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Abstract: 
Gemcitabine is a nucleoside analogue prodrug used as a monotherapy or in combined therapies against various 

types of cancer. The hydrophilic property of the gemcitabine molecule means that it cannot easily cross the 

hydrophobic lipid layer of cell membranes, so it requires nucleoside transport proteins for it to be taken up into 

cancer cells. The active phosphorylated metabolites of gemcitabine ultimately block DNA synthesis and lead to 

apoptosis. Unfortunately, the efficacy of gemcitabine is limited by its enzymatic deamination, fast systemic 

clearance and the rapid development of chemoresistance. The side effects of gemcitabine on non-cancer cells and 

the development of chemoresistance can be minimised by using chemically modified and targeted forms of 

gemcitabine, including a theranostics approach. To diagnose cancers and to monitor the efficacy and side-effects 

of gemcitabine-based chemotherapies it is important to have accurate and reliable methods that visualise and 

measure the cellular uptake and distribution of gemcitabine and its metabolites, and their effects on tumour 

proliferation. The most robust approach is to combine the strengths of different imaging techniques to provide 

complementary anatomical and molecular information, and therefore a more holistic picture of the cancer being 

investigated. In so-called “multimodal imaging” two or more imaging modalities are used in combination to 

achieve this, which may include molecular imaging (e.g. autoradiography, positron emission tomography/PET), 

structural imaging (e.g. computed tomography/CT, magnetic resonance imaging/MRI), microscopy (e.g. electron 

microscopy/EM) and spectroscopy (e.g. nuclear magnetic resonance/NMR spectroscopy) techniques. 
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I. Introduction 
Gemcitabine (2',2'-difluoro-2'-deoxycytidine) (1) (Figure 1) is a fluorinated nucleoside analogue drug 

used in the treatment of various types of cancer (Toschi et al., 2005; Gesto et al., 2012; Cavaliere et al., 2017) [1-
3]. Gemcitabine was initially investigated as an antiviral drug, but preclinical testing showed that it inhibited 
growth of human leukemia cells (Hertel et al., 1990) [4]. Under the trade name Gemzar, gemcitabine was 
approved for treating pancreatic cancer in the UK in 1995 and by the USA Food and Drug Administration (FDA) 
in 1996 (https://web.archive.org/web/20170710202604/https://www.medicines.org.uk/emc/medicine/596; 
Barton-Burke, 1999) [5]. Gemcitabine is widely used as a monotherapy or in a combined therapy against various 
solid tumours including pancreatic cancer (King, 1996; Huang et al., 2024; Ren et al., 2024; Li et al., 2025; Sara 
et al., 2025) [6-10], breast cancer (Vernieri et al., 2019; Pattarawat et al., 2021; Yamamoto et al., 2021; Wang 
and Zhu, 2024) [11-14], ovarian cancer (Yuan and Peng, 2017; Berg et al., 2019; Bhattacharya et al., 2022; Kase 
et al., 2023) [15-18], non-small-cell lung cancer (Ma et al., 2017; Duan et al., 2018; Esim et al., 2020; Zhu et al., 
2022) [19-22], and non-muscle invasive and muscle invasive bladder cancer (Kobayashi et al., 2022; Öztürk and 
Karapolat, 2023; Wang et al., 2023; Hattori et al., 2024) [23-26]. Gemcitabine often serves a palliative role in 
advanced disease, with an aim to prolong survival and improve quality of life rather than provide a cure. For 
example, gemcitabine-based chemotherapies have become the prominent methods of care for metastatic 
pancreatic cancer (Burris et al., 2023; Zhang et al., 2022; Sezgin et al., 2025; Wang et al., 2025) [27-30]. 
Unfortunately, the efficacy of gemcitabine in treating cancers has been limited by its enzymatic deamination, fast 
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systemic clearance and the rapid development of chemoresistance (Sarvepalli et al., 2019; Koltai et al., 2022) [31, 
32]. These factors increase the concentration of gemcitabine that must be administered to have the desired effect 
on cancer cells but also increase the toxic effects on non-cancer cells, leading to more serious and intolerable side 
effects. To overcome this, there has been development of various chemically modified forms of gemcitabine and 
gemcitabine prodrugs that have increased cell uptake, extended plasma stability and enhanced anticancer 
activities compared to gemcitabine (Moysan et al., 2013; Miao et al., 2020; Han et al., 2022; Pandit and Royzen, 
2022; Zhang et al., 2023; Kaliya et al., 2025) [33-38]. 

 

 
Figure 1: Chemical structure of gemcitabine (2',2'-difluoro-2'-deoxycytidine) (1). Shown as a line structure 

(left) and a ball and stick structure (right). Red = oxygen atoms, Blue = nitrogen atoms, Green = fluorine atoms. 
 
To monitor the efficacy and side-effects of gemcitabine-based chemotherapies it is important to have 

accurate and reliable methods to visualise and measure the cellular uptake and distribution of gemcitabine and its 
metabolites, and their effects on tumour proliferation. The most robust approach to achieving this is to combine 
the strengths of different imaging techniques to provide complementary anatomical and molecular information, 
and therefore a more holistic picture of the cancer being investigated. In so-called “multimodal imaging” two or 
more imaging modalities are used in combination to enable early detection, accurate treatment and efficacy 
evaluation of cancer progression and therapy. The different techniques used in multimodal imaging may be 
grouped as: molecular imaging [(e.g. autoradiography, positron emission tomography (PET), mass spectrometry, 
fluorescence, bioluminescence], microscopy techniques (e.g. electron microscopy, light microscopy, atomic force 
microscopy), structural imaging [e.g. computed tomography (CT), magnetic resonance imaging (MRI), 
ultrasound (US), X-ray], spectroscopy [nuclear magnetic resonance (NMR) spectroscopy, Raman spectroscopy, 
infrared (IR) spectroscopy] (Patching, 2016; Wu and Shu, 2018; Zamboglou et al., 2018; Brauckhoff and 
Biermann, 2020; Tuck et al., 2021; Tuck et al., 2022; Zeng et al., 2022; Zhang et al., 2022; Capobianco and 
Dominietto., 2023; Bischof et al., 2024; Wang et al., 2024; Cè et al., 2025; Lee et al., 2025; Shaghaghi et al., 
2025; Tiwari et al., 2025; Varma et al., 2025; Wang et al., 2025) [39-55]. 

