
ournal of Electronicsl and Communication Engineering (IOSR-JECE)

ISSN: 2278-2834-, ISBN: 2278-8735, PP: 54-58

www.iosrjournals.org

Second International Conference on Emerging Trends in Engineering (SICETE) 54 |Page

Dr.J.J.Magdum College of Engineering, Jaysingpur

Sigfree: Buffer Overflow Attack Detection

P. H. Rathod , S. N. Dhage
Computer Engineering,MGM COE/Mumbai, India

Computer Engineering,SPIT/Mumbai,India

ABSTRACT: Sigfree act as a Defender or protective shield for the today’s Information world from insider

or outsider attacker. Any activity aimed at disrupting a service or making a resource unavailable or gaining

unauthorized access can be termed as an intrusion. Buffer Overflow attack is an attack which gives rise to other

attacks as DOS attack. Buffer overflow is activated when a large amount of data is copied into fixed size

memory. Buffer overflow attack gives opportunity to the attacker to change the return address of the function by

some malicious content. In this paper we have proposed a system Sigfree which has two approaches. First

approach analyses and distils machine code and second approach removes the data anomaly. Sigfree blocks

the new and unknown attack. Sigfree uses the code abstraction method which separates the data and executable

separately. Sigfree is generic i.e. Sigfree does not have the predefined signature or pattern for matching with

worm signature. It generates the signature during the runtime. Sigfree detect the illegal or external instruction

by monitoring the network traffic. Sigfree uses the recursive traversal algorithm with its ability to deal

intelligently with control flow .Sigfree has low deployment and maintenance cost. Sigfree cuts down the false

positive and false negative rate as compared to other network based or host based IDS.

Keywords-Buffer,Buffer Overflow Attack,Dynamic Techniques, Intrusion detection System, Static Techniques,.

I. INTRODUCTION
Information plays a vital role in today’s information world. Tons of research has been done to protect

information from insider and outsider attacker. Many new and unknown attacks has been occurred from last

decade .Buffer overflow attack is one of the most occurring attack. Buffer overflow is a large amount of data is

copied into fixed size memory. Huge amount of vulnerabilities exist in each domain (Operating System,

Databases, Network Applications etc) of computer world.From all the domains we have seen so far most

common vulnerabilities are Buffer overflow and Format String vulnerabilities .Buffer overflow attack occurred

due to sloppy coding .When Buffer overflow occurs return address of the function is being altered by an attacker

by external address and malicious code is executed points to that address. Different Intrusion detection system

has been developed for detecting buffer overflow and different kinds of attack. They deal with low false positive

rate and low false negative rate. There were different Intrusion detection system which were categories based on

their features .They were categories into different classes as follows 1)Techniques depends on source

code.2)Techniques need to modify the operating system or hardware3)Techniques by analysing symptoms of

attack..4) Techniques use code obfuscation method.5) Techniques need to extend the features of compiler. There

were static as well as Dynamics tools and technique to make a network attack free .static analysis tools have

unacceptably high false alarm rates and insufficient detection rates [1]. Dynamic buffer overflow detection and

prevention is an attractive approach, because fundamentally there can be no false alarms.

Tools that provide dynamic buffer overflow detection can be used for a variety of purposes, such as preventing

buffer overflows at runtime, testing code for overflows, and finding the root cause of segfault behaviour.

Chaperon[2] works directly with binary executable and thus can be used when source code is not available.

ProPolice [3] is similar to StackGuard [4], and performed it on artificial exploits. It works by inserting a

―canary‖ value between the local variables and the stack frame whenever a function is called. It also inserts

appropriate code to check that the ―canary‖ is unaltered upon return from this function. The ―canary‖ value is

picked randomly at compile time, and extra care is taken to reorder local variables such that pointers are stored

lower in memory than stack buffers. The ―canary‖ approach provides protection against the classic ―stack

smashing attack‖ [5].TinyCC [6]works by inserting code to check buffer accesses at compile time; however, the

representation of pointers is unchanged, so code compiled with TinyCC can interoperate with unchecked code

compiled with gcc. Insure++ examines source code and inserts instrumentation to check for memory corruption,

memory leaks, memory allocation errors and pointer errors, among other things. The resulting code is executed,

and errors are reported when they occur.

