Role of HRCT Multiplanar Temporal bone Non-traumatic lesions of Temporal bone, Comparative analysis with post-operative findings and histopathology report, wherever applicable.

Dr Bharat MP¹, Dr SK Joshi¹

¹(Department Of Radiology, Subbiah Institute of Medical Sciences / RGHUS Karnataka, India) ²(Department Of Radiology SDM College, Dharwad /SDM, Karnataka, India)

Abstract:Background:HRCT Temporal bone remains mainstayévaluation of various pathologies involving the Temporal bone. It plays a vital role in diagnosis ,understanding the pathology , behavior of the disease and planning the best course of treatment , may it be medical or surgical line. Prognostication of complications are best done by this imaging modality.

Materials and Methods: In this prospective randomised controlled study, 52 patients of clinically fresh non operated case of non traumatic temporal bone (External, inner, middle ear pathologies) were selected. Multiplanar HRCT temporal bone study was done at Subbiah institute of medical sciences Shimoga, few under anaesthesia support. Past history of trauma or surgery were main exclusion criteria. The cases were categories under headings of Congenital, Infections, Tumours. Operative correlation, histopathological correlation were done in relevant cases. The study was done over 18 months interval. Total of 38 infection, 8 tumours and 1 osteopetrosis cases were evaluated. 31 male, 21 female patients were part of the sample with mean age of 25 years. Role of imaging towards sensitivity and specificity of pick up and evaluation of conditions, its correlation with operative and HPR findings were clubbed. Finally structured understanding the imaging differences between CSOM, Cholesteatoma was attempted

Results: Infection, neoplasm followed by Congenital conditions were noted in order of frequency. There is concomitant associations in the form of infections superadded to congenital /tumour conditions. Operative correlation correlated well with both intra temporal and extra temporal complications of various infections ,tumours. points of differentiation of CSOM, Cholesteatoma well correlated with HPR. Anaesthesia support remained mainstay in paediatric population and complicated cases

Conclusion:HRCT Temporal multiplanar imaging remains excellent tool in Diagnosis, Evaluation of complications of various non traumatic intra and extra temporal assessment of Temporal bone pathologies **Key Word:** HRCT; Temporal, CSOM, Cholesteatoma, Multiplanar, HPR

Date of Submission: 01-03-2020

Date of Acceptance: 16-03-2020

I. Introduction

Temporal bone is an unique bone housing the complex structures of ear, having intrinsic variable attenuation due to interspersed minute anatomical structures and pneumatization, thus giving the advantage of possibility of high resolution imaging. The temporal bone with its high inherent radiation attenuation contrast due to presence of both, most dense bone in body and air filled space, the utility of CT images with special high spatial resolution bone algorithm, gives good details.HRCT, a modification of routine CT, utilizes thin sections (0.6 to 1.5 mm) with special bone algorithm. The technique has relative low radiation dose compared to many other types of CT examinations and utility of contrast is not essential for evaluation of pathology isolated to bone / air space.The advent of multidetector CT, least pixel sized reformation, availability of wide range of HU windowing, has allowed excellent imaging evaluation of the Temporal bone pathologies.Multiplanar CT reformations can display complex anatomy in variable views using MIP and MPR reformations.

II. Material And Methods

This prospective comparative study was carried out on patients of Department of Radiodiagnosis and ENT atSubbaiah Institute of Medical sciences and Hospital , Shimoga. A total 52 adult subjects (both male and females), were part of this study

Study Design: Prospective Evaluation with Operative and HPR correlation

Study Location: This was a tertiary care teaching hospital based study done in Department of Radiodiagnosis and ENT at Subbaiah Institute of Medical sciences and Hospital, Shimoga, **Study Duration**:20months

Sample size: 52 patients.

Subjects & selection method: The study population was drawn from OPD patients presented at Department of ENT and referred for Imaging to Department of Radiodiagnosis at Subbaiah Institute of Medical Sciences Shimoga

Inclusion criteria:

- 1. Patients are examined by ENT specialists at Subbaiah Institute of Medical sciences and referred for Temporal bone imaging.
- 2. Patients to be operated (or) biopsy sampling done after evaluation by HRCT Temporal bone, except in absolute contraindications / lack of feasibility.

Exclusion criteria:

- 1. History of Trauma to the Temporal bone (side) being imaged.
- 2. Previous surgical intervention involving the side of Temporal bone being imaged.