This article first considers the chemical properties and structure of gemcitabine, and how it requires 
transport proteins for it to be taken up into cancer cells. The metabolism and mode of action of gemcitabine are 
then considered, along with mechanisms that lead to chemoresistance. The use of gemcitabine prodrugs and 
methods of targeted delivery for improving efficacy and overcoming chemoresistance are then considered, before 
finally looking at methods that have been used to analyse the cellular uptake and distribution of gemcitabine, and 
its effects on cancer cells, especially using a multimodal imaging approach. 

 
II. Gemcitabine Chemical Synthesis And Structure 

Gemcitabine is comprised of a cytosine base and a 2,2-difluoro-2-deoxy-ribose sugar. The main 
challenges to overcome for its chemical synthesis are introduction of the fluorine atoms and stereocontrolled 
coupling of the fluorinated sugar with cytosine. The original synthesis of gemcitabine was devised by Lilly 
Research Laboratories, and was first published in 1988 (Hertel et al., 1988) [56]. The synthesis (Figure 2) involved 
coupling (R)-2,3-O-isopropylideneglyceraldehyde (2) with ethyl bromodifluoroacetate using Reformatkii 
conditions to give the required carbon skeleton for the carbohydrate in a 3:1 anti/syn diastereomeric mixture (3). 
The required anti diastereomer was separated by HPLC in 65% yield. Hydrolytic removal of blocking groups 
with concomitant ring closure to give the -lactone (4) was followed by protection of hydroxyl groups as tert-
butyldimethylsilyl (TBDMS) ethers and reduction to the lactol (6), thus forming the fluorinated sugar. The sugar 
was functionalised with a mesylate leaving group at the anomeric position followed by its displacement with 
silylated cytosine and then removal of protecting groups to give gemcitabine (1) in a 4:1 α/β diastereomeric 
mixture. The required β diasteromer was isolated by HPLC (Hertel et al., 1988) [56]. In this synthetic procedure 
the steps coupling the fluorinated sugar and base produced only a 10% yield of gemcitabine (β diasteromer). For 
a comprehensive discussion on different synthetic approaches to gemcitabine, especially for improving efficiency 
and scalability, see the review by Brown et al. (2014) [57]. 
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Figure 2: Chemical synthesis of gemcitabine. This figure was reproduced from Brown et al. (2014) [57]. 

 
Analysis of the structure conformation of gemcitabine using 2D solution-state NMR and density 

functional theory (DFT) identified three stable conformers (G1, G2, G3) (Figure 3). The most stable conformer 
was G1 due to carbonyl group orientation associated with both oxygen and fluorine in a sugar ring. In G1 space 
repulsion energy that provides conditions for intramolecular interactions is minimised (Chashmniam and 
Tafazzoli, 2018) [58]. 

 

 
Figure 3: Molecular structure of gemcitabine conformers in aqueous solution. G1 is the most stable conformer 
due to its intramolecular interaction. This figure was reproduced from Chashmniam and Tafazzoli (2018) [58]. 

 
III. Gemcitabine Uptake Into Cancer Cells Via Nucleoside Transporters 

Like natural nucleosides gemcitabine is a hydrophilic molecule that cannot easily cross the hydrophobic 
lipid layer of cell membranes without the assistance of transport proteins. The uptake of gemcitabine into cancer 
cells is mediated by two structurally and functionally distinct protein families, concentrative nucleoside 
transporters (CNTs) and equilibrative nucleoside transporters (ENTs), that have different substrate specificities 
and mechanisms of action (Mackey et al., 1998; Mackey et al., 1999; Molina-Arcas et al., 2009; Young et al., 
2013; Young, 2016) [59-63]. 

The CNTs, also known as solute carrier family 28 (SLC28), have three members in humans (hCNT1, 
hCNT2, hCNT3) with lengths of 649, 658 and 691 amino acids, respectively, that each form eleven 
transmembrane-spanning α-helices (Gray et al., 2004; Pastor-Anglada et al., 2008; Molina-Arcas et al., 2009; 
Young et al., 2013; Young, 2016; Zhou et al., 2020) [61-63, 64-66] (Figure 4). Human CNTs catalyse the uptake 
of natural nucleosides and nucleoside analogues into cells against their concentration gradient in a symport 
manner driven by sodium ions that move down their concentration gradient in the same direction, i.e. Sodium 
ions(out) + Nucleosides(out) → Sodium ions(in) + Nucleosides(in). The stoichiometry of sodium ions: 
nucleosides is 1:1 for hCNT1 and hCNT2 and 2:1 for hCNT3, and hCNT3 is also able to couple the transport of 
uridine to the uptake of protons (Smith et al., 2007) [67]. hCNT1 is generally pyrimidine specific (cit-type) but 
also transports the purine nucleoside adenosine, hCNT2 is generally purine specific (cif-type) but also transports 
the pyrimidine nucleoside uridine, and hCNT3 has broad specificity (cib-type) (Loewen et al., 1999; Lostao et 
al., 2000; Ritzel et al., 2001) [68-70]. CNT family proteins are also found in prokaryotes, the best characterised 
being proton-coupled NupC from Escherichia coli and other bacterial homologues (Craig et al., 1994; Loewen et 
al., 2004; Patching et al., 2005; Johnson et al., 2012; Sun and Patching, 2023) [71-75]. 