In this paper we have proposed Technique called Sigfree i.e Signature free buffer overflow attack which blocks

the new and unknown attacks [7].Sigfree has certain advantages over the previous tools and techniques. Sigfree

does not require the source code but sigfree works on machine code. Sigfree do not do changes on the server

side i.e. transparency is high. Modification done on Server side, operating system, or on hardware is

Sigfree: Buffer Overflow Attack Detection

Second International Conference on Emerging Trends in Engineering (SICETE) 55 |Page

Dr.J.J.Magdum College of Engineering, Jaysingpur

transparent. Sigfree uses the code abstraction technique where data is separated from malicious executable.

Sigfree has the low maintenance and deployment cost. Sigfree analyse the machine code i.e. program is nothing

but flow of instruction. Sigfree check the instruction one by one and blocks the unwanted instruction coming

from unwanted user. Sigfree assign the address to each instruction and decode the instruction. Sigfree uses the

recursive traversal algorithm and code abstraction technique. Server always needs a data instead of executable.

So data is being separated from code.Several researchers have developed distributed protocols to detect such

traffic manipulations, typically by validating that traffic transmitted by one router is received unmodified by

another [8], [9].Generated rules are used to detect network intrusions[10].

The rest of this paper is organized as follows: In Section 2, we give an overview of Sigfree. In Sections 3 and 4,

working of the Sigfree with the instruction sequence distiller component and the instruction sequence analyse.

In Section 5, we show our experimental results. Finally, we conclude this paper in Section 6.

II. OVERVIEW OF SIGFREE
Sigfree uses three different methods 1) Buffer Overflow Detection and prevention Method 2) Worm detection

and signature generation 3)Machine code analysis. Buffer overflow is detected by using different techniques

such as finding errors in the source code due to sloppy coding [11].C and C++ are the language which do not do

bound checking i.e without checking the size of the data it is been copied to memory which will cause buffer

overflow attack. Even by modifying operating system or hardware we can detect buffer overflow attack tools

such as Pax [12], LibSafe [13], and e-NeXsh [14].Even some tools extends the functionality of the compiler so

it can detect buffer overflow attack such as ProPolice [15], and Return Address Defender (RAD) [16]. DIRA

[17] is another compiler that can detect control hijacking attacks, identify the malicious input.

Capturing code running symptoms and to achieve 100 percent coverage in capturing buffer overflow

symptoms, dynamic data flow/taint analysis/program shepherding techniques were proposed in Vigilante [18],

TaintCheck [19], and [20].Considering these features Sigfree is being proposed. Sigfree works on Machine code

rather than source code. Sigfree does not require modifying the operating system or any kind of hardware.

Sigfree do not extend the features of compiler. Sigfree filter out the illegal data coming from various network

with low false positive rate and low false negative rate.

III.SIGFREE ARCHITECTURE

Fig.3.0 Architecture of Sigfree

In Fig.3.0 Sigfree is being installed on the router in between Firewall and network. The Packets or data

coming from different host system is being filtered out before moving to firewall. Sigfree uses Code abstraction

techniques which separates data and executable. SigFree first uses a new O(N) algorithm, where N is the byte

length of the message, to disassemble and distil all possible instruction sequences from the message’s payload,

where every byte in the payload is considered as a possible starting point of the code embedded.

Sigfree: Buffer Overflow Attack Detection

Second International Conference on Emerging Trends in Engineering (SICETE) 56 |Page

Dr.J.J.Magdum College of Engineering, Jaysingpur

Fig 3.1Figure with different attacker and victim host system in the network.

In the above figure 3.0 we have represent the network consists of host system with attacker and victim. At the

centre we have router through which the information is being passed. Sigfree is being deployed on the router

.Sigfree is located in between firewall and the host system. Sigfree act as online buffer overflow attack Blocker

.Sigfree deals with low false positive rate and low false negative rate.

Fig.3.2. State diagram of a variable. State U: undefined, state D: defined but not referenced, state R:

defined and referenced, state DD: abnormal state define-define, state UR: abnormal state undefine-

reference, and state DU: abnormal state define-undefine.