Procedure methodology

After written informed consent was obtained, a well-designed questionnaire was used to collect the data of the recruited patients retrospectively. All the HRCT scans were performed at our institute, Department of Radiodiagnosis, Subbaiah Institute of Medical Sciences ,Shimoga, on GE Revolution ACT 16 slice Spiral CT with least slice thickness of 0.6mm.At 130 kV and 140 effective mAs, the noise level is low with better bone penetration / minimal beam hardening. At the same time better soft tissue differentiation is possible. 0.56 seconds scan time allows less probability of motion artifacts and 0.6mm slices gives best Axial and reformatted MPR images

Spiral	Inner Ear	2 nd reconstruction
kV	130	
Effective mAs	70	
Slice collimation	1mm	
Slice width	2mm	0.6mm
Feed / rotation	1.7mm	
Rotation time	1.5mm	
Kernel	H 90s.	H 90s.
Increment	1.5mm	0.8
CT D Ivol	15.94 mGy.	

The clinical cases were mandatorily correlated with HPR report, principally post operative and occasional by biopsy. Imaging conclusions, clinical diagnosis, operative findings and HPR were correlated.

Statistical analysis

All Data were expressed in percentage and Chisquare test applied wherever applicable .Data was analyzed using SPSS version 20 (SPSS Inc., Chicago, IL).. The level P < 0.05 was considered as the cutoff value or significance.

III. Result

The median of the age of presentation = 25 years.

- The arithmetic mean of age = 29.3 years considering the ungrouped data.
- The Male : Female ratio of the study sample is 3 : 2

TABLE 3 : DISTRIBUTION OF INFECTIONS OF MIDDLE EAR CLEFT

Condition	No.
Cholesteatoma	19
Suppurative Oto - Mastoiditis	
i) Chronic inflammatory granulation	14
11) Cholesterol granuloma	02

TABLE 4: AGE / SEX DISTRIBUTION OF CHOLESTEATOMA.

Age	Male	Female	Total	Percentage
				(%)
0-10	4	1	5	26.3
11-20	2	2	4	21
21-30	1	1	2	10.5
31-40	2	3	5	26.3
41-50	0	2	2	10.5
51-60	1	0	1	5.2
61-70	0	0	0	00
71-80	0	0	0	00
Total : -	10	9	19	
%	52.6	47.4		

TABLE 6 :SEX DISTRIBUTION OF SPECIFIC NEOPLASMS.

	MALE	FEMALE	TOTAL	%
Osteoma	0	2	2	25
FIBROUS DYSPALSIA	1	0	1	12.5
SquamousCell Carcinoma	1	1	2	25
Chondrosarcoma	0	1	1	12.5
Ac. Schwannoma	1	0	1	12.5
Jugular fossa paraganglioma	0	1	1	12.5
Total	3	5	8	
%	37.5	62.5		

TABLE 7: GROSS AGE/SEX DISTRIBUTION OF NEOPLASM.

Age	Male	Female	Total	Percentage
				(%)
0-10	0	0	0	00
11-20	0	0	0	0
21-30	1	2	3	37.5
31-40	2	2	4	50
41-50	0	0	0	0
51-60	0	0	0	0
61-70	0	0	0	0
71-80	0	1	1	12.5
Total : -	3	5	8	
%	37.5	62.5		

TABLE 8 : AGE / SEX DISTRIBUTION OF CONGENITAL ANAMOLIES OF TEMPORAL BONE

	MALE						FEMALE					%
Pinn	na / EAC	/ ME		Inner Ear Pinna / EAC / ME Inner Ear								
Rt.	Lt.	Bil	Rt.	Lt.	Bil	Rt.	Lt.	Bil	Rt.	Lt.	Bil	
1							2					33.3

1					1		1			1	66.6	
	2			0	3 1		1					
		3	3.3				66.7		1			

TABLE 9 : DISTRIBUTION OF FEATURES OF EXTERNAL / MIDDLE EAR ANOMALIES.