The ENTs, also known as solute carrier family 29 (SLC29), have four members in humans (hENT1, 
hENT2, hENT3, hENT4) with lengths of 456, 456, 475 and 530 amino acids, respectively, that form eleven 
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(hENT1-3) or ten (hENT4) putative transmembrane-spanning α-helices (Baldwin et al., 2004; Young et al., 2008; 
Molina-Arcas et al., 2009; Young et al., 2013; Boswell-Casteel and Hays, 2017; Wright and Lee, 2019) [61, 62, 
76-79] (Figure 4). Human ENTs catalyse the bidirectional transport of natural nucleosides and nucleoside 
analogues across cell membranes down their concentration gradient (facilitated diffusion), i.e. Nucleosides(out) 
 Nucleosides(in). hENT1 and hENT2 transport both purine and pyrimidine nucleosides and hENT2 also 
efficiently transports nucleobases. hENT3 has broad transport selectivity for nucleosides and nucleobases and 
functions in both cell membranes and intracellular membranes (Baldwin et al., 2004; Young et al., 2008) [61, 62]. 
hENT4 is uniquely selective for adenosine and transports different organic cations, hence it is also known as a 
plasma membrane monoamine transporter (hPMAT) (Engel and Wang, 2005; Saidijam et al., 2018) [80, 81]. 
ENTs are restricted to eukaryotes, with none found in prokaryotes. 

 

 
Figure 4: Uptake of nucleosides and nucleoside analogues into cells by concentrative nucleoside transporters 
(CNTs) and equilibrative nucleoside transporters (ENTs). The sodium ion gradient driven CNTs are illustrated 
by the cryoEM structure of hCNT3 (protomer shown) determined at 3.60 Å resolution (PDB 6KSW) (Zhou et 

al., 2020) [66]. The ENTs that function through facilitated diffusion are illustrated by the X-ray crystal structure 
of hENT1 determined at 2.90 Å resolution (PDB 6OB6) (Wright and Lee, 2019) [79]. The horizontal black lines 
represent the cell membrane. The structure of hCNT3 was reproduced from Zhou et al. (2020), and the structure 

of hENT1 was reproduced from Wright and Lee (2019). 
 
The human nucleoside transporters for which gemcitabine is a substrate have been experimentally 

identified by transport measurements on the proteins expressed in Xenopus laevis oocytes. Gemcitabine is 
transported into cells with high affinity by hCNT1 (Km = 17-24 µM) (Mackey et al., 1998; Mackey et al., 1999; 
Lostao et al., 2000) [59, 60, 69] and by hCNT3 (Ritzel et al., 2001) [70]. Gemcitabine is transported with lower 
affinity by hENT1 and hENT2 (Km = 160 µM and 740 µM, respectively) (Mackey et al., 1999) [60]. Transport 
of gemcitabine into cancer cells is mainly mediated by hENT1 and to a much lesser extent by hCNT1, hCNT2 
and hENT3 due to differing levels of protein expression (García-Manteiga et al., 2003; Zhang et al., 2007; 
Lemstrová et al., 2014; Hioki et al., 2018; Carter et al., 2021; Wu et al., 2021) [82-87]. For example, in pancreatic 
tumour cells, hENT1 is expressed at high levels, whilst hCNT1 and hCNT3 are present only at negligible or low 
functional levels (Garcia-Manteiga et al., 2003) [82]. 

Decreased gemcitabine uptake into cancer cells can be caused by low expression of nucleoside 
transporters and represents a principal mechanism of chemoresistance to gemcitabine (Noble and Goa, 1997; Mini 
et al., 2006; Spratlin et al., 2004; Andersson et al., 2009) [88-91]. Nucleoside transporters can therefore serve as 
predictive biomarkers of gemcitabine efficacy. Indeed, many studies have demonstrated that hENT1 expression 
can be a prognostic biomarker for the response to gemcitabine treatment in patients suffering from pancreatic 
cancer (Giovannetti et al., 2006; Farrell et al., 2009; Maréchal et al., 2009; Morinaga et al., 2012; Xiao et al., 
2013; Nordh et al., 2014; Zhu et al., 2014; Randazzo et al., 2020; Perera et al., 2022; Xiao et al., 2024) [92-101] 
and other types of cancer (Matsumura et al., 2011; Borbath et al., 2012; Vincenzi et al., 2017; Kim et al., 2018; 
Vos et al., 2019; Attia et al., 2020) [102-107]. In demonstrations of the role of hENT1 in gemcitabine efficacy, 
the absence of hENT1 is associated with reduced survival in patients with gemcitabine-treated pancreas 
adenocarcinoma (Spratlin et al., 2004) [90], and adenoviral-mediated overexpression of hENT1 was able to 
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enhance gemcitabine response in human pancreatic cancer (Pérez-Torras et al., 2008) [108]. Manipulation of 
hENT1 expression was able to reverse chemoresistance to gemcitabine by inhibiting glycolysis and altering 
glucose transport mediated by HIF-1α in pancreatic cancer (Xi et al., 2020) [109]. 

hCNT1 expression was found to be reduced in pancreatic tumours compared to normal pancreatic cells 
and hCNT1-mediated [3H]-gemcitabine transport was lower in pancreatic cancer cell lines. Pharmacological 
inhibition of hCNT1 degradation was able to increase cell surface hCNT1 expression and cellular gemcitabine 
transport in a pancreatic cancer cell line, demonstrating how manipulation of hCNT1 expression could make 
resistant pancreatic tumours amenable to gemcitabine therapy (Bhutia et al., 2011) [110]. hCNT3 transfection 
with ultrasound and microbubbles in nucleoside transport deficient HEK293 cells was shown to greatly increase 
gemcitabine uptake, which could be a method to reverse gemcitabine resistance in pancreatic tumours with low 
nucleoside transport activity, and which are resistant to other anticancer therapies (Paproski et al., 2013) [111]. 

