Study of the Dielectric Superstrate Thickness Effects on Microstrip Patch Antennas

V.Saidulu¹, K.Srinivasa Rao²

¹Associate Professor, Department of Electronics and Communication Engineering, Mahatma Gandhi Institute of Technology, Hyderabad-75, India.
²Professor (Retd.), Department of Electronics and Communication Engineering, DRK Institute of Science & Technology, Hyderabad, India.

Abstract: Dielectric superstrate is touching the patch antennas has remarkable effects on antenna parameters. This paper experimentally studied the superstrate thickness effects on the patch antennas parameters and compared their performances with without dielectric superstrate. The coaxial probe fed of rectangular, circular and square patch antennas were designed with 2.4 GHz and fabricated on Arlondiclad 880 substrate. The superstrate materials is also used same specifications of substrate material for designing of the patch antennas. It is found that there is a slight degradation in the performance of the antennas when the superstrate thickness is touching the above the patch antennas. In particular, the resonant frequency will be shifted lower side, while other parameters have slight variation in their values. In addition, it has also been observed that return loss and VSWR increases, however bandwidth and gain decreases with the dielectric constant of the superstrate thickness. This type of antennas were used for wireless, Wi-Fi and Blue-tooth applications.

Index Terms: Rectangular patch antenna, circular patch antenna, square patch antenna, dielectric superstrate (radome), resonate frequency, gain etc.

I. Introduction
A microstrip antenna consists of a radiating patch on one side of a dielectric substrate, which has a ground plane on the other side. The patch conductors are normally copper or gold, can assume virtually any shape, but regular shapes are generally used to simplify analysis and performance prediction. Ideally, the dielectric constant of the substrate should be low ($\varepsilon_r < 2.5$) to enhance the fringe fields that account for the radiation [1-3]. Microstrip antennas have been employed in the airborne and spacecraft system because of their low profile and conformal nature. Many of these applications require a dielectric cover over the radiating element to provide protection against heat, physical damage and other environmental hazards [2, 3, 6-22]. The effect of the superstrate used on the patch antenna to provide protection from heat and environmental hazards etc., results in change of important parameters like impedance, bandwidth (frequency range for SWR ≤ 2), gain, resonant frequency etc. This geometry of microstrip patch with dielectric superstrate can form part of a specific high performance airborne system. In view of this, it becomes imperative to investigate the effect of superstrates on the performance of the microstrip patch antennas.

II. Antenna Specifications And Selection Of Substrate Material
The dielectric constants, loss tangents and thicknesses of the dielectric materials used in the investigations are given in Table 1 and Table 2. Dielectric substrate of appropriate thickness and loss tangent is chosen for designing the rectangular, square and circular MPAs. A thicker substrate is mechanically strong with improved impedance bandwidth and gain. However it also increases weight and surface wave losses. The dielectric constant (ε_r) plays an important role similar to that of the thickness of the substrate. A high value of ε_r for the substrate will increase the fringe field of the patch and thus the radiated power. A high loss tangent ($\tan \delta$) increases the dielectric loss and therefore reduces the antenna performance. The low dielectric constant materials increase efficiency, bandwidth and radiation [1-3, 6].

Keeping these aspects in mind, the rectangular, square and circular MPAs are fabricated on Arlondiclad 880 dielectric substrate, whose dielectric constant (ε_r) is 2.2, loss tangent ($\tan \delta$) is 0.0009, thickness (h_1) is 1.6 mm and appropriate substrate dimensions.