Feature	Right	Left	Bilateral
Pinna	- Acrotia / dysmorphic3	0	1
	- Normal0	0	0
EAC	- Dysgenetic0	0	1
	- Atretic3	0	0
Middle ear	- Dysgenetic3	0	1
	- Normal0	0	0
Ossicles	- Dysmorphic3	0	1
	- Absent0	0	0
Oval Window	- Atretic0	0	1
	- Normal3	0	0
Facial Nerve course	- Aberrant1	0	1
	- Normal2	0	0
Inner ear	- Normal3	0	1
	- Abnormal0	0	0
Total :	3	0	1

LEFT PETROSITIS WITH CORTICAL EROSION, AND MASTOID PRE & POST AURICULAR ABSCSS

CHOLESTEATOMA WITH INTRA & EXTRA-TEMPORAL COMPLICATIONS

AUTOMASTOIDECTOMY

V. Discussion

HRCT Temporal bone in the present study has given excellent topographic visualization of anatomy and pathology with accurate assessment of pathology prior to surgical exploration, regarding the location, extent and complications of the disease. Broadly 4 categories of patients were part of this study –**Infections** : The most common 38/52 cases (including one case with associated congenital anomaly. **Tumours** : The 2nd most common category with 8/52 cases.**Congenital anomalies** – 6 cases (including one case with infection)Miscellaneous – **Osteopetrosis** (1 case). The age group with maximum presentation was 11-20 years (9/28 = 23.7%) which was comparable with Gupta et al, study of 1998 (30%)The Male : Female ratio 26/12 = 2.1 : 1 is comparable with Loyld et al and Paparella et al, study (2.4 : 1 & 2.3 : 1 respectively) Application of X2 Test for studying the relation between Sex (vs) Infection reveals X2 = 4.414. D.F. = 1, P=0.05.The Calculated Chisquare value is greater than Tab X2 at DF = 1, P=005 : Hence significant.

Important role of HRCT in temporal bone infections are,

Assessment of middle ear cleft 18 abnormality, as it is an unified cleft, which is always abnormal in infections. The spread of infection through nasopharynx, eustachian tube and overall infective process noted in this anatomical unit as a whole, is worthy to be noted.

The infective process then ,needs to be differentiated into aggressive

(cholesteatoma) or non aggressive (CSOM)

11 POINT CRITERIA APPLIED FOR SPECIFICITY EVALUATION OF ROLE OF HRCT TEMPORAL BONE IN EVALUATION OF CHOLESTEATOMA (VS) NON-CHOLESTEATOMA INFECTION.^{36,37}

CRITERIA	Cholesteatoma Positive / No. of cases	Non-cholesteatomatous infection Positive / No. of cases	
Middle ear cleft soft tissue	19/19	16/16	
Expansile soft tissue	18/19	1/16	
Non-dependent Soft tissue	18/19	0/16	
Loss of hour glass shape of aditus (lateral attic remodeling)	18/19	0/16	
Scutum erosion	18/19	1/16	
Cog erosion.	12/18	0/16	
Ossicle erosion			
Malleus	E- 10/19	E - 2/16 incus	
Incus	E-16/19. 2-NV		
Stapes	E - 14/19		

Incudo stapedial junction	NV-7-19. E-8/19	
Tegmen tympani/mastoidicum		
Thinned	4-19	0/16
Dehiscent	2/19	
Lateral semicircular canal bony	5/19	0/16
dehiscence		
Facial bony dehiscence	6/19	1/16
Medial / lateral displaced ossicles	11/15	0/16

E – EROSION , NV – NOT VISUALISED ,

There is a clear picture in the above table,

Pathological middle ear cleft 18(mastoid air cells, antrum, aditus, epitympanum, rest of middle ear and Eustachian tube) was evident in both conditions.

The soft tissue opacity was expansile , causing scalloped margins in 94.7% of cholest eatoma and only 6.25 $\%\,$ in CSOM. and ,

Non dependent nature of Soft tissue. Loss of Hour glass shape (lateral attic remodeling). Scutum erosion.Ossicular erosion in upto 52 to 84% (malleus and incus respectively).Labyrinthine fistula Facial bony canal dehiscence.Ossicular displacement---Constituted hallmarks of cholesteatoma

Keratosis obturans, Auto mastoidectomy, Malignant otitis externa constituted part of the infection spectrum.

FEATURES OF A CASE OF KERATOSIS OBTURANS.

Age	Sex	C/F		ST in ME	-	Expansion	Ossicles	EAC	EAC
				Cleft	-	Hour glass loss		ST	В.
					-	Bony erosion			erosions
20	F	- - -	Otalgia HOH Tinnitus. ED	+	-ve		Incus erosion.	+ with atresia	+

ED – Ear discharge HOH –Hard of hearing ST –soft tissue

Auto mastoidectomy case showed,

- a) Common cavity connecting the external auditory canal, middle ear and the mastoid noted
- b) Rind of non dependent soft tissue lining the cavity
- c) Absence of ossicular chain indicating complete erosion.
- d) 2 cases showing labyrinthine fistula, explaining the tinnitus and vertigo in these patients.
- e) No intracranial complications.