It is also worth mentioning here that proteobacteria colonising pancreatic tumours contribute to 
chemoresistance against gemcitabine by taking it up and metabolising it to a less active deaminated form (Sayin 
et al., 2023) [112]. The transporters of gemcitabine in E. coli and in two other proteobacteria (Klebsiella 

pneumoniae and Citrobacter freundii) have been identified as proton-linked NupC of the CNT family (Craig et 
al., 1994; Loewen et al., 2004; Patching et al., 2005; Johnson et al., 2012; Sun and Patching, 2023) [71-75] and 
NupG of the nucleoside-H+ symporter (NHS) family (Westh Hansen et al., 1987; Xie et al., 2004; Patching et al., 
2005; Wang et al., 2021; Patching, 2024) [113-116] with higher affinities for gemcitabine (NupG Km = 2.5-3.0 
μΜ, NupC Km = 10-13 μΜ) than human nucleoside transporters (Iosifidou et al., 2024) [117]. 

 
IV. Gemcitabine Metabolism, Mechanism Of Action And Chemoresistance 

Gemcitabine itself is a prodrug that undergoes intracellular phosphorylation to its pharmacologically 
active diphosphate and triphosphate forms, which then inhibit DNA synthesis leading to apoptosis (Figure 5). 
After uptake into cancer cells gemcitabine is phosphorylated at the 5-position by deoxycytidine kinase, and to a 
lower extent by thymidine kinase 2, to form gemcitabine monophosphate, which is then further phosphorylated 
by deoxycytidine kinase and nucleoside diphosphate kinase to gemcitabine diphosphate and gemcitabine 
triphosphate, respectively (Ruiz van Haperen et al., 1993; Plunkett et al., 1995; Mini et al., 2006; de Sousa 
Cavalcante and Monteiro, 2014) [89, 118-120]. Gemcitabine diphosphate inhibits ribonucleotide reductase, which 
catalyses the formation of the deoxynucleoside triphosphates requited for DNA synthesis. Gemcitabine 
diphosphate therefore interferes with subsequent de novo nucleotide production and reduces the overall pool of 
deoxyribonucleotides available for DNA synthesis. Gemcitabine triphosphate inhibits DNA synthesis by 
competing with the physiologic substrate, deoxycytidine triphosphate, for DNA polymerase and incorporation 
into DNA (Figure 5). 

In a mechanism known as “self-potentiation”, the reduction in intracellular concentrations of 
deoxycytidine triphosphate induced by gemcitabine diphosphate enhances the incorporation of gemcitabine 
triphosphate into DNA. After incorporation of gemcitabine triphosphate into the DNA chain, a single additional 
nucleotide with a normal base pair is added and DNA synthesis is terminated, resulting in apoptosis. In a 
mechanism known as “masked chain termination”, DNA polymerase does not recognise and repair (3′5′-
exonuclease activity) the abnormal gemcitabine-derived nucleotide in the DNA chain due to masking by the 
terminal normal base pair nucleotide (Ruiz van Haperen et al., 1993; Plunkett et al., 1995; Mini et al., 2006; de 
Sousa Cavalcante and Monteiro, 2014) [89, 118-120]. Gemcitabine triphosphate can also be incorporated into 
RNA, which therefore blocks RNA synthesis and function (Ruiz van Haperen et al., 1993) [89] (Figure 5). 

Gemcitabine is cleared through rapid and extensive inactivation by cytidine deaminase to form its 
primary metabolite 2′,2′-difluoro-2′-deoxyuridine, which is ubiquitously expressed at high levels in both plasma 
and the liver (Ciccolini et al., 2016) [121]. Phosphorylated forms of dFdU can contribute to the cytotoxicity of 
gemcitabine (Veltkamp et al., 2008) [122], and dFdU is removed from the cell by ABC transporters, which 
provide one of the mechanisms of chemoresistance to gemcitabine (Rudin et al., 2011; Fukuda and Schuetz, 2012; 
Ohmine et al., 2012; Kohan and Boroujerdi, 2015; Toledo et al., 2023) [123-127] (Figure 5). Gemcitabine inhibits 
CTP synthase that converts uridine triphosphate (UTP) to cytidine triphosphate (CTP), a process that is essential 
for the synthesis of DNA and RNA. Here gemcitabine triphosphate competes with UTP for binding to CTP 
synthase, which results in a depletion of cellular CTP levels (McCluskey et al., 2016) [128]. Gemcitabine can 
also inhibit thymidylate synthase through the phosphorylated form of 2′,2′-difluoro-2′-deoxyuridine, which 
enhances the mis-incorporation of 2′-deoxyuridine into DNA, causing indirect damage (Honeywell et al., 2015) 
[129]. So, in addition to direct blocking of the DNA and RNA chains, the metabolites of gemcitabine exert a 
multi-pronged inhibition on different aspects of DNA and RNA synthesis and function (Figure 5). 
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Figure 5: Uptake, metabolism and mechanism of action of gemcitabine. Gemcitabine (dFdC) enters cancer 

cells through concentrative nucleoside transporters (CNTs) and equilibrative nucleoside transporters (ENTs). 
Metabolites: dFdCMP = gemcitabine monophosphate, dFdCDP = gemcitabine diphosphate, dFdCTP = 

gemcitabine triphosphate, dFdU = 2',2'-difluoro-2'-deoxyuridine, dFdUMP = 2',2'-difluoro-2'-deoxyuridine-5'-
monophosphate. Enzymes: dCK = deoxycytidine kinase, TK2 = thymidine kinase 2, 5'-NT = 5'-nucleotidase, 

