
IOSR Journal of Electronics and Communication Engineering (IOSR-JECE)

e-ISSN: 2278-2834,p- ISSN: 2278-8735. Volume 7, Issue 5 (Sep. - Oct. 2013), PP 78-85
www.iosrjournals.org

www.iosrjournals.org 78 | Page

Implementation of error correcting methods to the asynchronous

Delay Insensitive codes with reduced delay and area

B. Shilpa Reddy¹, S.M.K. Sukumar Reddy² (Phd)
1Post Graduate Student, Vaagdevi Institute of Technology &Sciences, proddatur, India -516360

2Asst.Professor, Department of ECE, Vaagdevi Institute of Technology &Sciences, proddatur, India-516360

 Abstract: This Paper provides an approach for reducing delay and area in asynchronous communication. A

new class of error correcting Delay Insensitive (ie., unordered) codes is introduced for global asynchronous
communication.It simultaneously provides timing-robustness and fault tolerance for the codes.A systematic and

weighted code is targeted. The proposed error correcting unordered (ECU) code, called zero-sum can provide

1-bit correction.The extensions to the zero-sum code are given.The zero_sum⁺ code provides 3-bit error

detection,or it can provide 2-bit detection and 1-bit correction.The zero_sum* code support 2-bit

correction,while still guaranteeing 2-bit detection under different strategies of weight assignments. Zero_sum*

code provides 2-bit correction coverage (50 % to 70%) of all 2-bit errors. The proposed method reduces delay

occurred, due to the transfer of corrupted bits in a packet on the channel by the removal of timer and also

reduces the area with the proposed Completion Detector (CD).

Keywords : Asynchronous communication, Four phase protocol , error-correcting codes, delay insensitive and

unordered.

I. Introduction
 In past, significant effort has been spent in designing efficient codes for detection and correction of

symmetric, unidirectional and asymmetric errors. Application of such codes to asynchronous buses has also

been explored. An asynchronous bus consists of wires whose transmission delays are unpredictable. The

problem of detecting the arrival of information on such a bus has been shown to be equivalent to the problem of

designing unordered codes, such codes are also used for the error control.

 There are mainly three classes of errors that can be handled [3].They are unidirectional, asymmetric
and symmetric errors. Unidirectional errors may include either 0 → 1 or 1 → 0 type bit corruptions, but only

one type may occur within any given codeword; the type need not be known in advance [3]. Asymmetric errors

involve only one error type for all codewords (0 → 1 or 1 → 0), where the type must be known in advance [4].

Symmetric errors may simultaneously include both 0 → 1 and 1 → 0 bit corruptions within the same

codeword [3]. The main focus of this paper is on handling the symmetric errors.

 The contributions of this paper are centered around a family of error-correcting unordered (ECU)

codes for use in asynchronous global communication, called Zero-Sum [1], [2].These codes simultaneously

targets two types of robustness: timing-robustness, allowing variability in the arrival times and orders of

individual bits in a codeword on a channel, by the use of DI encoding, and fault tolerance, providing error

detection and correction capabilities.

 All proposed Zero-Sum codes are systematic [3], [4], where data appears in unaltered form in each

codeword and can be directly extracted by the receiver without any decoding hardware. They are also weighted,
where the check field is computed as the sum of data index weight. When compared to the best previous

systematic ECU code, the new code provides significant reduction in transition power for most field sizes,with

better or comparable coding efficiency.

II. System Model
2.1. Point-to-Point Asynchronous Communication

 An asynchronous communication channel [5] is the means by which information is transmitted. Fig. 1

gives an example of point-to-point communication.

Fig.1: Block diagram of Point-to-point asynchronous communication

Implementation of error correcting methods to the asynchronous Delay Insensitive codes with

reduced delay and area

www.iosrjournals.org 79 | Page

 If the sender issues a request signal (REQ) to the receiver and the receiver in turn provides an

acknowledgment signal (ACK) to the sender. If the sender passes actual data to the receiver, the REQ is

typically replaced by the encoded data, as shown in the fig.1. The ACK indicates that data has been received by

the receiver and new data can eventually be sent.