FEATURES OF A CASE OF MALIGNANT OTITIS EXTERNA.

Age	Sex	C/F		ST in	-	Expansion	Ossicles	EAC	EAC
-				ME	-	Hour glass loss		ST	Bony
				Cleft	-	Bony erosion			erosions
65	М	-	ED	+	-ve		Ι	- ST	+
		-	Otalgia						
		-	FP						
		ST swell	ing						

ED -Ear discharge FP -Facial palsy ST -soft tissue

Diagnosis by HPR – Malignant Otitis extension.¹⁶

CONGENITAL INNER EAR ANOMALIES NOTED IN THE CASE.

Role of HRCT Multiplanar Temporal bone Non-traumatic lesions of Temporal bone, Comparative ...

	Right	Left
Cochlea		
- Modiolus	Absent	Absent
- Turns	Reduced	Reduced
- Apex	Absent	Absent
- Size	Large	Large
Cochlear duct	0.9 mm	1.5 mm
Vestibule	Large	Large
Vestibular duct	1.8mm	0.7mm
IAC	Ν	Ν
Middle ear	Ν	Ν
Facial nerve course	Ν	N
Oval window	N	N

FEATURES CASES OF SQUAMOUS CELL CARCINOMA.

Age / Sex	Side	Bone erosion	Involved portions	Clinical presentation
35 years /	Left	- Permeative +	- EAC	 Facial palsy
Male		- Ossicles +	 Middle ear 	 Ear discharge
		 Bony facial canal + 	- Mastoid	- Otalgia
		-	- Infratemporal	 Parotid swelling
			fossa	 Loss of hearing
			 Parotid space 	_
			- Superficial	
			Masticator space	
			_	
40 years /	Left	- Permeative +	- EAC	 Facial palsy
Female		- Ossicles +	 Middle ear. 	 Ear discharge
		- Bony facial canal +	- Mastoid	- Otalgia
		-	- Infratemporal	 Parotid swelling
			fossa	 Loss of hearing
			 Parotid space 	_
			- Superficial	
			Masticator space	

Case of Acousticneuroma, Fibrous Dysplasia, Osteoma, Jugulo tympanicum type para ganglioma were part of the study with imaging features, operative correlation and HPR correlating with 100% accuracy

VI. Conclusion

HRCT TEMPORAL BONE outweighs the conventional modalities of investigations and provides higher spatial resolution and better tissue contrast, allowing high sensitivity of pathology pick up and good specificity of diagnosis with the protocol application as used in our study.

References

- [1]. Schinder E Arthur - Pioneer of neuroradiology, AJNR AMJ Neuroradiology 1997;18: 1297 -1302
- [2]. Mayer EG :Technique of Roentgenological examination of temporal bone, Radiology 1926, 7:306-317
- [3]. Stenvers HW -Roentgenology Temporal bone, 1928 Radiology.
- [4]. Ziedses Des Plantes B eineneue method zurdifferenzieurang in der roentgenographe ,ActzRadiol 1932 : 13 : 182-191
- Valvassori GE Laminography of ear Normal Roentgenicanatomy, AJR 1963 89 : 1155-1167 [5].
- VignandJ, Francois et al, temporal, fossa nasals, cavities accessories tome 17-1, in : fischgold ed, traite de Radiodiagnostic, [6]. paris, France masson, 1974
- Nadol JB Henneberts sign in Menieres disease, ARC Otolaryngol 1977, 103: 524 -530 [7].
- [8]. Watson SR et al. vestibular hypersensitivity to sound (Tullio phenomenon), structural and functional assessment . Neurology 2000 : 722-728
- [9]. Cremer et al.- Eye movements in patients with Superior Semicircular canal dehiscence syndrome align with abnormal canal. Neurology 2000 ; 55: 1833-1841
- [10].
- Katherine Shaffer :" CT of Temporal bone ",Radiographics, Aug 1981 volume 1 number 2 Robert Lufkin et al.- Comparision of CT and Pleuridirectional tomography of temporal bone ,Radiology 1982 , June 143 : 715-718 [11].
- [12]. Franz zonneveld et al September 1983 ,Radiographics volume3 number 2
- Dexter Johnson et al. 1983 september radiology 148 : 733-737 [13].
- William WM et al. "Cholesterol granuloma of petrous apex "CT diagnosis Radiology 1984 153 : 705 -711 [14].
- Donald chakeres et al. Paragangliomas of Temporal bone HRCT Radiology 150 : 749 -753 [15].
- Donald chakeres et al Soft tissue abnormalities of EAC ,Radiology 1985 :156 : 105 -109 [16].
- Joel swartz et al . Labyrinthine ossificans Etiology and CT findings, Radiology 1985, 157: 395 398 [17].
- Mahood et al . Acute otomastoiditis and its complications -Role of CT, Radiology 1985 : 155 : 391-397 [18].
- [19]. Joel swartz et al . Congenital malformations - Congenital deafness , 1986 , Radiology 159 : 187-190
- [20].
- Joel swartz et al , Acquired ossicular erosions in dry ear CT diagnosis, 1987 Radiology 163 : 763-765 Mahmood et al. Direct sagittal CT in evaluation of temporal bone , June 1988, AJR 0361 803 X /88/1506-1403 [21].