NDK = nucleoside diphosphate kinase, dCDA = deoxycytidine deaminase, dCMPDA = deoxycytidine 
monophosphate deaminase. dFdU is removed from the cell by ABC efflux transporters. Places of inhibitory 

effects are coloured red. 
 
Chemoresistance to gemcitabine may be intrinsic or acquired and developed through several different 

mechanisms. The uptake of gemcitabine into cancer cells can be reduced by downregulation of nucleoside 
transporter expression and its expulsion from the cell can be increased by higher expression of ABC transporters. 
The activity of gemcitabine can be decreased by downregulation of deoxycytidine kinase expression, and the 
detoxification of gemcitabine can be increased by overexpression of ribonucleotide reductase, which will increase 
the cellular concentration of the natural nucleotide competing for incorporation into DNA. There may also be 
deactivation of the apoptosis pathway, enhancement of DNA repair mechanisms, activation of cancer stem cells 
or activation of the epithelial-to-mesenchymal transition pathway (de Sousa Cavalcante and Monteiro, 2014; Jia 
and Xie, 2015; Amrutkar and Gladhaug, 2017; Buyuk et al., 2021) [120, 130-132]. For more details about the 
mechanisms of resistance to gemcitabine, see reviews by Sarvepalli et al. (2019) [31] and Koltai et al. (2022) 
[32]. 

 
V. Gemcitabine Prodrugs And Targeted Delivery 

The efficacy of gemcitabine in treating cancers has been limited by its enzymatic deamination, fast 
systemic clearance and the rapid development of chemoresistance. Indeed, most of the gemcitabine administered 
by injection (>90%) is rapidly deaminated by cytidine deaminase and ultimately excreted in the urine as 2′,2′-
difluoro-2′-deoxyuridine (Ciccolini et al., 2016) [121]. High levels of cytidine deaminase therefore lead to very 
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fast inactivation and drug resistance. Gemcitabine is rapidly cleared from the plasma (half-life = 5-20 minutes), 
such that 75% is metabolised and excreted in the urine in the first 24 hours (Peters et al., 2007) [133]. These 
factors increase the concentration of gemcitabine that must be administered to have the desired effect on cancer 
cells but also increase the toxic effects on non-cancer cells, leading to more serious and intolerable side effects. 

Increasing the stability of the drug and using a more efficient and targeted strategy for drug delivery will 
reduce the concentration that needs to be administered, which will minimise damage to normal cells and thus 
reduce side effects. Most strategies avoid dependence on nucleoside transporters for gemcitabine uptake. These 
include making the drug more lipid soluble, enabling it to cross the cell membrane more easily by passive 
diffusion or modifying the drug so that it enters the cell by endocytosis or by targeting other types of transport 
protein. 

Various chemically modified forms gemcitabine and gemcitabine prodrugs have been developed that 
have increased cell uptake, extended plasma stability and enhanced anticancer activities compared to gemcitabine 
(Moysan et al., 2013; Miao et al., 2020; Han et al., 2022; Pandit and Royzen, 2022; Zhang et al., 2023; Kaliya et 
al., 2025) [33-38]. Many of these strategies involve conjugation of gemcitabine to other molecules for improved 
lipophilicity and stability and/or to target specific receptor or transporter proteins on cancer cells. Conjugated 
forms of gemcitabine include covalent coupling of the N(4)-amino group to conjugated linoleic acid (Tao et al., 
2012) [134], gemcitabine-coumarin-biotin conjugates used as a prodrug (Maiti et al., 2013) [135], and 
monophosphate ester prodrugs of gemcitabine (Qi et al., 2016) [136]. Gemcitabine was conjugated to an EphA2 
targeting agent for EphA2 receptor-targeted delivery (Quinn et al., 2016) [137] and to a protein tyrosine kinase 7 
aptamer utilising the macropinocytosis pathway (Xiang et al., 2022) [138]. A gemcitabine-threonine amide 
prodrug was used to target amino acid transporter LAT-1 (Hong et al., 2018) [139] and a glucose-gemcitabine 
glycoconjugate prodrug was developed to target uptake via glucose transporters (Porter et al., 2024) [140]. Orally 
administrable gemcitabine prodrugs conjugated to D-enantiomer amino acids (5'-D-valyl-gemcitabine and 5'-D-
phenylalanyl-gemcitabine) had enhanced membrane permeability and enzymatic stability (Tsume et al., 2014) 
[141]. Gemcitabine-vitamin E conjugates have been investigated as prodrugs, including encapsulation in 
nanocapsules, nanoemulsions and micelles for improved delivery of gemcitabine into cancer cells (Fang et al., 
2015; Abu-Fayyad et al., 2017; Daifuku et al., 2018; Pereira-Silva et al., 2024) [142-145]. 