<table>
<thead>
<tr>
<th>Substrate material</th>
<th>Dielectric constant (ε_r)</th>
<th>Loss tangent ($\tan \delta$)</th>
<th>Thickness of the substrate (h_1), mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arlondiclad 880</td>
<td>2.2</td>
<td>0.0009</td>
<td>1.6</td>
</tr>
</tbody>
</table>

Table 1: Specification of dielectric substrate(ε_r) material used in the design of patch antennas
III. Design Formulae

(A) Effective Dielectric Constant:
The effective dielectric constant has values in the range of $1 < \varepsilon_{ref} < \varepsilon_r$. For most applications where the dielectric constant of the substrate is much greater than the unity ($\varepsilon_r \gg 1$), the value of ε_{ref} will be closer to the value of the actual dielectric constant ε_r of the substrate. The expression for ε_{ref} is given by [2]

$$\varepsilon_{ref} = \frac{\varepsilon_r + 1}{2} + \frac{\varepsilon_r - 1}{2} \left[1 + \frac{\mu_0}{\varepsilon_r} \right]^{1/2}, \text{ for } W/h > 1 \quad \ldots \ldots (1)$$

(B) Effective Length and Effective Width:
The dimensions of the patch along its length have been extended on each end by a distance ΔL, which is a function of the effective dielectric constant ε_{ref} and the width-to-height ratio [2]

$$\frac{\Delta L}{h} = 0.412 \left(\frac{\varepsilon_{ref} + 0.3}{\varepsilon_{ref} + 0.295} \right) \ldots \ldots (2)$$

The effective length of the patch is now [2]

$$L_{eff} = L + 2\Delta L \ldots \ldots (3)$$

For an efficient radiator, a practical width that leads to good radiation efficiencies is [2]

$$W = \frac{1}{2\epsilon_0 \mu_0 \varepsilon_{ref}} \sqrt{\frac{2}{\varepsilon_r + 1}} = \frac{8\epsilon_0}{2\epsilon_0 \mu_0} \sqrt{\frac{2}{\varepsilon_r + 1}} \ldots \ldots (4)$$

The actual length of the patch can now be determined [2]

$$L = \frac{1}{2\epsilon_0 \mu_0 \varepsilon_{ref}} \sqrt{\frac{2}{\varepsilon_r + 1}} - 2\Delta L \ldots \ldots (5)$$

(C) Circular Patch Radius and Effective Radius:
The dimension of the patch is treated a circular loop, the actual radius of the circular patch antenna is given by [2]

$$a = \frac{F}{\left[1 + \frac{2h}{\pi \varepsilon_r} \ln \left(\frac{\varepsilon_{ref}}{2n} \right) + 1.7726 \right]^{1/2}} \ldots \ldots (6)$$

Where

$$F = \frac{0.791 \times 10^3}{\sqrt{\epsilon_r} \mu_0}$$

Equation (1) does not take into considerations the fringing effect. Since fringing makes the patch electrically larger, the effective radius of patch is used and is given by [2]

$$a_{eff} = a \left[1 + \frac{2h}{\pi \varepsilon_r} \ln \left(\frac{\varepsilon_{ref}}{2n} \right) + 1.7726 \right]^{1/2} \ldots \ldots (7)$$

Hence, the resonant frequency for the dominant TM_{110} is given by [2]

$$f_{110} = \frac{1.941212}{2na_{eff}} \ldots \ldots (8)$$

Where ν_0 is the velocity of light

IV. Design Of Patch Antennas And Their Geometry

The rectangular, square and circular microstrip patch antennas are designed at the center frequency of 2.4 GHz on Arlondiclad 880 substrate ($\varepsilon_{ref} = 2.2$, $h_s = 1.6\, \text{mm}$), using expressions available in the standard literature [2-21] and given by equations (4), (5) and (6). The designed dimensions of rectangular, square and circular patch antennas are given in Table 3 and Table 4 respectively. The patch antennas are fed with coaxial probe feed at a point where the input impedance of the patch is 50 Ω. The location co-ordinates (F_x, F_y) are found by simulation. The geometries of the rectangular, square and circular patch antennas are shown in Fig.1 and Fig.2. In the geometry shown, $W_s =$ Substrate width, $L_s =$ Substrate length, $W_p =$ Patch width, $L_p =$ Patch length, $a =$ Patch radius, $D =$ Diameter of circular patch and (F_x, F_y) are the co-ordinates of the feed point.
Study of the Dielectric Superstrate Thickness Effects on Microstrip Patch Antennas