- [22]. Howard et al- Temporal bone -3D CT pathological alteration , Radiology 1990 ,177 :427-430
- Tatsuo et al -HRCT Temporal bone," modified baseline", Radiology 1992 184 -109 : 111 [23].
- [24]. Robert et al, Congenital cholesteatoma of temporal bone, AJNR April 16:755-761
- [25].
- Weissman et al ". Hearing loss ",Radiology 1994, 199 : 593-611 Lisa et al. "SNHL in children ",Radiographics 1997, 17 : 1079 -1093 [26].
- [27]. Arastoo et al. Osseous labyrinth , Role of CT , Applied radiology 2003 jan
- [28]. Caldemeyer et al - Jugular fossa, A review of anatomy of jugular fossa mass and imaging characteristics. Radiographics1997 17: 1123-1134
- [29]. Archana Rao et al - Paraganglioma of Head and Neck , Radio - pathological correlation , Radiographics 1999, 19: 1605-1632
- [30]. Lemmerling et al . - Appearance of stapes , ISJ - Normal and opacified ear , 1997 , 203 : 251-256
- Lemmerling et al Normal Modiolus, CT appearance in patients with large vestibular acquiduct ,1997, 204: 213-219 [31].
- Timothy et al- Imaging and clinical evaluation of isolated atresia of oval window , 1999 Jane weissman et al. " Imaging of tinnitus ", Radiology 2002 . 225 : 852-858 [32].
- [33].
- [34]. Hideki et al.-Facial canal anatomy in patients with microtia - Evaluation of temporal bone with HRCT. Radiology 2003, 225: 852-858
- Shin ichi et al. "Correlation between microtia and temporal malformations using grading system", April 2005, 131: 326 [35].
- [36]. Yates et al ." CT scanning of middle ear ", What does the surgeon want to know "BJR 2002, 75: 847-852
- [37]. Joselito et al ." 64 patients with cholesteatoma ", Ann Saudi Med dec 2004 24 (6)
- Hugh Curtin et al SSC dehiscence syndrome and Multidetector row CT, 2003 Radiology 226, 312:314 [38].
- [39]. Clifford et al. "SSC dehiscence", 2003 Radiology 226 - 337 -343
- [40]. Elide et al. " Acute Mastoiditis in children ', Radiographics 2003 23 :359 -372
- [41]. Chan et al. Role of "HRCT in facial palsy from temporal bone lesions ", review article annacad med ,Singapore 2005 34:322-29
- [42]. Lorenz et al. CT of normal temporal bone - comparision of multi and single row detector CT ,2005 Radiology 235 : 133-147
- Girish et al Role of 3D CT in evaluation of temporal diseases ,Radiographics 2006, 26: S 117 132. [43].
- [44]. John lene et al . Middle ear and inner ear , improved depiction of multiplanar reconstruction of the volumetric data , Radiographics 2006 20 : 115 - 124
- Sadoghi et al . "Validity of CT In complicated chronic otitis media", Iran journal of radiology spring 2007 [45].
- [46]. Virapsonge et al.' Computed tomography in temporal bone pneumatization ", AJNR july -aug 1985 : 6:551-559

Dr Bharat MP, etal. "Role of HRCT Multiplanar Temporal bone Non-traumatic lesions of Temporal bone, Comparative analysis with post-operative findings and histopathology report, wherever applicable." IOSR Journal of Dental and Medical Sciences (IOSR-JDMS), 19(3), 2020, pp. 11-22. _____