The epidermal growth factor receptor (EGFR) is overexpressed in various types of tumours, including 
pancreatic cancer cells, so different strategies have been developed for targeting gemcitabine conjugates to EFGR. 
These include EGFR targeted delivery of gemcitabine conjugated to cetuximab nanoparticles (Patra et al., 2008) 
[146], EGFR-targeted delivery of gemcitabine to pancreatic cancer cells using a nuclease resistant RNA aptamer 
(Ray et al., 2012) [147], and gemcitabine-containing nanoparticles consisting of poly(lactide)-co-glycolide-
polyethylene glycol conjugated with the EGFR-specific monoclonal antibody at the surface (Aggarwal et al., 
2013) [148]. Gemcitabine-loaded cetuximab surface modified poly(lactic) acid nanoparticles were targeted to 
EGFR in non-small cell lung cancer (Wang and Zhou, 2015) [149], and polymeric mixed micelles carrying 
gemcitabine were targeted to EGFR for treating pancreatic cancer (Mondal et al., 2016) [150]. The surface 
adhesion receptor CD44 is highly expressed in many cancers, for which the main ligand is hyaluronic acid 
(Senbanjo and Chellaiah, 2017; Chen et al., 2018) [151, 152]. CD44 was targeted by nanocarriers consisting of 
poly (l-lysine)-carboxylate and hyaluronic acid-conjugated gemcitabine as a prodrug and used along with 
paclitaxel against biliary cancer (Noh et al., 2015) [153]. Gemcitabine was also delivered using the lipophilic 
prodrug 4-(N)-lauroyl-gemcitabine encapsulated in hyaluronic acid-coated liposomes that targeted CD44 
(Arpicco et al., 2013; Dalla Pozza et al., 2013; Tang et al., 2019) [154-156]. 

Different types of nanoparticles have been developed for delivering gemcitabine to cancer cells (Habib 
et al., 2021; Li et al., 2025) [157, 158]. These include, folate-chitosan-gemcitabine core-shell nanoparticles 
against pancreatic cancer (Xu et al., 2013; Zhou et al., 2013) [159, 160], gemcitabine conjugated to bovine serum 
albumin nanoparticles (Kushwah et al., 2017) [161], gemcitabine-functionalised Fe₃O₄ magnetite nanoparticles 
(Popescu et al., 2017) [162], gemcitabine-containing αvβ3 integrin-targeting lipid nanoparticles against breast 
cancer (Tunki et al., 2022) [163], and gemcitabine monophosphate-loaded inorganic-organic hybrid nanoparticles 
([ZrO]2+ [GMP]2-) (Ischyropoulou et al., 2023) [164]. Several studies have investigated squalene-gemcitabine 
prodrug nanoparticles for gemcitabine delivery and demonstrated increased cell uptake and improved anticancer 
efficiency (Ambike et al., 2011; Bildstein et al., 2011; Gupta et al., 2013; Bui et al., 2014; Maksimenko et al., 
2015) [165-169]. Gemcitabine delivery to cancer cells has also been explored using micelles (Karaca et al., 2016; 
Zang et al., 2023; Pereira-Silva et al., 2024; Andreana et al., 2025) [145, 170-172], polymersomes (Sood et al., 
2013; Nahire et al., 2014) [173, 174], cyclodextrins (Rodriguez-Ruiz et al., 2017; Rescifina et al., 2019; Bose et 
al., 2023; Celesti et al., 2025) [175-178], and nanogels (Galmarini et al., 2010; Ma et al., 2019; Rudmianeh et al., 
2021; Yugatama et al., 2024) [179-182]. 
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VI. Multimodal Imaging Of Gemcitabine Cellular Uptake And Distribution 
The distribution of gemcitabine taken up into cancer cells can be directly visualised using 

autoradiography (Kramer et al., 2015) [183]. For example, the distribution of [14C]-gemcitabine, [14C]-5-
fluorouracil and [3H]-capecitabine in a pancreatic tumour model was visualised by autoradiography and compared 
indirectly by co-administering 1-(2'-deoxy-2'-[18F]fluoro-β-D-arabinofuranosyl)cytosine ([18F]FAC). The results 
showed an uneven tumour distribution of gemcitabine that correlated strongly with FAC, and that accumulation 
of gemcitabine and 5-fluorouracil was lower in hypoxic regions of the tumour (Figure 6) (Fanchon et al., 2020) 
[184]. Other autoradiography and transport studies measuring [14C]-gemcitabine and [18F]FAC in pancreatic 
tumour models showed that they were well co-localised, therefore demonstrating [18F]FAC to be a suitable PET 
imaging agent for following gemcitabine uptake and distribution in pancreatic tumours (Russell et al., 2017) 
[185]. 

 

 
Figure 6: Gemcitabine and FAC co-localisation. Autoradiography of [14C]-gemcitabine (A) and of [18F]FAC 
(B) in an organoid tumor section. Hematoxylin and eosin staining of that tumour section (C) and pixel to pixel 

correlation of pixel intensity between [14C]-Gemcitabine and [18F]FAC autoradiography (D). Scale bar is 5 mm. 
This figure was reproduced from Fanchon et al. (2020) [184]. 

