliable.

I. Introduction

The placental thickness can be a useful sonographic parameter. It tends to gradually increase with gestational age in a linear fashion (~ 1 mm per week) and therefore the thickness in mm can approximate the gestational age of the fetus as was also shown in animal studies. There was a strong positive correlation between placental thickness and gestational age. The measurement of the placental thickness is an important parameter for estimation of fetal age along with other parameters especially in the late mid trimester and early third trimester, where the exact duration of pregnancy is not known and other sonographic parameters also become less reliable.

II. Material And Methods

A cross-sectional study was conducted for a period of one year on all the antenatal mothers at the radiology department of Saveetha Medical college and Hospital. All women with singleton pregnancies, women with confirmed last menstrual period, women of 11 to 40 weeks of gestation who were referred to radio diagnosis department for antenatal checkup were included in the study. Patients with Patients with PIH, Anaemia, Diabetes mellitus, hydropsfetalis, intra uterine growth restriction, congenital malformations, twins, polyhydramnios, placental anomilies, placenta praevia, poor visualization of placenta were excluded from the study. A total of 50 antenatal mothers were included in the study. The placental thickness in mm was measured at the level of cord insertion site. The transducer was oriented to scan perpendicular to both the chorionic and basal plates as tangential scan will distort the measurement of the thickness of the placenta. All the other routine parameters like BPD, HC, AC and FL were also measured.

Study Design: Cross-sectional study.

Study Location: Department of radiology, Saveetha medical college and hospital, Chennai.

Study Duration: June 2017 to May 2018.

Sample size: 50 patients.

Subjects & selection method: The study population A cross-sectional study was conducted for a period of one year on all the antenatal mothers at the radiology department of Saveetha Medical college and Hospital. All women with singleton pregnancies, women with confirmed last menstrual period, women of 11 to 40 weeks of gestation who were referred to radio diagnosis department for antenatal checkup were included in the study. Patients with Patients with PIH, Anaemia, Diabetes mellitus, hydropsfetalis, intra uterine growth restriction,
congenital malformations, twins, polyhydramnios, placental anomalies, placenta praevia, poor visualization of placenta were excluded from the study. A total of 50 antenatal mothers were included in the study. The placental thickness in mm was measured at the level of cord insertion site. The transducer was oriented to scan perpendicular to both the chorionic and basal plates as tangential scan will distort the measurement of the thickness of the placenta. All the other routine parameters like BPD, HC, AC and FL were also measured.

Inclusion criteria:
1. Singleton pregnancies
2. Women with confirmed last menstrual period.
3. Women of 11 to 40 weeks of gestation who are referred to radio diagnosis department for antenatal checkup

Exclusion criteria:
1. PIH
2. Anaemia.
3. Diabetes mellitus.
4. Hydropsfetalis
5. Intra uterine growth restriction.
6. Congenital malformations
7. Twins
8. Polyhydramnios
9. Placental anomalies
10. Placenta praevia
11. Poor visualization of placenta.

Procedure methodology
All the patients were scanned with a moderately distended bladder in supine position. The transducer was placed on the skin surface after applying the couple agent.

The placental thickness in mm was measured at the level of cord insertion site. The transducer was oriented to scan perpendicular to both the chorionic and basal plates as tangential scan will distort the measurement of the thickness of the placenta.

III. Result:
Table 1: Age wise distribution of the antenatal mothers

<table>
<thead>
<tr>
<th>Age group (in years)</th>
<th>Frequency</th>
<th>Percentage</th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 – 25</td>
<td>34</td>
<td>68%</td>
<td>24.2</td>
<td>3.2</td>
</tr>
<tr>
<td>26 – 30</td>
<td>14</td>
<td>28%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>30</td>
<td>2</td>
<td>4%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>50</td>
<td>100%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1 shows the age wise distribution of the antenatal mothers. It is seen from the table that majority of our study subjects were in the age group between 20 and 25 years with a mean age of 24.2 years. The minimum age in our study subjects was 20 and the maximum age was 32 years.
Evaluation of fetal weight with respect to placental thickness and gestational age