2.2. Four-phase Communication Protocol

 Given an asynchronous communication channel, a protocol is needed to transfer information from

sender to the receiver.The most widely used protocol is four-phase or return-to-zero (RZ) [6], is shown in fig(2).

Fig.2: Four-phase return-to-zero protocol.

 The request signal is encoded into the data signals using two wires per bit of information that has to be

communicated. The information is encoded as follows: {x.f,x.t} ={1,0} for a logic 0 and {x.f,x.t} = {0,1} for a

logic 1 represent valid data and {x.f,x.t} = {0,0} represents no data. The codeword {x.f,x.t} = {1,1} is not used,

and a transition from one valid codeword to another valid codeword is not allowed.The protocol has two

operations. 1) Evaluate and 2) Reset. During evaluate operation, the sender issues a valid codeword, the receiver

absorbs the codeword and sets acknowledge high.At this point the reset operation begins, the sender responds

by issuing the empty codeword,and the receiver acknowledges this by taking acknowledge low. At this point the

sender may initiate the next communication cycle.

 An alternative to the RZ protocol is two-phase or non-return to zero protocol [7],which avoids reset
phase. This also use the dual-rail coding,contains even phase and odd phase. The codes designed for this

typically have large overheads and it has more complex structure. Therefore, four-phase communication

protocol is used for communication in this paper.

2.3. DI Codes

 When asynchronous communication is used, data must be suitably encoded so that the receiver can

identify when a packet has been received. DI codes [5] (i.e.,unordered codes) are insensitive to propagation

delays on individual bits in a codeword. A code C is said to be unordered or delay-insensitive (DI) when no code

word is covered by another code word. When an unordered code is used, arrival of a code word can be unambiguously
recognized by the receiver, in the presence of arbitrary delays in the wires.

Definition 1 (Unordered Code): A codeword X = x1x2 . . . xn covers another codeword Y = y1y2 . . . yn if and

only if, for each bit position i, if yi = 1 then xi = 1. In these cases, Y is covered by X, or Y ≤ X. Codewords X and

Y are unordered if X _ and Y _ X. A code, C, is unordered iff each pair of codewords in C is unordered.

Example 1: Given codewords, X = 001, Y = 100, Z = 011, the DI pairs are {X, Y} and {Y, Z}. X is not unordered
when compared to Z.

 There are two types of DI codes: Systematic and non-systematic codes. A systematic code [8]

contains separate data and check fields. For asynchronous communication, the check field provides extra bit to

indicate the entire code is DI. Types of systematic codes are Berger [9] and Knuth [10] codes. In this no

hardware decoders are required for the extraction of data because the original data directly appears in

codeword.In non systematic codes [5], there are no separate data and check fields. Data is encoded in a unified

field, which ensures delay insensitivity. Dual-rail, 1-of- 4 and general class of m-of-n codes are example for

these codes.

.

2.4. Basic Zero_sum code

 The basic Zero-Sum code, uses the single index weight assignment only as discussed in Berger [7]

and Bose [3] codes. The code provides 1-bit error correction or 2-bit error detection for symmetric errors, as

well as delay-insensitivity, thus forming an ECU code.

 Code construction combines aspects of both Hamming codes [11] and Berger[7] codes. In particular,

as in Berger codes, the pattern of 0 bit in the dataword is used to generate the DI field. However, while the

Berger method counts the number of 0s, the Zero-Sum approach adds the 0-bit index weights. Similarly, Zero-

Sum uses the bit index numbering scheme used in Hamming codes, but typically requires extra bits.

Implementation of error correcting methods to the asynchronous Delay Insensitive codes with

reduced delay and area

www.iosrjournals.org 80 | Page

Fig 3: 4-bit zero-sum codeword structure

.