Fig. 1 (a) Geometry of rectangular microstrip patch antenna and (b) Geometry of circular microstrip patch antenna (Top view)

Fig. 2 Geometry of square microstrip patch antenna (Top view)

Table 3: The Dimensions of the Rectangular and Square Patch Microstrip Antenna in mm

<table>
<thead>
<tr>
<th>Type of Patch</th>
<th>f_r (GHz)</th>
<th>ε_r</th>
<th>h</th>
<th>W_s</th>
<th>L_s</th>
<th>W_p</th>
<th>L_p</th>
<th>F_x, F_y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rectangular patch</td>
<td>2.4</td>
<td>2.2</td>
<td>1.6</td>
<td>100</td>
<td>100</td>
<td>49.40</td>
<td>40.30</td>
<td>10.5,0</td>
</tr>
<tr>
<td>Square patch antenna</td>
<td>2.4</td>
<td>2.2</td>
<td>1.6</td>
<td>100</td>
<td>100</td>
<td>33.60</td>
<td>33.60</td>
<td>10.0,0</td>
</tr>
</tbody>
</table>

Table 4: The Dimensions of the Circular Microstrip Patch Antenna in mm.

<table>
<thead>
<tr>
<th>f_r (GHz)</th>
<th>ε_r</th>
<th>h</th>
<th>W_s</th>
<th>L_s</th>
<th>D</th>
<th>F_x, F_y</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4</td>
<td>2.2</td>
<td>1.6</td>
<td>100</td>
<td>100</td>
<td>47.10</td>
<td>5.5,0</td>
</tr>
</tbody>
</table>

V. Dielectric Superstrate effects

When microstrip antennas are covered with protective dielectric superstrate, the antenna resonant frequency, bandwidth, gain and other parameters are altered, resulting in detuning, which may seriously degrade the system performance. As the bandwidth of microstrip antennas is inherently low, it is important to determine the effect of the dielectric layer on the resonant frequency and other parameters of patch antennas in order to introduce appropriate corrections in the design of antenna. The change in the resonant frequency by placing the dielectric superstrate can be calculated using the following the expression [1-3].

\[
\frac{f_r}{f_r} = \frac{\sqrt{\varepsilon_r} - \sqrt{\varepsilon_{eo}}}{\sqrt{\varepsilon_r}}
\]

If $\varepsilon_r = \varepsilon_{eo} + \varepsilon_{eo}$ and $\varepsilon_{eo} \leq 0.1 \varepsilon_{eo}$.
\[\frac{\Delta f_r}{f_r} = \frac{1}{2} \frac{\Delta \varepsilon_{r}}{\varepsilon_{r} + \varepsilon_{o}} \]

\[\Delta \varepsilon_{r} = \text{Change in dielectric constant due to dielectric superstrate} \]
\[\Delta f_r = \text{Fractional change in resonance frequency} \]
\[f_r = \text{Resonance frequency} \]

VI. Experimental Results

The performance of the antenna is evaluated without dielectric superstrate using commercial electromagnetic software such as High Frequency Structure Simulator (HFSS). Then the change in performance of the antenna is studied with dielectric superstrate thickness as mentioned in Table 2. The measurements were carried out by using

- Network Analyzer (HP E5071C) to measure the return-loss (VSWR), Center frequency and Bandwidth and
- Anechoic chamber to measure the radiation characteristics. The antenna under test (patch antenna with and without dielectric superstrate) is used as receiving antenna and the transmitting antenna is a pyramidal horn antenna (1-50 GHz). The radiation pattern measurements were carried out at 2.43GHz. The photograph of fabricated rectangular and circular microstrip patch antennas without superstrates are shown in Figs 3 to 4 and with superstrate for measurement of return loss setup is shown in Fig.5

![Fig. 3](image_url)

Fig. 3 Measurement set up for fabricated rectangular microstrip patch antenna without dielectric superstrate for measurement of return loss (Free space radiation conditions).