 
A principal technique that is used for diagnosing cancers and for monitoring their progression and 

treatment is PET imaging, which visualises the uptake and metabolism of a radiotracer molecule in proliferating 
cancer cells (Patching, 2015; Saidijam et al., 2018; Rong et al., 2023; Trotter et al., 2023; Garg et al., 2025) [186-
190]. It has been known for a while that the PET tracer 3'-deoxy-3'-[18F]fluorothymidine ([18F]FLT) can predict 
gemcitabine transport and toxicity in human pancreatic cancer cell lines (Paproski et al., 2010) [191] and that the 
cellular uptake of [18F]FLT is mediated by nucleoside transporters, principally hENT1 (Ahmad et al., 2024) [192]. 
For example, [18F]FLT-PET was used to visualise the recovery of hematopoietic organs (femur, sternum, spleen) 
after chemotherapeutic treatment with gemcitabine in a mouse model (Schelhaas et al., 2016a) [193], and PET 
imaging using [18F]FLT and 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) was used to assess the proliferation of 
tumour cells and reflect changes in the tumour microenvironment, respectively, following the administration of 
gemcitabine (Zhang et al., 2016) [194]. In other PET studies, [18F]FLT was demonstrated as a predictive imaging 
biomarker of the response to gemcitabine-based treatment for recurrent ovarian cancer (Tsuyoshi et al., 2013) 
[195], and the tracers [18F]FAC and l 1-(2'-deoxy-2'-[18F]fluoro-β-l-arabinofuranosyl)-5-methylcytosine (l-
[18F]FMAC) were able to estimate the enzymatic activities of deoxycytidine kinase and cytidine deaminase in 
tumour implants in mice, which was predictive of responses to gemcitabine and clofarabine treatment in vivo (Lee 
et al., 2012) [196]. In three patient-derived xenograft models grown in the flanks of NSG mice, there was a 
significant correlation between tumour and muscle uptake of [18F]FAC and [14C]-gemcitabine, measured ex vivo. 
This correlation remained when 18F activity concentrations were measured in PET images, and the effects of 
injectable PEGylated recombinant human hyaluronidase pretreatment on gemcitabine uptake could be predicted 
by [18F]FAC imaging (Russell et al., 2021) [197]. 
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Multimodal imaging approaches to cancer often combine PET with CT or MRI (Schwenck et al., 2023) 
[198]. In studies relating to gemcitabine, a comparison was made between [18F]FDG-PET, CT, and serum tumour 
markers for assessing the chemotherapeutic efficacy and survival time in patients with advanced pancreatic cancer 
treated with gemcitabine, [18F]FDG-PET and serum tumour markers were shown to be most useful (Kuwatani et 
al., 2009) [199]. [18F]FLT-PET/CT was used as an early response biomarker for gemcitabine-based treatment of 
pancreatic cancer, especially for identifying individuals with a poor prognosis who may benefit from novel 
therapeutic agents in advanced and metastatic pancreatic cancer (Challapalli et al., 2015) [200]. [18F]FDG-
PET/CT was used to monitor the antitumour effects of gemcitabine-loaded drug-eluting beads administered for 
transarterial chemoembolisation (TACE) in rabbit renal tumours. The beads were prepared by crosslinking 
polyvinyl alcohol-based macromer with N-acryl tyrosine and N,N′-methylenebis(acrylamide), and they had an 
average particle size of 58.06 ± 0.50 µm (Figure 7) (Zhang et al., 2024) [201]. [18F]FLT-PET and diffusion-
weighted MRI (DW-MRI) were used to evaluate the response of lung carcinoma xenografts in mice after 
gemcitabine therapy. It was found that early changes of [18F]FLT uptake in tumours reflected mechanisms, such 
as competing gemcitabine uptake or gemcitabine-induced thymidylate synthase inhibition, only reflecting 
growth-inhibitory effects at a later time point. The time point for [18F]FLT-PET imaging of tumour response to 
gemcitabine treatment is therefore of crucial importance (Schelhaas et al., 2016b) [202]. 

In multimodal imaging approaches involving MRI, a study aimed to improve the efficacy of gemcitabine 
for treating advanced pancreatic cancer through local hyperthermia. Gemcitabine delivery and hyperthermia were 
achieved using a hydroxypropyl cellulose-grafted porous magnetic drug carrier that was also MRI visible to 
enable in vivo visualisation of its distribution. The delivery of gemcitabine-loaded magnetic carriers to human 
pancreatic carcinoma cell line (PANC-1) xenografts in nude mice was visualised using both MRI and fluorescent 
imaging techniques (Figure 8) (Kim et al., 2014) [203]. Theranostic multifunctional nanoparticles consisting of a 
gold nanostar (AuNS) core with a coordination polymer (CP) shell of gemcitabine-5'-monophosphate complexed 
with Gd(III) were developed for both visualising and treating cancer. The AuNS core enabled plasmonic 
photothermal effect and two-photon photoluminescence (TPL), while the CP shell provided chemotherapy and a 
contrast agent for MRI. Localisation of the AuNS@CP nanoparticles was monitored in vivo using non-invasive 
MRI, while nanoparticle behaviour in tumours at the microscopic level was followed using intravital TPL 
imaging. Anticancer effects of the nanoparticles were demonstrated in vitro and in vivo on a breast cancer 
xenograft mouse model (4T1 cell line) (Figure 9) (Li et al., 2016) [204]. In other multimodal imaging studies, 
GPC1-targeted, gemcitabine-loaded multifunctional gold nanoparticles were developed for the combined near-
infrared fluorescence/MRI detection of pancreatic cancer and targeted chemotherapy against pancreatic cancer in 
a mouse model (Figure 10) (Qiu et al., 2019) [205]. A combination of dynamic contrast-enhanced MRI, blood 
volume imaging and electron paramagnetic resonance imaging showed that a combination of evofosfamide and 
gemcitabine suppresses tumour growth by maintaining the intratumor vasculature and oxygenation in a mouse 
model (Otowa et al., 2021) [206]. 