2.4.1. Overview of Code: Fig.3 shows the codeword structure for a Zero-sum ECU code. It contains two fields:

1) data word, and 2) check field. Each bit position is given an index. The check bits index weights are powers-

of-two (for non negative exponents), and the data word index weights are given power of two weights starting

from the smallest check bit index. The index weights assigned to the dataword field is called the weight set. For

example, given a 3-bit dataword field, the weights of the check bits are 1, 2, 4, and 8 and dataword weights are
consecutively assigned integers of 3, 5, and 6. Fig.4 shows examples of Zero-Sum ECU codes for 2-bit, 3-

bit,and 4-bit information fields.

2.4.2. Check Field Generation: Checkfied of Zero-sum Code is the binary representation of the arithmetic sum

of the dataword index weights whose bit is 0, hence the name of the codes, Zero-Sum.

2.4.3. Formal Calculation of Code Length: The check field must be large enough to support the binary

representation of the sum of all of the data field index weights, i.e., to handle the extreme case where all data

bits are 0. Therefore, the total number of check bits allowed is the [log2(_dataword index weights)] + 1. A

closed-form equation for the check field length k in terms of the data field length n is [7]:

k = _log2([(n + μ)(n + μ + 1)/2] − 2μ + 1) , (1) where μ is determined by 2μ−1 < n+μ < 2μ , (2)

Example 2: For the 4-bit dataword 1010 in Fig. 4(c), the sum of those dataword index weights whose bits are set

to 0 (i.e., weights 6 and 3) is 9. Therefore, the corresponding check field value is the binary representation of 9,

which is 01001.

Fig 4: Examples of Zero_sum ECU codes (a)2-bit ECU code (b)3-bit ECU code (c)4-bit ECU code.

2.4.4. Detecting and Correcting 1-Bit Error: Hamming code provides a syndrome which is a vector of
individual check bits (i.e., one for each parity group) [11], the Zero-Sum ECU code provides a unified syndrome

which is a single positive integer: the absolute value of the difference between the appended check field and a

newly calculated check field. Error detection and correction uses a modification of the Hamming approach. In

both Zero-Sum and Hamming codes, nonzero syndrome indicates an error. However, in Zero-Sum, the

Implementation of error correcting methods to the asynchronous Delay Insensitive codes with

reduced delay and area

www.iosrjournals.org 81 | Page

syndrome is computed differently: the receiver creates a regenerated check field C' from its datafield ,and

compares C' to the actual received check field C. The resulting Zero-Sum syndrome, is the absolute difference

of|C' − C|. If the difference is zero, there is no error. The syndrome is also used to correct a 1-bit error: its value

is the index of the corrupted bit, as in Hamming codes. However, unlike Hamming, the Zero-Sum appended

check field also ensures delay-insensitivity, as will be proven below.

Example 3: Following Example 2 above, suppose there is an error in transmitting the 4-bit dataword 1010, due

to a flip in the data bit with index 7 (i.e., erroneous dataword 0010), transmitted with the original error-free

check field (i.e., 01001). The newly calculated check field, based on the corrupted dataword, is 16 (i.e., 7 + 6 +

3). Therefore, the syndrome is 16 − 9 = 7, which is nonzero and not a power-of- two. This syndrome therefore

precisely identifies the index (i.e., 7) of the corrupted data bit. In contrast, if a single check bit has an error, the

syndrome will be a power-of-two and identify the corresponding index of the corrupted check bit.

Theorem 1 (zero-sum code delay – insensitivity [5]): Every zero sum code is unordered

Proof: By definition1, it is sufficient to show that zero-sum code, c, is unordered if each pair of code words is

unordered. Given two data words X and Y, by definition 1 if X covers Y, then X has more 1’s and Y, and Y has

more 0’s than X. The check field is computed as the sum of the data field indexweight which are `0’. The sum of

index weights of check field must be greater than the sum of index weights of data word.

Theorem 2(Zero-sum code error detection): Every zero-sum code provides 2-bit detection.

Proof: The proof is immediate from Theorem 2. Since all 1-bit errors can be corrected, the code must have

minimum distance of at least 3; therefore, all 2-bit errors can be detected.

III. Extending The Zero-Sum Code
3.1. Zero-Sum+ Code

 It is an enhancement of Zero-sum code, provides two alternative modes. In one mode, up to 3-bit

errors and all odd errors can be detected. In a second mode, both correction and detection can be handled

together: every 2-bit error can be detected and every 1-bit error can be corrected.