![Fig. 4](image_url)

Fig. 4 Measurement set up for fabricated circular patch antenna without dielectric superstrate for measurement of return loss (Free space radiation conditions).
A. Rectangular, Square and Circular MPA under Free Space Radiation Conditions (Without Superstrate)

The experimental measured results of VSWR, radiation patterns for the rectangular patch antenna under free space radiation conditions i.e., without superstrate are shown in Figs. 6, 7, 8 and 9 given below.

The resonant frequency is 2.40 GHz, same as the design frequency, the experimental measured results of rectangular patch antenna bandwidth is 0.02 GHz (VSWR ≤ 2), and gain is 7.3 dB. For circular patch antenna bandwidth is 0.030 GHz (VSWR ≤ 2) and gain is 6.7 dB, whereas square patch antenna bandwidth is 0.046 GHz (VSWR ≤ 2) and gain is 4.8 dB. Radiation pattern simulation and measurements are carried out at the center frequency for the case under consideration. The center frequency is found from return-loss measurements. For free space radiation condition i.e., without superstrate the center frequency is occurring at 2.40 GHz and hence, the radiation pattern measurements are carried out at this frequency i.e. at 2.40 GHz.
Study of the Dielectric Superstrate Thickness Effects on Microstrip Patch Antennas

B. Effect of the Superstrate on the Performance Characteristics of Rectangular, Square and Circular Microstrip Patch Antenna

The effect of the superstrates with different thicknesses as mentioned in Tables 6 to 14 is experimentally investigated on the performance characteristics of rectangular, circular and square microstrip patch antenna. The measurements have been carried out for typical cases. The results are discussed below.

Superstrate with \(\varepsilon_{r_2} = 2.2 \) and \(h_2 = 0.2 \) mm.

The effect of the superstrate having \(\varepsilon_{r_2} = 2.2, h_2 = 0.2 \) mm on the performance characteristics of the rectangular, circular and square patch is evaluated experimentally which are given in Table 6, from the results it can be observed that the resonant frequency, gain and bandwidth will deteriorate when the superstrate is touching the patch antenna. The measurements are carried out for with and without superstrate. The measured results are shown in Figs 6 to 8. The VSWR plot as a function of frequency is shown in Fig 6. The impedance and the radiation patterns plots are shown in Figs 7 and 8. The radiation patterns are measured at the resonant frequency for the case under consideration. For the rectangular patch antenna the measured resonant frequency is decreased to 2.38 GHz, the bandwidth is decreased to 0.024 GHz and gain is decreased to 4.29 dB. For square patch antenna the measured resonant frequency is decreased to 2.41 GHz, the bandwidth is decreased to 0.012 GHz and gain is decreased to 3.92 dB. For circular patch antenna the measured resonant frequency is same as designed frequency, the bandwidth is increased to 0.267 GHz and gain is decreased to 1.42 dB.

As compared to free space radiation conditions i.e without superstrate, for rectangular patch antenna, the resonant frequency \((f_r) \) is 0.013 GHz (0.541% less), bandwidth is 0.003 GHz (19.5% less) and gain is 3.01 dB (41.23% less). For square patch antenna, the resonant frequency \((f_r) \) is same as designed frequency, bandwidth is 0.221 GHz (22.1% more) and gain is 3.38 dB (70.41% less). For circular patch antenna, the resonant frequency \((f_r) \) is 0.01 GHz (0.833% more), bandwidth is 0.018 GHz (2.17% less) and gain is 2.78 dB (60% less).
Fig 6: Comparison of experimental measured VSWR plot of (a) rectangular (b) Square and (c) Circular microstrip patch antenna for 0.2mm thickness for superstrate dielectric constant ($\varepsilon_{r_2} = 2.2$) at 2.4 GHz.