Table 2: Distribution of the study subjects based on their gestational age

<table>
<thead>
<tr>
<th>Gestational age (in weeks)</th>
<th>Frequency</th>
<th>Percentage</th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td><= 20</td>
<td>7</td>
<td>14%</td>
<td>25.9</td>
<td>4.8</td>
</tr>
<tr>
<td>21 – 25</td>
<td>18</td>
<td>36%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26 – 30</td>
<td>17</td>
<td>34%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>30</td>
<td>8</td>
<td>16%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>50</td>
<td>100%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2 shows the distribution of the study subjects based on their gestational age. It is seen from the table that majority of the subjects had the gestational age between 21 – 30 weeks, which means most of them were in the 2nd and early 3rd trimester. The mean gestational age for our study population was 25.9 weeks.

Fig 2: Distribution of the study subjects based on their gestational age

Table 3: Distribution of the study subjects based on the position of placenta

<table>
<thead>
<tr>
<th>Placental position</th>
<th>Frequency</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anterior</td>
<td>28</td>
<td>56%</td>
</tr>
<tr>
<td>Posterior</td>
<td>15</td>
<td>30%</td>
</tr>
<tr>
<td>Fundal</td>
<td>5</td>
<td>10%</td>
</tr>
<tr>
<td>Lateral</td>
<td>2</td>
<td>4%</td>
</tr>
<tr>
<td>Total</td>
<td>50</td>
<td>100%</td>
</tr>
</tbody>
</table>

Table 3 shows the distribution of the study subjects based on their position of placenta detected through the ultrasonogram. It is seen from the table that majority of the subjects placental position was found to be anterior followed by posterior. Only 10% and 4% of the study subjects had the placental position as fundal and lateral respectively.

Fig 3: Distribution of the study subjects based on the position of placenta
Table 4: Mean and SD of the various foetal parameters measured in USG based on the gestational age

<table>
<thead>
<tr>
<th>Gestational age</th>
<th>BPD (mean ± SD)</th>
<th>HC (mean ± SD)</th>
<th>AC (mean ± SD)</th>
<th>FL (mean ± SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td><= 20</td>
<td>5.08 ± 0.29</td>
<td>19.2 ± 1.0</td>
<td>16.6 ± 1.3</td>
<td>3.5 ± 0.51</td>
</tr>
<tr>
<td>21 – 25</td>
<td>6.0 ± 0.78</td>
<td>20.7 ± 2.0</td>
<td>18.7 ± 2.1</td>
<td>4.2 ± 0.52</td>
</tr>
<tr>
<td>26 – 30</td>
<td>7.1 ± 0.71</td>
<td>26.9 ± 1.1</td>
<td>24.9 ± 1.3</td>
<td>5.5 ± 0.48</td>
</tr>
<tr>
<td>>30</td>
<td>7.7 ± 0.67</td>
<td>30.5 ± 1.4</td>
<td>28.9 ± 1.7</td>
<td>6.4 ± 0.54</td>
</tr>
</tbody>
</table>

Table 4 shows the mean and SD of the various foetal parameters measured through ultrasonogram based on their gestational age. It is depicted from the table that all the foetal parameters like biparietal diameter (BPD), head circumference (HC), abdominal circumference (AC) and the femur length (FL) were appropriate for the gestational age.

Fig 4: Mean and SD of the various foetal parameters measured in USG based on the gestational age

Table 5: Gestational age wise placental thickness among the study subjects

<table>
<thead>
<tr>
<th>Gestational age (in weeks)</th>
<th>No of cases (n=50)</th>
<th>Mean</th>
<th>SD</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>2</td>
<td>1.96</td>
<td>0.31</td>
<td><.0001</td>
</tr>
<tr>
<td>20</td>
<td>5</td>
<td>2.13</td>
<td>0.33</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>6</td>
<td>2.25</td>
<td>0.41</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>5</td>
<td>2.58</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>4</td>
<td>2.48</td>
<td>0.21</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>2</td>
<td>2.69</td>
<td>0.33</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>2.37</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>2.67</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>1</td>
<td>2.72</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>4</td>
<td>2.87</td>
<td>0.38</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>6</td>
<td>3.18</td>
<td>0.41</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>5</td>
<td>3.54</td>
<td>0.28</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>3</td>
<td>3.62</td>
<td>0.31</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>2</td>
<td>3.71</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>3</td>
<td>3.70</td>
<td>0.56</td>
<td></td>
</tr>
</tbody>
</table>