Fig 5: 4-bit zero-sum⁺ code word structure

.

DataWord Check bits parity

i₈ i₇ i₆ i₅ i₄ i₃ i₂ i₁ i₀ i₀

7 6 5 3 16 8 4 2 1 0

0000 10101 1

0001

0010

0100

1000

10010

10000

01111

01110

1

0

1

0

0011

0101

1001

0110

1010

1100

01101

01100

01011

01010

01001

01000

1

0

1

0

0

1

0111

1011

1101

1110

00111

00110

00101

00011

0

1

1

1

1111 00000 0

Fig 6: 4-bit zero_sum⁺ code

Implementation of error correcting methods to the asynchronous Delay Insensitive codes with

reduced delay and area

www.iosrjournals.org 82 | Page

3.1.1. Overview: Zero-Sum+ code is essentially a Zero-Sum code with a parity bit attached,as shown in fig (5).

Both the data word and check fields of a Zero-Sum+ code are identical to those of a basic Zero-Sum code. The

new field is the parity bit, which provides even parity. Its index weight is 0. The fig.6 shows the zero-sum⁺code

for 4-bit data

3.1.2. Error Detection: Error detection mode can detect up to 3-bit errors and all odd numbers of bit errors. As

shown in Table 1, each error type is detected by its parity and syndrome values. The case of 0 errors in the

received codeword is distinct, where the parity is correctly set to even and the syndrome is equal to 0. In the

remaining cases, the parity is either odd or the syndrome is nonzero. When a 1-bit error occurs, there are two

possibilities, each resulting in odd parity. If a 1-bit error occurs in either the data word or the checkfields, the
syndrome will be nonzero; if a 1-bit error occurs in the parity bit, the syndrome will be zero. When a 2-bit error

occurs, the parity of the received codeword will be correctly set to even; however, the syndrome is guaranteed to

be nonzero. Finally, any odd number of errors results in odd parity, with either a nonzero or a zero syndrome.

Table 1:Zero_sum⁺error detection classification.

of errors parity Syndrome value

0 even Zero

1 Odd Zer or nonzero

2 Even Nonzero

3(or odd) odd Zero or nonzero

3.1.3.Error Correction: Similar to the Zero-Sum code, the Zero-Sum+ code also guarantees that 1-bit errors can

be corrected. As an additional parity bit is added in the Zero-Sum+ approach, a variant set of correction methods
is needed. As shown in Table 2, When 0 errors occur, the parity is even and syndrome values is correct.

Therefore, no error handling method is applied. When 1 error occurs, there are two cases. If the error occurs in

either the data word or the check fields, the syndrome value is nonzero and the parity is incorrectly set to odd.

The error correction technique used is the 1-bit correction strategy for a Zero-Sum code presented in Section

2.4.4; toggle the bit indicated by the nonzero syndrome value. If a 1-bit error occurs in the parity bit, the

syndrome value is zero. Correction is performed by toggling the parity bit.

Table 2:zero_sum⁺ error correction classification
of errors Parity Error handling

0 Even None

1 Odd 1-bit correction method

1 Odd Toggle parity bit

3.2. Zero-Sum* Code:

3.2.1 Overview: The Zero-Sum* codes support heuristic multi-bit correction by strategically varying the index

weight assignment. The structure of the code is similar to a Zero-Sum+ code.The data word field is assigned

non-power-of-two values {3, 7, 11, 5}. The check field indices are assigned the ordered values of power-of-two

weights {16, 8, 4, 2, 1}.The fig.7 shows the 4-bit zero-sum* code.