Fig 7: Experimental measured results of impedance plot for (a) Rectangular patch (b) Square patch and (c) Circular patch for 0.2mm thickness for superstrate dielectric constant ($\varepsilon_{r_2} = 2.2$) at 2.4 GHz.
Study of the Dielectric Superstrate Thickness Effects on Microstrip Patch Antennas

Fig 8: Experimental measured results of VSWR for (a) Rectangular (b) Square and (c) Circular patch antennas for 0.2mm thickness for superstrate dielectric constant $\varepsilon_r = 2.2$ in HP at 2.4GHz.

Table 5: Comparison of experimental result for rectangular, circular and square microstrip patch antennas without dielectric superstrate $\varepsilon_r = 2.2$ (Free space radiation conditions)

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Rectangular patch antennas</th>
<th>Circular patch antennas</th>
<th>Square patch antennas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resonant Frequency(GHz)</td>
<td>2.40</td>
<td>2.40</td>
<td>2.40</td>
</tr>
<tr>
<td>Gain(dBi)</td>
<td>7.3</td>
<td>4.7</td>
<td>4.2</td>
</tr>
<tr>
<td>BW(GHz)</td>
<td>0.020</td>
<td>0.020</td>
<td>0.244</td>
</tr>
<tr>
<td>HPBW(H/P) Deg</td>
<td>80.20</td>
<td>90.01</td>
<td>165.4</td>
</tr>
<tr>
<td>Impedance (Q)</td>
<td>31.35 - 10.502</td>
<td>32.72 - 3.915</td>
<td>38.24 - 8.0979</td>
</tr>
<tr>
<td>Return-Loss(dB)</td>
<td>-13.43</td>
<td>-15.55</td>
<td>-10.00</td>
</tr>
<tr>
<td>VSWR</td>
<td>1.991</td>
<td>2.034</td>
<td>1.486</td>
</tr>
</tbody>
</table>

Table 6: Comparison of experimental measured results for rectangular, circular and square microstrip patch antennas with dielectric superstrate thickness 0.2mm $\varepsilon_r = 2.2$

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Rectangular patch antennas</th>
<th>Circular patch antennas</th>
<th>Square patch antennas</th>
</tr>
</thead>
<tbody>
<tr>
<td>BW/GHz</td>
<td>0.024</td>
<td>0.012</td>
<td>0.267</td>
</tr>
<tr>
<td>HPBW/H/P Deg</td>
<td>90.34</td>
<td>84.26</td>
<td>90.15</td>
</tr>
<tr>
<td>Impedance (Q)</td>
<td>36.14 - 10.502</td>
<td>35.34 - 3.915</td>
<td>38.24 - 8.0979</td>
</tr>
<tr>
<td>Return-Loss(dB)</td>
<td>-11.56</td>
<td>-12.57</td>
<td>-3.26</td>
</tr>
<tr>
<td>VSWR</td>
<td>1.784</td>
<td>1.667</td>
<td>3.263</td>
</tr>
</tbody>
</table>
VI. Results And Discussion

It is found there is degradation in the performance of the antenna when the superstrate is touching the patch antenna. As compared to the with the free space radiation conditions (without superstrate), the experimental results show that for rectangular patch antenna the measured resonant frequency is decreased to
2.387 GHz, the bandwidth is decreased to 0.024 GHz and gain is decreased to 4.29 dB. For square patch antenna the measured resonant frequency is same as designed frequency, the bandwidth is increased to 0.267 GHz and gain is increased to 1.42 dB. For circular patch antenna the measured resonant frequency is 2.41 GHz, the bandwidth is decreased to 0.012 GHz and gain is decreased to 3.92 dB. The return loss and VSWR increases as superstrate dielectric constant thickness increases. Measurements have been carried out for the above mentioned superstrate using dielectric constant $\varepsilon_r = 2.2$ and $h_2 = 0.2$ mm. The VSWR as a function of frequency and radiation patterns at center frequency are shown for superstrate $\varepsilon_r = 2.2$ and $h_2 = 0.2$ mm is shown in Figs 6 to 8. The optimum gain is obtained at 1.0 mm which is 5.75 dB for rectangular patch antenna, 5.848 dB for circular patch antenna and 4.28 dB for square patch antenna. The overall typical results for the rectangular, circular and square patch antennas are given in Tables 6 to 14.

