Reducing Call Blocking In GSM

Er. Dinesh Kumar1, Er. Manpreet Kaushal2

1Research Scholar Deptt. Of Electronics and Comm.Engg. ASRA College of Engineering & Technology Bhwanigarh (India)

2Assistant prof. Deptt. Of Electronics and Comm.Engg ASRA College of Engineering Technology Bhwanigarh (India)

Abstract: All GSM Service Provider uses KPI (Key Performance Indicator) to monitor their quality of service (QOS) Performance. Nowadays major issue is call block in GSM. So if optimization major issue is call block in GSM. So RF optimization and drive test is tool to find reason of call drop. To improve the the performance of the service provide. In this research paper some practical cases and solutions are adopted to reduce the call and increase the customer and profit of the service. Major parameters Rxlevel, Handover failure, Rxquality, C/A worst, etc. Drive test tool Ascom TEMS 16.3.1 and analyser mapinfo 9.3 used to perform drive test and analyse log files recoded in TEMS to find problem and give the solution of call drop. In addition the RF drive test simulation results is attached which can clearly shows that call drop id reduced and improvement in the parameter.

Keywords: Gsm; Rf; Tems; Mapinfo; C/I

I. Introduction

The GSM network is divided into two systems. Each of these systems are comprised of a number of functional units which are individual components of the mobile network. Thetwo systems are:

- Switching System (SS)
- Base Station System (BSS)

In addition, as with all telecommunications networks, GSM networks are operated, maintained and managed from computerized centers.[5]

Fig-1 GSM Architecture

The Network and Switching Sub-system (NSS) – comprising an MSC and associated registers. Several interfaces are defined between different parts of the system:

As there are limitation of frequency spectrum hence frequency reuse principle is adopted. In GSM we are using 890-915 Mhz and 935-960 Mhz Band[6].

Fig-2 Frequency reuse
Reducing Call Blocking In GSM

IN the research paper we have done pre drive test and post drive test and we analyses the no. call dropped, blocked call and handover failure are reduced.

II. Methodology

A. About software

Tems 16.3.1 is drive set tool for measuring and monitoring the network parameter. The supported networks for this tools are:

- GSM
- WCDMA
- HSPA
- LTE
- CDMA

Tems investigation is an effective for measuring and monitoring the digital network. The data is collected by the Tems investigation is stored in laptop. The measurement results provides useful information for network optimization, verification, and maintenance purpose. The result can be easily viewed by using Tems analysis tool Mapinfo. But before start drive test tool kit should be ready. The drive test tools as follows

- TEMS software
- Drive test mobile phone (e.g. Ericsson TEMS)
- External vehicle mounted GPS
- Laptop with drive test software and GPS connection capability and data cables, multi-connector port etc.
- Car Inverter
- Car

Fig-3 Drive test system

Connect the drive test kit properly as shown in figure. After connecting the drive test kit prepare the drive test route and then start drive test. The windows of Tems software as shown in figure.

Fig4- Tems Software

Before state the drive test we should ensure that complete kit is connected properly, also ensure that all devices connoted are working properly.
After measurement data has been analyzed which is recorded through TEMS software during drive test, the data will be converted to .tab file in order to allow it to be opened on Mapinfo Professional as shown in figure 5. Mapinfo professional is used to perform the calculation such as percentage of coverage and quality. Mapinfo opens the .tab files created by the TEMS investigation. So if we want to open the file in mapinfo we need to convert it to the tab file first.

Drive Test Route

Now after connecting and checking the kit we start drive test, first we do pre drive test. In the pre drive test we analyze the network. In the drive test we record the files for the long call and short call. We will connect the Sony Ericsson TEMS handset. We will keep MS1 in idle mode MS2 in dedicated mode in short call and MS3 in also dedicated mode but for long call. For connecting call MS2 and MS3 we will run script which made MS2 and MS3 in dedicated mode. MS2 connecting in short call after a short period the call will be disconnected and again connected vice versa. The long call will be connected till the drive is over. The log files are saved in folder on laptop memory. The results of pre drive test recorded as follows.

III. Analysis and Results

In this research paper we will discuss about the call block in long call. Fig- shows the result generated by the TEMSs from the log files saved during the drive test.
In the figure we see the no. of blocked call during the Short call. There are so many call block find during the drive test. Our challenge is to reduce the call blocking.

In the figure 8 shows no short call blocking after optimization. We need to increase the time slot of the BTS to reduce the no. block call. The result is shown in the figure.

In the figure 9 shows the long call blocking during the drive test. We will reduce the block call and drive test performs again.

The figure shows the Long call blocking are reduce after the optimization.
Reducing Call Blocking In GSM

In the fig 11 shows the report generated by the TEMS software for the optimization purpose. In the figure shows the no. of blocked call no. hand of failure no. hand over etc. Which are helpful for us for optimization purpose.

![Fig 12- Long call block after optimization](image1)

![Fig 13- Short call block before optimization](image2)

In the fig 13 shows the report generated by the TEMS software for the optimization purpose. In the figure shows the no. of blocked call no. hand of failure no. hand over etc. Which are helpful for us for optimization purpose.

![Fig 14- Short call block before optimization](image3)

Fig 13 and fig 14 shows the call drop before and after optimization. We can see that the no. of call dropped after optimization are reduced as we have seen in the fig 11 and fig 12. We will discuss the reason of call drop and remedy action taken by the RF engg.

IV. Conclusion

Telecommunication industry is moving so fast as to cater needs from user. Trends of lifestyle and mobile devices availability contribute to fast growth of telecommunication industry. Hence operator needs to comply the needs with less investment as well as giving the best services in term of coverage and quality. Based on analysis and result, it is proven that the call drop can be reduced by optimization.
References

