
IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) 

e-ISSN: 2278-2834,p- ISSN: 2278-8735. Volume 7, Issue 1 (Jul. - Aug. 2013), PP 01-04 
www.iosrjournals.org 

www.iosrjournals.org                                                        1 | Page 

 

Enhancing Digital Cephalic Radiography 
 

 S.Venkatakiran
1
, C.Kumar

2  

Associate professor, Department of ECE   S.V.P.C.E.T, PUTTUR. 

 

Abstract: We present a new algorithm, called the soft-tissue filter that can make both soft and bone tissue 

clearly visible in digital cephalic radiographies under a wide range of exposures. It uses a mixture model made 

up of two Gaussian distributions and one inverted lognormal distribution to analyze the image histogram. The 

image is clustered in three parts: background, soft tissue, and bone using this model. Improvement in the 

visibility of both structures is achieved through a local transformation based on gamma correction, stretching, 
and saturation, which is applied using different parameters for bone and soft-tissue pixels. A processing time of 

1 s for 5 M pixel images allows the filter to operate in real time. Although the default value of the filter 

parameters is adequate for most images, real-time operation allows adjustment to recover under- and 

overexposed images or to obtain the best quality subjectively. The filter was extensively clinically tested: 

quantitative and qualitative results are reported here 

Index Terms: Digital radiography, histogram-based clustering, image enhancement, local gamma correction, 

 

I. Introduction 
 CEPHALIC radiographs are widely used by dentists, surgeons, and maxillofacial radiologists for 
diagnosis, surgical planning, and implant evaluation. Thanks to modern digital radiographic systems, qualitative 

evaluation becomes possible in real time, as does quantitative measurement and visualization of anatomical 

features (e.g., nasal spine, chin tip, ). Alterations in patient’s anatomy and visualization of postoperative 

aesthetic modifications can be automatically computed  and displayed. To take full advantage of these systems, 

radiograms are usually treated mathematically so as to obtain optimal grey-level coding, using a variety of 

techniques, which are generally termed Image Enhancement. The challenge arises from the need to achieve an 

efficient enhancing solution at interactive rates for images that are currently on the order of 5 M Pixels. One of 

the main challenges in cephalometric radiography is to clearly display both soft and bony tissue in the same 

image .Establishing ideal exposure parameters for each patient is very difficult, because of the large difference 

between the absorption coefficients of the two tissues. In practice, the voltage and the amperage of the X-ray 

tube are estimated so that the full dynamic range of the X-ray detector is used, taking into account the maximum 

level of radiation deliverable to the patient. As a result, underexposure of bone and overexposure of soft-tissue 
often occur, leading to images where the bone and soft-tissue pixels take on similar grey levels (GLs) or the 

background tends to mix with soft tissue. The substructures inside each tissue then cease to be clearly visible, 

making their identification difficult if not impossible. The procedures aimed at solving these problems are 

termed soft-tissue filtering. A great deal of work has been devoted to making the different structures more 

visible by increasing the local contrast at the edge of each image element. Unsharp masking (UM) is one of 

 The most widely used techniques, . It can be implemented to work in real time, but it enhances only the 

small features of the image and increases the noise. Moreover, it does not allow recover of underexposed images 

in which the dynamic range of the bone-tissue regions is compressed: the high frequencies in the corresponding 

regions have too little amplitude to be clearly visible without adding strong edge artifacts . In an overexposed 

image, UM identifies the bone structures well but cannot recover the soft-tissue boundary, where the transition 

between soft tissue and background is smooth and poorly defined (large scale); this is critical, for instance, in 
the chin tip or nose profile. Scale-space processing  has greater capacity to detect features of different sizes but 

does not completely solve the problems with UM, especially when large structures are present,as in cephalic 

images. Different solutions are based on morphological analysis through level sets, morphological operators or 

anisotropic filtering Although these approaches guarantee greater homogeneity of the GLs within a given 

feature, the price paid is computational complexity, which leads to a processing time incompatible with real-

time operation. Moreover, they suffer from over- or under-enhancement inside the different regions. An 

alternative approach is based on analyzing the histogram to remap the GLs so that the dynamic range both for 

soft-tissue regions and for bone-tissue regions is maximized. The most widely used technique in clinical practice 

is global gamma correction (GC) because it can run in real-time. However, no single value allows clear visibility 

of both tissues. The usual setting, which is , makes bone structures clearly visible, but soft tissue darkens and 

tends to mix with the background . Gamma values greater than 1.0 can be profitably used to recover 

overexposed soft tissue but compress the dynamic range in bone regions. Image equalization (IE) produces 
results very similar to those obtained with GC, . The inadequacy of these global approaches is obvious. 
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Therefore, more refined methods that work at a local level have been proposed. Solutions based on local 

statistics, such as local histogram equalization or homogeneity analysis reframe the task as a globally 

constrained nonlinear optimization problem, where the remapping of GLs is constrained at different thresholds 
while maintaining the same ordering. These solutions have the drawback of being computationally intensive and 

may suffer from over-enhancement. We propose here a novel approach to soft-tissue filtering, which is based on 

identifying soft and bone tissue in the histogram using an appropriate mixture model composed of two Gaussian 

distributions and one inverted lognormal distribution. A different local transformation, based on GC, linear 

stretching, and saturation, is then applied to the pixels belonging to the two tissues. The resulting algorithm was 

widely tested and was consistently able to produce clear visibility of both tissues. Moreover, its processing time 

of about one second makes this solution fully compatible with the interactive visualization rate required by 

clinical use. 