VII. Conclusion

The effect of dielectric superstrate thickness effects on the behavior of rectangular, circular and square patch of microstrip antennas reveals that the superstrate thickness affects not only the resonance frequency but also affects on other parameters such as gain, bandwidth, beam width, VSWR and return-loss. In particular, the resonance frequency is shifted to lower side. The obtained results indicate that return loss and VSWR increases, BW decreases with the different dielectric constant of the superstrates. The value of impedance, return loss and VSWR are minimum, whereas BW is maximum for superstrate having dielectric constant $\varepsilon_r = 2.2$, $h_2 = 2.4$ mm.

As compared to free space radiation conditions i.e without superstrate, for rectangular patch antenna, the resonant frequency (f_r) is 0.013 GHz (0.541 % less), bandwidth is 0.003 GHz (19.5 % less) and gain is 3.01 dB (41.23 % less). For square patch antenna, the resonant frequency (f_r) is same as designed frequency, bandwidth is 0.221 GHz (22.1 % more) and gain is 3.38 dB (70.41 % less). For circular patch antenna, the resonant frequency (f_r) is 0.01 GHz (0.833 % more), bandwidth is 0.018 GHz (2.17 % less) and gain is 2.78 dB (60 % less).

Acknowledgements

Authors wish to express their sincere thanks to Shri M. BalacharySc’G, Head Antenna Wing, Associate director, DLRL, for giving permission to utilize the antenna measurement facilities available at Defense Electronics and Research Laboratory (DLRL), Hyderabad.

References

DOI: 10.9790/2834-11125565 www.iosrjournals.org
Study of the Dielectric Superstrate Thickness Effects on Microstrip Patch Antennas

AUTHOR BIOGRAPHY

V. Saidulu was born in India, T.S, in 1974. He received the B.Tech in Electronics and Communication Engineering from Nagarjunauniversity in 1998 and M.Tech in Electronics Engineering (Microwave) from Banaras Hindu University (B.H.U), Varanasi, U.P in 2001 and pursuing Ph.D in Microstrip Antennas. He worked as Assistant Professor from June 2001 to November 2006. Presently he is working as Associate Professor from November 2006 to till date at MGIT, Hyderabad, in Electronics and Communication Engineering. He has published 15 papers in International and National Journals and Conferences. His research interests Microstrip antennas, Wireless Communication and Mobile Communication.

Dr. K. Srinivasa Rao, was born in Hyderabad, T.S, INDIA, in 1948. He received his B.E in ECE in the year 1973 from college of Engineering, Osmania University, Hyderabad, T.S. He worked as senior scientist in Defence Electronics Research Laboratory, Hyderabad from 1974-78 and as Lecturer in ECE Dept. college of Engineering, O.U. from 1978 - 83. He worked as Associate Professor in ECE Dept. CBIT, O.U. from 1983-88. He worked as Senior Scientist in NERTU, O.U. from 1988-90 and carried out his research work in the area of Microwaves. He received his Ph.D. degree in the year 1995. He was promoted as Professor, ECE in CBIT in 1995 and worked there from 1995-97 and 2000-2008. He worked as Professor and Head, Dept. of VNRVJET, Hyderabad, T.S. from 1997-2000. After retiring as Professor, ECE in CBIT in 2008, he has been working in various Private Engineering Colleges and presently he is working as Professor in ECE, in DRK Institute of Science& Technology, JNTUH, Hyderabad.