Table 3:zero_sum* error correction classification
#of

errors

Parity Syndrome

value

Error handling

0 Even Zero None

1 Odd Nonzero 1-bitcorrection method

1 Odd Zero Toggle parity bit

2 even nonzero 2-bitcorrection method

3.2.2.Method for 2-Bit Correction:

 The Zero-Sum* code can correct all 1-bit errors and some instances of 2-bit errors,as shown in Table

3. Errors are corrected in a two-step procedure. First, the error type is classified according to the syndrome and

parity of the received codeword. Next, the appropriate method for correcting the error is selected. When 0 errors

occur, the parity is even and syndrome is zero. Therefore, no error handling method is applied. A 1-bit error is

corrected by either toggling the parity bit or using the 1-bit correction method as discussed in Section 2.4.4. For

the 2-bit error correction,the unoptimized method is proposed.

Implementation of error correcting methods to the asynchronous Delay Insensitive codes with

reduced delay and area

www.iosrjournals.org 83 | Page

 The unoptimized approach performs 2-bit correction by generating and pruning the syndromes of

all possible candidate code words which are at distance 2 from the received codeword. Each candidate that has

nonzero syndromes is discarded, as it could not have been the original codeword. If there exists exactly one

valid candidate codeword with syndrome zero. then correction can be performed in 2-bit flips. This single

remaining codeword is the original sent codeword. When multiple Code words remain, there is ambiguity in

how the received codeword was reached, since any one could have been the originally sent codeword.

Data Word Check bits parity

i₈ i₇ i₆ i ₅ i₄ i₃ i₂ i₁ i₀ i₀

3 7 11 5 16 8 4 2 1 0

0000 10101 1

0001

0010

0100

1000

10010

10000

01111

01110

1

0

1

0

0011

0101

1001

0110

1010

1100

01101

01100

01011

01010

01001

01000

1

0

1

0

0

1

0111

1011

1101

1110

00111

00110

00101

00011

0

1

1

1

1111 00000 0

Fig 7: 4-bit Zero_sum* code

3.2.3. Strategies for Assigning the Dataword Index Weights:

 The choice of weight set directly impacts the coverage of 2-bit correction that can be obtained. When

selecting the weight set, there are two points to consider. The first is to consider the possible combinations (i.e.,

sum and difference)between pairs of index values in the weight set Second, a careful balance must be

maintained between the selected weights and the length of the check field. Taking these points into

consideration,the dataword index weight set is generated such that each pairwise combination (i.e., sum or

difference) of dataword index weights in the weight set is unique. Hence, each distinct 2-bit error occurring

solely within the dataword field and check field has a unique syndrome. This approach ensures no aliasing of

any distinct 2-bit errors lying entirely within the data word field or check field, but does not eliminate aliasing

for some 2-bit errors that span the two fields.

IV. Hardware Support:

Implementation of error correcting methods to the asynchronous Delay Insensitive codes with

reduced delay and area

www.iosrjournals.org 84 | Page

 Fig. 8 shows the architectural block diagram for a zero-sum code. The system mainly contains an

encoder, an error correction unit, and a completion detector. An encoder generates the check field, which is

appended to the data word and transmitted on the four-phase asynchronous communication channel between

sender and receiver. At receiver the corresponding data word and check bits are given to the error correction

unit, it generates the corrected data word and the check bits. Then, the CD generates the Ack which again given

back to the sender.

 An encoder design for a 4-bit dataword is shown in Fig. 9. It consists of a row of selectors (i.e.,

multiplexors) followed by adders. There is one selector for each data bit, for the data bit”0” hardcoded index

weight is selected and for”1” zero is selected.Finally,they are added to get the check bits, which is the binary

representation of obtained value.

 Fig 9:Basic Encoder fig 10: 4-phase encoder bit slice

 The fig.10 shows the simple four phase encoder block, having a row of AND gates. Each bit contains

two wires with a common enable signal. When enable is high, one and only one of each pair of data rails will

then go high; when enable is low, the encode block will reset all of the data rails to zero.