P value derived by applying student T test

Table 5 shows the association between gestational age and the placental thickness. It is inferred from the table that there exist a statistical significant association between gestational age and the placental thickness, as gestational age increases the placental thickness shows a gradual increase.
Table 6: Correlation between gestational age and placental thickness

<table>
<thead>
<tr>
<th>Correlations</th>
<th>Gestational age</th>
<th>Placental thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gestational age</td>
<td>Pearson Correlation</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed)</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>50</td>
</tr>
<tr>
<td>Placental thickness</td>
<td>Pearson Correlation</td>
<td>.787*</td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed)</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>50</td>
</tr>
</tbody>
</table>

**. Correlation is significant at the 0.01 level (2-tailed).

Table 6 shows the correlation between gestational age and the placental thickness. The pearsons correlation shows a strong positive correlation between the gestational age and the placental thickness and the correlation between the two parameters found to be statistically significant (p<.01).

Fig 6: Linear regression between gestational age and placental thickness
Evaluation of fetal weight with respect to placental thickness and gestational age ...

Fig 7: Linear regression between gestational age and BPD

Fig 8: Linear regression between gestational age and AC

Fig 9: Linear regression between gestational age and AC
Fig 10: Linear regression between gestational age and FL

\[y = 0.208x - 0.513 \]
\[R^2 = 0.855 \]

Fig 6-10 shows the linear regression between the gestational age and the other foetal parameters used to assess the gestational age and it is seen from the graphs that there is a perfect linear regression between BPD, HC, AC and FL with gestational age and similar to these parameters a perfect linear regression exist between gestational age and the placental thickness.

Table 7: Correlation between placental thickness and foetal weight

<table>
<thead>
<tr>
<th>Correlations</th>
<th>Placental thickness</th>
<th>Foetal weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placental thickness</td>
<td>Pearson Correlation</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed)</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>50</td>
</tr>
<tr>
<td>Foetal weight</td>
<td>Pearson Correlation</td>
<td>.809*</td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed)</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>50</td>
</tr>
</tbody>
</table>

Correlation is significant at the 0.01 level (2-tailed).

Table 7 shows the correlation between placental thickness and foetal weight. It is seen from the table that there is a strong positive correlation between the two parameters as the thickness of the placenta increases the foetal weight increases. This correlation was found to be statistically significant (P<.01).
Fig 11: Linear regression between placental thickness and foetal weight

y = 1345.6x - 2324.5
$R^2 = 0.809$

Fig 12: Linear regression between BPD and foetal weight

y = 596.7x - 2444.4
$R^2 = 0.530$
Fig 13: Linear regression between HC and foetal weight

\[y = 185.1x - 3002 \]
\[R^2 = 0.849 \]

Fig 14: Linear regression between AC and foetal weight

\[y = 181.4x - 2551 \]
\[R^2 = 0.873 \]
Evaluation of fetal weight with respect to placental thickness and gestational age

IV. Discussion:

Determination of GA is important because it provides valuable information regarding the wellbeing or potential problems of the fetus and directly affects the medical treatment plan for the fetus. Placenta has been noted to increase as pregnancy advances in age.78

From the present study we found a perfect linear correlation between the gestational age and the placental thickness and also between the placental thickness and the foetal weight. The linear equation between the gestational age and the placental thickness which we derived in our study was

\[
\text{Placental thickness} = 0.109 + 0.022 \times \text{gestational age}
\]

and similarly the equation between the foetal weight and placental thickness was

\[
\text{Foetal weight} = 1345 + 232 \times \text{placental thickness}
\]