In figure 3.2 to detect the a forementioned obfuscated buffer overflow attacks. Scheme exploits the data flow

characteristics of a program. Normally, a random instruction sequence is full of data flow anomalies, whereas a

real program has few or no data flow anomalies. However, the number of data flow anomalies cannot be directly

used to distinguish a program from a random instruction sequence because an attacker may easily obfuscate his

program by introducing enough data flow anomalies.

In this paper, we have use the code abstraction technique, which analyse the code and detect the data anamoly

based on its property whether it is refrence,undefined.So such instruction falls under useless instruction

category.We observe that when there are data flow anomalies in an execution path of an instruction sequence,

some instructions are useless, whereas in a real program at least one execution path has a certain number of

useful instructions. Therefore, if the number of useful instructions in an execution path exceeds a threshold, we

conclude the instruction sequence is a segment of a program.

A data flow anomaly is caused by an improper sequence of actions performed on a variable. There are three data

flow anomalies: define-define, define-undefine, and undefine-reference [18]. The define-define anomaly means

that a variable was defined and is defined again, but it has never been referenced between these two actions. The

undefine-reference anomaly indicates that a variable that was undefined receives a reference action. The define-

undefine anomaly means that a variable was defined, and before it is used it is undefined.
As a result of the code abstraction of an instruction, a variable could be in one of the six possible states. The six

possible states are state U: undefined; state D: defined but not referenced; state R: defined and referenced; state

DD: abnormal state define-define; state UR: abnormal state undefine-reference; and state DU: abnormal state

define-undefine. Fig. 6 depicts the state diagram of these states. Each edge in this state diagram is associated

with d, r, or u, which represents ―define,‖ ―reference,‖ and ―undefine,‖ respectively.

Sigfree: Buffer Overflow Attack Detection

Second International Conference on Emerging Trends in Engineering (SICETE) 57 |Page

Dr.J.J.Magdum College of Engineering, Jaysingpur

IV. WORKING OF SIGFREE

Fig.4.0 Block architecture of Signature free intrusion detection system.

In figure 4.0 as shown Sigfree is being deployed on the router. So data coming from various host system is

being filter out. There are victim as well as attacker system in the network. Sigfree consist of different

component i.e. Ascii filter, Sequence instruction distiller and Sequence instruction analyzer. The data coming

from various host system is being passed through sigfree component step by step. Ascii filter filters out the

Instruction which comes under those ascii value. Those instruction that are not filter is being passed through

the instruction sequence distiller. During this phase the instruction flow graph is used with the recursive

traversal algorithm .Here illegal and external address is being blocked .But still some of the instruction has the

data anomaly and which is then passed through the sequence instruction analyzer where we have used code

abstraction technique. Here we have used algorithm to check the data anomaly during the flow of instruction.

Data is being separated from executables where executable are blocked and data is passed to the destination

host.

Algorithm 1

To block useless, illegal address instruction

initialize EISG G and instruction array A to empty

global startAddr, endAddr;

proc DisasmRec(addr)

begin

while(startAddr<=addr<endAddr)

do

add instruction node i to G

if (addr has been visited already) return;

I := decode instruction at address addr;

mark addr as visited;

 if inst is illegal then

 A[i] illegal instruction inst

 set type of node i ―illegal node‖ in G

 else

 A[i] instruction inst

 if inst is a control transfer instruction then

 for each possible target t of inst do

 if target t is an external address then

 add external address node t to G

 add edge e(node i, node t) to G

else

 add edge e(node i, node i + inst.length) to G

i i + 1

end

proc main()

Sigfree: Buffer Overflow Attack Detection

Second International Conference on Emerging Trends in Engineering (SICETE) 58 |Page

Dr.J.J.Magdum College of Engineering, Jaysingpur

begin

V. EXPERIMENT RESULT

In the above the figure 5.0 we have plotted the graph where x-axis represents the time in second and y-axis

represents the number of node. Above graph gives the throughput of the system. The unwanted data will be

blocked at the router. Which increases the performance of the system making host system free from different

kind of attack.

VI. CONCLUSION
By implementing the Sigfree we come to conclusion that still we have not achieve 100 % security .There are various

approaches to detect the attacks in an Intrusion Detection System. Each of the approaches has itsown advantages and

disadvantages. Sigfree has low deployment and maintenance cost .Still Sigfree deals low false positive rate and low

false negative rate.New techniques keep emerging which will remove the drawbacks of the previous methods of

implementation. Thus a judicious approach has to be made while selecting a mode to implement attack detection in an

intrusion detection system.