Soft-tissue filtering is obtained by five sequential steps. First, a reliable histogram of the image is built 

by taking out pixels that belong to borders or to the logotype, as well as saturated pixels. The three components 

of the histogram (background, soft tissue, and bony tissue) are identified through a mixture model and the 
optimal threshold between soft and bony tissue is identified. This threshold makes it possible to build a map that 

contains the GC value for each pixel. Finally, this map is smoothed and applied to the original image. 

 

 
 

 Fig. 1. (a) Typical cephalic radiography, 1871 _ 2605 pixels. (b) Same image treated with UM: the high 

frequencies are enhanced, but noise is increased,whereas bone is still not clearly visible. (c) Same image after 

GC, using  = 0:25. Although the number of GLs used by the bone pixels (brighter levels) hasincreased, the range 

of the dark ones is compressed. (d) Same image after IE.  Both GC and IE enhance the bony pixels, but the soft 

tissue darkens and tends to mix with the background.  

 

II. Histogram Description 
 The histogram of a cephalic radiographic image has a consistent shape (Fig. 2) with six well-defined 

peaks. Peak 1 is associated with the pixels that are saturated in the charge-couple device (CCD) sensor, 

corresponding to GL equal to zero; peaks 2 and 3 represent the image background. The double peak results from 

automatic exposure control (AEC), which was introduced in the latest generation of radiographic equipment to 

limit soft-tissue overexposure in the frontal part of the face. Peak 4 is associated with bone structures. It is 

asymmetrical and shows a steeper slope for the highest GLs. Peak 5 corresponds to pixels at the edge of the 

CCD sensor, which receive almost no X-rays. Peak 6 is associated with the digital logotype printed on the 

radiography [corresponding to the maximum GL, equal to , where is the number of GLs in the image]. Soft-
tissue GLs are spread between peak 2 and peak 4 [Fig. 2(b)]. Under- and overexposed images generate two 

different histogram populations: as a matter of fact,the bone peak is very high and narrow in underexposed 

radiographies, whereas it is lower and broader in overexposed ones [Fig. 2(b)]. 
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 Fig. 2. (a) Typical histogram of a lateral, cephalic radiography shows six  marked peaks (see text for a 

description of the peaks). (b) Histograms of 18cephalic lateral radiographies after elimination of saturated, edge, 

and logotype pixels. These were filtered using a moving average filter of size seven 
 

III. Contour, Saturated Pixels and Logotype Elimination 

 To obtain a reliable computation for the image histogram, first of all, the pixels on the edge of the 

image are discarded. A boundary frame as large as 5% of the total number of rows and columns is taken out 

from the image. This is a safe margin to ensure that all the pixels, that were not fully exposed to radiation are 

discarded. At this point, a working histogram of the image, which we denote as H1F(x) 

 

Gamma MapandLocalGammaCorrection 

 
 (a) Cephalic radiography. (b) Gamma binary field extracted from the same image. (c) Gamma field 

undersampled and filtered, (d) The finalgamma map used for image correction, (e) The image filtered with 

binarygamma map, artifacts are evident. (f) Theresult obtained by applying � (:), using  = 0:25,  = 2:2, and TP = 
N =1/24. 

 

At this stage, we could apply pixel-to-pixel GC  

 

 as where  is the GL of the pixel  in the 

original image and  is its value in the image transformed by the gamma  value. Specifically, 

each pixel in which  will be modified by using , 

whereas  will be used for pixels  in which . Therefore, gamma 

values have to be smoothed in the spatial domain to avoid strong artifacts. Therefore, we first create a binary 

gamma map , which contains either the value gamma soft tissue or gamma bone.  has to be spatially 

filtered to obtain the final gamma map , which will be applied to the image. First  is down-sampled 

into  . Lastly,  is obtained by up sampling  through a bilinear interpolation scheme . To take 

advantage of the full dynamics of the GLs, linear stretching with saturation is applied to histogram , before 
local GC. Combining linear stretching with saturation and with local GC yields this final correction formula for 

each pixel .  
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IV. Conclusion 
 One of the main challenges in cephalometric radiography is to clearly display both soft and bony tissue 

in the same image .Establishing ideal exposure parameters for each patient is very difficult, because of the large 

difference between the absorption coefficients of the two tissues. In practice, the voltage and the amperage of 

the X-ray tube are estimated so that the full dynamic range of the X-ray detector is used, taking into account the 

maximum level of radiation deliverable to the patient. As a result, underexposure of bone and overexposure of 

soft-tissue often occur, leading to images where the bone and soft-tissue pixels take on similar grey levels (gls) 

or the background tends to mix with soft tissue. The substructures inside each tissue then cease to be clearly 

visible, making their identification difficult if not impossible. The procedures aimed at solving these problems 

are termed soft-tissue filtering. 

 The filtering algorithm reported here has been widely tested in clinical routines and has proven a 
powerful tool for visualizing both soft tissue and bone in the same image clearly. Moreover it can be integrated 

with the latest tools for automatic cephalometric orthodontics. The speed of operation and the intuitive 

modification of free parameters make it a handy tool for its users. The approach described here can be adapted 

to all other types of medical images that are characterized by a well-defined multi modal histogram, for which 

the different tissues have to be displayed clearly in the same image. 
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