 

 
Figure 7: Embolisation of rabbit renal tumour with gemcitabine-loaded drug-eluting beads under the guidance 

of digital subtraction angiography. (A, B) CT image (A) and the corresponding [18F]FDG-PET/CT image (B) of 
rabbit bearing orthotopic VX2 renal tumour. White arrow = two pieces of micro-guide wires adjacent to the 
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VX2 tumour tissue implanted. Green arrow = the VX2 tumour with positive signals of [18F]FDG. Blue arrow = 
renal pelvis. (C, D) DSA imaging of VX2 renal tumour before (C) and after (D) intraarterial infusion of 

gemcitabine-loaded drug-eluting beads. White dotted circles = tumour. (E, F) Microscopic images of tumour 
(E) and adjacent kidney tissue (F) stained with hematoxylin and eosin one day after the embolisation. Black 

arrows = gemcitabine-loaded drug-eluting beads. Bar = 20 µm. This figure was reproduced from Zhang et al. 
(2024) [201]. 

 

 
Figure 8: In vivo multimodal imaging of intratumoral injected gemcitabine-magnetic drug carriers. (a) (upper) 
in vivo T2-weighted axial cross section MR images and (lower) colour maps of pre-injection and post-injection, 
(b) in vivo fluorescence image of (left) control and (right) cyto780 labelled gemcitabine-magnetic drug carriers 

injected mouse (λex/λem=783/800 nm), (c) Hematoxylin and eosin, Prussian blue and TUNEL (terminal 
deoxynucleotidyl transferase mediated dUTP nick end-labeling) in tumour harvested from tumour bearing mice 

after treatments of gemcitabine chemotherapy, hyperthermia and gemcitabine chemohyperthermia, (d) 
Incidence of apoptosis in PANC-1 pancreatic tumour xenografts after each treatment in vivo. Apoptotic index 
was determined by counting the percentage of apoptotic cells out of total tumour cells from five fields in each 

section. *p < 0.05, mean; bars, SD. This figure was reproduced from Kim et al. (2014) [203]. 
 

 
Figure 9: MRI of AuNS@CP in vitro and in vivo. (A) Plot of longitudinal relaxation rate (1/T1) as a function of 
Gd(III)-concentration in AuNS@CP nanoparticles. The slope indicates the molar relaxivity (r1). Data are means 

± SD (N=4). Inset: Colour-coded T1-weighted MR images of tubes containing AuNS@CP nanoparticles at 
different Gd(III) concentrations, from which the data in the graph were derived. (B) In vivo T1-weighted MR 
images (colour-coded by intensity) acquired before and at different time points after intravenous injection of 

AuNS@CP nanoparticles in four T1 tumour-bearing mice. Tumours are indicated by white dashed circles. (C) 
Change in the MRI signal intensity of tumour sites after injection of AuNS@CP nanoparticles. Data are means 

± SD (N=4) of the quantification of the data in panel (B). This figure was reproduced from Li et al. (2016) 
[204]. 
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Multimodal mass spectrometry imaging (MSI) was used to follow the tissue distribution and metabolism 
of gemcitabine and the ATR inhibitor AZD6738 in a mouse model of pancreatic ductal adenocarcinoma. There 
was significant intra-tumoral heterogeneity of drug delivery and drug metabolism, where the highest delivery of 
gemcitabine and AZD6738 was found to colocalise with haem in regions histologically identified as necrotic and 
haemorrhagic. Gemcitabine metabolism coincided with desmoplastic tumour microenvironment metabolic 
heterogeneity, and gemcitabine metabolites showed differential tissue distribution (Ling et al., 2018) [207]. A 
comprehensive multimodal imaging approach combined the techniques of spatially coregistered mass 
spectrometry imaging, imaging mass cytometry, multiplex immunofluorescence microscopy and hematoxylin and 
eosin staining to assess the local distribution and metabolism of gemcitabine in tumours from a genetically 
engineered mouse model of pancreatic cancer (Strittmatter et al., 2022) [208]. For example, MSI enabled 
visualisation of gemcitabine, its phosphorylated metabolites and the inactive metabolite 2',2'-difluoro-2'-
deoxyuridine, which showed a heterogenous distribution within the tumour. It was demonstrated that the 
generation of phosphorylated gemcitabine metabolites and treatment-induced DNA damage correlated with sites 
of high proliferation in tumour tissue instead of sites with high levels of parent drug (Strittmatter et al., 2022) 
[208]. 

 

 
Figure 10. Development and functionality of GPC1-targeted gemcitabine-loaded nanoparticles for multimodal 
imaging and therapy in a pancreatic cancer model. (A) The preparation of GPC1-GEM-NPs. (B) GPC1-GEM-

NPs as tumour-targeted multifunctional theranostic nanoplatforms for multimodal imaging and therapy by 
GPC1-mediated antibody-antigen combination. 1. Coincubation; 2. Au-S coupling chemistry; 3. Amidation 

reaction; 4. Antibody-antigen combination; 5. Endocytosis; 6. Endosome escape; 7. pH/hyaluronidase response. 
This figure was reproduced from Qiu et al. (2019) [205]. 

 
VII. Conclusion 

Gemcitabine is still a principal drug used for treating various solid tumours, especially in the form of 
chemically modified prodrugs and in targeted delivery systems for improving efficacy and avoiding 
chemoresistance. These include theranostic agents, such as multifunctional nanoparticles, that combine properties 
for diagnostic imaging and targeted therapy. The most reliable approach to visualise and measure the uptake and 
metabolism of gemcitabine in cancer cells and to monitor its effects on tumour proliferation is to combine the 
results from different analytical techniques, especially using multimodal imaging. The continued development of 
artificial intelligence applications to multimodal imaging (Das et al., 2025; Hou et al., 2025; Jandoubi et al., 2025; 
Rao et al., 2025; Simon et al., 2025; Tariq et al., 2025) [209-214] will improve the accuracy and efficiency of 
cancer diagnosis, treatment planning and monitoring, including those involving gemcitabine-based therapies. 
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