REFERENCES
[1]M. Zitser. Securing software: An evaluation of static source code analyzers. Master’s thesis, Massachusetts Institute of Technology,
Department of Electrical Engineering and Computer Science, Aug. 2003.

[2]Parasoft. Insure++: Automatic runtime error detection. http://www.parasoft.com, 2004.

[3] H. Etoh. GCC extension for protecting applications from stack smashing attacks. http://www.trl.ibm.com/projects/security/ssp/, Dec.
2003.

[4]C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke,S. Beattie, A. Grier, P. Wagle, Q. Zhang, andH. Hinton. Stackguard: Automatic

adaptive detection and prevention of buffer-overflow attacks. In Proceedings of the 7th USENIX Security Conference, pages 63–78, San
Antonio, Texas, Jan. 1998.

[5] AlephOne. Smashing the stack for fun and profit.Phrack Magazine, 7(47), 1998.

[6] F. Bellard. TCC: Tiny C compiler.http://www.tinycc.org, Oct. 2003.
[7] Xinran Wang, Chi-Chun Pan, Peng Liu, and Sencun Zhu, ―Sigfree: A Signature-Free Buffer Overflow Attack Blocker‖,IEEE Trans. On

Dependable and Secure Computing, VOL. 7,NO. 1, Jan-Mar 2010.

[8] K.A. Bradley, S. Cheung, N. Puketza, B. Mukherjee, andR.A. Olsson, ―Detecting Disruptive Routers: A Distributed
Network Monitoring Approach,‖ Proc. IEEE Symp. Securityand Privacy (S&P ’98), pp. 115-124, May 1998.

[9] A.T. Mizrak, Y.-C. Cheng, K. Marzullo, and S. Savage, ―Detecting and Isolating Malicious Routers,‖ IEEE Trans. Dependable and

Secure Computing, vol. 3, no. 3, pp. 230-244, July-Sept. 2006.
[10]A surveyofintrusiondetectiontechniquesinCloud Chirag Modi a,n, DhirenPatel a, BhaveshBorisaniya a, HirenPatel b, Avi Patel c,

MuttukrishnanRajarajan c.Journal ofNetworkandComputerApplications36(2013).

[11]H. Chen, D. Dean, and D. Wagner, ―Model Checking One Million Lines of C Code,‖ Proc. 11th Ann. Network and Distributed System

Security Symp. (NDSS), 2004.

[12] H.-A. Kim and B. Karp, ―Autograph: Toward Automated,Distributed Worm Signature Detection,‖ Proc. 13th USENIXSecurity Symp.
(Security), 2004.

[13] J. Newsome, B. Karp, and D. Song, ―Polygraph: AutomaticSignature Generation for Polymorphic Worms,‖ Proc. IEEE Symp.

Security and Privacy (S&P), 2005.
[14] R. Chinchani and E.V.D. Berg, ―A Fast Static Analysis Approachto Detect Exploit Code inside Network Flows,‖ Proc. Eighth Int’l

Symp. Recent Advances in Intrusion Detection (RAID), 2005.

[15] GCC Extension for Protecting Applications from Stack-Smashing Attacks, http://www.research.ibm.com/trl/projects/security/ssp,
2007.

[16] T. cker Chiueh and F.-H. Hsu, ―Rad: A Compile-Time Solution to Buffer Overflow Attacks,‖ Proc. 21st Int’l Conf. Distributed

Computing Systems (ICDCS), 2001.
[17] A. Smirnov and T. cker Chiueh, ―Dira: Automatic Detection,Identification, and Repair of Control-Hijacking Attacks,‖ Proc. 12th Ann.

Network and Distributed System Security Symp. (NDSS), 2005.

[18] Jempiscodes—A Polymorphic Shellcode Generator, http://www.shellcode.com.ar/en/proyectos.html, 2007.
[19] S. Macaulay, Admmutate: Polymorphic Shellcode Engine, http://www.ktwo.ca/security.html, 2007.

[20] T. Detristan, T. Ulenspiegel, Y. Malcom, and M.S.V. Underduk, Polymorphic Shellcode Engine Using Spectrum Analysis, http://

www.phrack.org/show.php?p=61&a=9, 2007.