A study done by P. Mittaetalamong 600 antenatal cases of all gestational ages (more than 10wks of gestation) excluded the patients with PIH, IUGR, DM, HydropsFetalis, congenital malformation and twins. After estimating the fetal age by CRL, BPD, FL, HC, AC, Placental Thickness was measured in each case.79

It was observed that the placental thickness gradually increased from 15mm at 11wks of gestational age to 37.5mm at 39wks. From the 22nd week to 35th week of gestation the placental thickness coincide almost exactly with the gestational age in weeks. Another study done by Anupamajain et al(2001) in which he analyzed 500 normal antenatal cases of more than 10weeks gestation. Mean values of placental thickness was calculated for different gestational ages. It was observed that the mean placental thickness increased from 15mm at 10weeks to 36mm at 39weeks of gestation. Placental thickness matched almost equally from 27weeks to 33weeks of gestation.80

Durnwaldetalanalyzed 167 singleton viable pregnancies. Women with suspected abruption, placenta previa, fibroid, uterine and fetal anomalies, abnormal fluid volume were excluded. Placental thickness was measured at mid point of placental mass. Placental thickness was measured at the fundal, anterior, posterior implantation sites. The purpose of the study was to identify differences in sonographic placental thickness with advancing gestation and based on implantation site. It was observed that there was step wise increase in placental thickness with increasing gestation (15.8mm, 27.1mm, 37.6mm for 1st, 2nd, 3rd trimester respectively).In the third trimester the placental thickness of posterior andfundal placenta was significantly greater than anterior placenta.81 Parity and BMI doesn’t affect placental thickness. Tongsong T etal(2004) established a nomogram for placental thickness for each week of gestational age ranged from 9 to 37weeks. By regression analysis, placental thickness (in mm) = gestational age in weeks x 1.4 – 5.6 (r = 0.82). Thisnomogram may be a useful aid in the early detection of placental abnormalities like hydropsfetalis. (Hb Bart’s disease).82 Muhammad Haneefetalstudied 100 cases of gestational age of more than 12weeks.83 Placental

Fig 15: Linear regression between FL and foetal weight

```
Y-Values

707.9x - 1987.
R² = 0.743

Foetal weight
FL
Y-Values
Y-Values
Linear (Y-Values)
```

Fig 11 -15 shows the linear regression between the foetal weight and the other foetal parameters used to assess the foetal weight and it is seen from the graphs that there is a perfect linear regression between BPD, HC, AC and FL with foetal weight and similar to these parameters a perfect linear regression exist between foetal weight and the placental thickness.
Evaluation of fetal weight with respect to placental thickness and gestational age

thickness increased from 16mm at 12weeks to 39mm at 40weeks. Ghosh UK et al analyzed 120 uncomplicated pregnancies of 32 to 40 weeks of gestation. Placental diameter and thickness were measured. Placental diameter increased with advancing pregnancy where as placental thickness decreased with increasing gestational age. In 75% of cases a single ultrasound measurement of placental thickness can predict gestational age within +14 days in the last 8 weeks of pregnancy. W.K. Hoddick et al reviewed sonograms of 200 single ton pregnancies. Placental thickness was measured and correlated with menstrual age. Placental thickness increased with advancing menstrual age. At no stage of pregnancy was the normal placenta greater than 4cm in thickness. Granumetal in the ultrasonographic study of placenta have shown that there is gradual decrease in the thickness of placenta as the placenta matures. Bleker et al have shown that the surface area of the placenta increases linearly. Nyberg and Finberg also reported that as a rule of thumb, placental thickness in mm parallels gestational age in weeks. Habib FA studied placental diameter and thickness by ultrasound at 36 weeks of gestation in 70 singleton pregnancies a warning limit of placental diameter of 18cms and placental thickness of 2cm at 36 weeks of gestation were calculated to predict the low birth weight in infants. Ultra sonographic placental thickness appears to be of prognostic value in identifying the subsequent occurrence of IUGR.