 The 4-bit error corrector unit, shown in Fig. 11 is divided into a syndrome generator and corrector. The
syndrome generator produces the syndrome by performing the operations of comparison and subtraction. First,

given the received dataword, an encoder generates a new check field. Next, the syndrome is generated by

finding the mathematical difference between the received and newly generated check fields. A magnitude

comparator is used to perform the absolute value function. The top-most multiplexor selects the larger of the

two values, while the lower multiplexor selects the smaller of the two. The second part performs the correction

operation. A C-element and 2-input XOR gate are allocated for each bit of a codeword. The input to the C-

element is the syndrome, and for each bit, a nonzero syndrome which uniquely identifies when an error occurs

in that particular bit. The corresponding XOR gate corrects the faulty bit by performing bit-inversion. Given an

error, exactly one C-element and XOR gate will be enabled. A bank of latches are included to ensure a glitch-

free transaction.

Fig.11. Microarchitecture of 4-bit zero-sum error-corrector unit design

 The output of the Error Correcting Unit is given to the CD, which contains a single multi input OR gate

which combines the results to produce the final Ack. Given CD replace the usage of 16 C-elements as in [1]
with a single multi input OR gate. This reduces the area with less requirement of hardware components.

 By the removal of timer block we are reducing the execution time i.e., reducing the delay with 1-bit

detection and correction for the zero-sum code, when compared to [1] .

Implementation of error correcting methods to the asynchronous Delay Insensitive codes with

reduced delay and area

www.iosrjournals.org 85 | Page

 The hardware overhead of Zero-sum code was reduced by eliminating the timer-out unit in terms of

both delay and area. Interestingly, as shown in fig 12& fig 13 the trend shows a strong and consistent reduction

in execution time (6160ns to 400ns) from zero-sum-old system to the modified zero-sum system.

Fig 12: zero_ sum _old system with out modified diagram.

Fig 13:zero_sum system of modified block diagram

V. Conclusion:
 A novel Zero-sum family was introduced, which supports the design of asynchronous global

communication which simultaneously provides timing robustness and fault tolerance. Two enhancements has

been proposed, Zero-sum+ code extends error detection to 3-bit errors and zero-sum* code provides 2-bit

detection and correction .The correction coverage of 2-bit errors are upto 50% to 70%. We identified the

simulation results for zero-sum code and reduction of delay and area with a modification to the block level

architecture.

References
[1] M.Y. Agyekum, and S. M. Nowick,“Error-Correcting Unordered Codes and Hardware Support for Robust Asynchronous Global

Communi-cation”,proc DATE,Jan 2012,PP 75-88.

[2] M. Y. Agyekum and S. M. Nowick, “An error-correcting unordered code and hardware support for robust asynchronous global

communication,” in Proc. DATE,Mar. 2010, pp. 765–770.

[3] B. Bose, “Unidirectional error correction/detection for VLSI memory,” in Proc.ISCA, 1984, pp. 242–244.

[4] N. K. Jha, “Separable codes for detecting unidirectional errors,” IEEE Trans.Comput.-Aided Des., vol. 8, no. 5, pp. 571–574, May

1989

[5] T. Verhoeff, “Delay-insensitive codes: An overview,” Distrib. Comput., vol. 3, no.1, pp. 1–8, 1988.

[6] M. Cannizzaro, W. Jiang, and S. M. Nowick, “Practical completion detection for 2-of-n delay-insensitive codes,” in Proc. IEEE

ICCD, Oct. 2010, pp. 151–158.

[7] M. Blaum and J. Bruck, “Unordered error-correcting codes and their applications,” in Proc. FTCS, Jul. 1992, pp. 486–493

[8] B. Bose, “On unordered codes,” IEEE Trans. Comput., vol. 40, no. 2, pp. 125–131,Feb. 1991.

[9] D. A. Anderson and G. Metze, “Design of totally self-checking check circuits form-out-of-n codes,” IEEE Trans. Comput., vol. 22,

no. 3, pp. 263–269, Mar. 1973

[10] A. Chandrasekaran and K. Boahen, “A 1-change-in-4 delay-insensitive interchiplink,” in Proc. ISCAS, May 2010, pp. 3216–3219.

[11] R. W. Hamming, “Error detecting and error correcting codes,” Bell Syst. Tech. J.,vol. 29, no. 1, pp. 147–150, 1950.

[12] J. M. Berger, “A note on error detecting codes for asymmetric channels,” Inform.Contr., vol. 4, no. 1, pp. 68–73, 1961.

