Using Inter-canine Width for Arch Length Prediction in Jaipur Population

Dr. Vikas K. Soni\(^1\), Dr. Shami Soni\(^2\), Dr. Rajesh Agarwal\(^3\), Dr. Shilpa Agarwal\(^4\), Dr. Hardik\(^5\), Dr. Krutí\(^6\)

P.G. Student\(^1,5,6\), Professor & Head\(^2\), Professor\(^3\),

Department of orthodontics & Dentofacial Orthopaedics Jaipur Dental College, Jaipur, Rajasthan (India)
Professor\(^4\)

Department of Endodontics & Conservative Dentistry, Jaipur Dental College, Jaipur, Rajasthan (India)

Abstract: Arch length, inter-canine width, and inter-molar width are essential for diagnosis and treatment planning and are closely related factors in orthodontics.

Aim: The aim of the present study was used to determine correlations between these measurements and to predict some of these measurements based on others.

Method: The dental casts of 30 patients (15 females and 15 males) with a mean age of 18 years (11 – 26 years) in the permanent dentition attending the Orthodontic Department of the Jaipur Dental College, Jaipur, were selected. Intercanine width, intermolar width, and arch length on each dental cast were measured. Correlation between variables was determined using Pearson’s correlation coefficient. Linear regression analysis was applied and the 95 per cent confidence intervals for slope and intercept were determined.

Result: The data showed very high correlations between inter-canine width and arch length, both for the upper and lower arches and for males and females. \(r = 0.925 \). This coefficient was very close to 1, indicating a linear relationship. The regression equation for arch length and inter-canine width was \(\text{arch length} = 1.36 \times \text{inter-canine width} + 29.39 \) for both arches.

Conclusion: There was very high correlations between arch length and inter-canine width for the upper and lower arches and a regression equation between both magnitudes was established indicating that the size of one factor can be predicted by knowing the other. For an increase of 1 mm in inter-canine width, the arch length increases approximately 1.36 mm with a 95 per cent confidence intervals (1.30 – 1.42).

Key Words: Arch length, inter-canine width, inter-molar width.

I. Introduction

There are several methods for determining the resulting loss of arch circumference. One popular rule of thumb for estimating the resulting loss of arch circumference is that 1 mm of arch circumference is needed for each millimeter of curve of Spee depth present. Baldridge and Garcia found the ratio to be more accurately expressed by the formulas \(Y = 0.488 \times X - 0.51 \) and \(Y = 0.657 \times X + 1.34 \), respectively, where \(Y \) is the arch length differential in millimeters and \(X \) is the sum of right and left side maximum depths of the curve of Spee in millimeters. In a mathematical model, Germane et al. determined the relationship to be non-linear, and the arch circumference differential less than a one-to-one ratio for curves of Spee having a depth of 9 mm or less.

As the natural maxillary and mandibular arch-forms have recently been accurately described by the mathematical beta function with a correlation coefficient \(r \) of 0.98, it is the objective of this study to predict the correlation between arch length, inter-canine width, and inter-molar width measurements to predict some of these measurements based on others.

II. Materials and Methods

Sample selection:

The sample consisted of 30 dental casts of patients obtained from patients who underwent fixed orthodontic treatment at the Orthodontic Department of the Jaipur Dental College, Jaipur.

The inclusion and exclusion criteria of the sample selection were as follows:

1. A permanent dentition from second molar to second molar;
2. Well aligned arches with tight contacts and no crowding was present;
3. Either all first premolars or second premolars or a combination of first and second premolars were extracted prior to treatment;
4. Pre & Post treatment dental casts of appropriate quality be available for all the selected samples;
5. No tooth agenesis or its should be without trauma & any anomalous shape;
6. No large restorations/grossly decayed tooth that could change the mesio-distal diameters of the teeth;

www.iosrjournals.org
Measurement procedure:-

The mesio-distal sizes of the upper and lower teeth of each cast, excluding the second and third molars when they were present, were measured by the investigator and then all the sample casts were re-labelled in order to obtain concrete results. The sample casts was also measured by another investigator and he was blind folded for the previously obtained results. Upper and lower inter-canine widths (maximum linear width between the canines), upper and lower inter-molar widths (maximum linear width between molars at their buccal surface), upper and lower arch lengths (ideal line between every mesial and distal contact point of each permanent tooth from the mesial of the first molar to the mesial of the first molar of the opposite side) were measured (Figure 1). Arch-length was considered to be equal to arch perimeter.

All these casts were re-measured by both the investigators after a period of 1 week and the final value was obtained by taking a mean of all the measurements.

III. Results

A high correlation was observed between upper arch lengths and upper inter-canine widths as well as between lower arch lengths and lower inter-canine widths, while a weak correlation was found between upper arch lengths and upper inter-molar widths and lower arch lengths and lower inter-molar widths.

The regression parameters are shown in Table 1. The correlation coefficient between arch-length and inter-canine widths, \(r = 0.925 \), showed a very good linear relationship between variables, making it possible to establish the following regression equation for upper arch lengths and lower arch lengths and upper inter-canine widths and lower inter-canine widths:

\[
\text{Arch length} = 1.36 \times \text{Inter-canine width} + 29.39.
\]

The 95 per cent confidence interval for the slope (1.30 – 1.41) means that for each millimeter of inter-canine width increase, the arch-length would increase between 1.30 and 1.41 mm.

A low correlation between upper arch lengths and upper inter-molar widths (\(r = 0.474 \)) and between lower arch lengths and lower inter-molar widths (\(r = 0.426 \)) was found, indicating that there was no linear correlation.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Regression parameters</th>
<th>Values</th>
<th>Standard error</th>
<th>95 per cent confidence interval Lower limit/Upper limit</th>
<th>Pearson’s coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL versus ICW</td>
<td>Intercept</td>
<td>29.386</td>
<td>0.869</td>
<td>27.679/31.094</td>
<td>0.925</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.360</td>
<td>0.028</td>
<td>1.305/1.416</td>
<td></td>
</tr>
</tbody>
</table>

Table 1 Linear regression parameters for arch length (AL) versus inter-canine width (ICW) (upper and lower).

Figure 2. Correlation between upper arch length, inter-canine width and inter-molar width.
IV. Conclusions

A high correlation coefficient between arch-length and inter-canine width was found for both arches, and a regression equation was established between both magnitudes. Correlation makes it possible to predict the size of one of the variables by knowing the size of the other. The correlations between inter-molar width and arch-length were lower and with a differing variation between the upper and the lower arch. For an increase of 1 mm of inter-canine width, the arch-length increases approximately 1.36 mm with 95 per cent confidence interval (1.30 – 1.42).

References