Elchalal U et al analyzed 561 normal single ton pregnancies to establish the correlation of sonographically thick placenta with perinatal mortality and morbidity. Thick placenta was determined as placenta that was above the 90 percentile. A linear increase of placental thickness was found to correlate with gestational age throughout pregnancy. Sonographically thick placenta is associated with increased perinatal risk with increased mortality related to fetal anomalies and higher rates of both SGA and LGA infants at term. Tongsong T et al evaluated the efficacy of placental thickness at mid pregnancy in predicting fetal Hb Bart’s disease in pregnancy at risk. Placental thickness of more than 13mm was considered abnormal for 18 to 21 weeks of gestation. Mean placental thickness for normal pregnancy and pregnancies with Hb Bart’s fetuses were significantly different. For couple at risk, if placental thickness is normal then the risk of having Hb Bart’s fetus is markedly decreased.

Ghosh A et al measured placental thickness by ultrasound at 10 to 21 weeks of gestation in 231 pregnancies at risk for homozygous Alpha thalassemia. The sensitivity in detecting the affected pregnancies after 12 weeks was 0.95 and by 18 weeks it reached 1. Thus the selection of pregnancies at risk by measurement of placental thickness will reduce the number of invasive diagnostic procedures.

The results of the above mentioned studies are almost in par with the present study showing a linear relationship between the gestational age and placental thickness and between the placental thickness and the foetal weight. There was a fairly steady increase in placental thickness and estimated fetal weight with gestational age. This relationship exists in the second and third trimesters; the period during which most of the fetal weight is gained. A feature of this observed relationship was the wide variations of placental thickness corresponding to particular foetal weight. We think that it could be as a result of uncertainties involved in measuring maximum placental thickness. A slight obliquity of the scanner probe can exaggerate measurements. This makes it unsuitable to be used routinely to predict fetal weight during obstetric ultrasound.

Previous studies have suggested that low birth weight infants can be predicted from ultrasound measurements of placental diameter and thickness, and that diminished placental size precedes fetal growth restriction. The cause of diminished placental size is still being debated but there is a link between small placentas and preeclampsia, chromosomal abnormalities, severe maternal diabetes mellitus, chronic fetal infection and intrauterine growth restriction. There have been suggestions that uterine artery doppler in the second trimester may in addition to measurement of placental diameter and thickness help in predicting low birth weight infants. Several investigators have suggested that diminished fetal growth may be a consequence of hemodynamic compromise. In our study, we did not carry out doppler investigation of the umbilical vessels to ascertain the relationship between blood flow and fetal weight estimates. This is obviously a limitation which we suggest further studies should include. This will show how blood flow disturbances relate to placental size and fetal weight.

V. Conclusion

The result of this study shows a strong positive correlation between gestational age and placental thickness and also between placental thickness and estimated fetal weight. Thus, placental thickness can be used as a fairly accurate indicator for estimating the gestational age and of normality of fetal weight, but because of wide variations in placental thickness corresponding to particular fetal weight, a more thorough search should be undertaken when a fetus is considered to be at risk. Also in our study the thickness of placenta did not show any variation with the location of placenta. Abnormal placental thickness in the early stages helps to detect IUGR, hydrops foetalis and diabetes mellitus. Hence placental thickness is considered as a useful index in determining the gestational age as well as in estimating the foetal weight.
The relationship between placental thickness and growth parameters in normal pregnancies and preterm birth in the USA: broadening the research.

The fetus and placenta Lang man’s Medical Embryology, 9th ed.: Lippincott Williams & Wilkins; 1995. pp. 91-111.

References

Evaluation of fetal weight with respect to placental thickness and gestational age...

[65]. Muller, L.M.M. A comparative study of the ultrasonographic and morphologic appearance of the normal and abnormal human placenta. Dissertation for Ph.D. degree, Faculty of Medicine, University of Stellenbosch, South Africa, 1986.

Evaluation of fetal weight with respect to placental thickness and gestational age using ultrasonography.