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Abstract : The type III control loops are advantageous as compared to type I and type II as , if frequency 

domain modeling of the control loop is followed, type-III control loops are characterized by the presence of 

three pure integrators in the open-loop transfer function. Therefore, such a control scheme has the advantage of 

tracking fast reference signals since it exhibits zero steady-state position, velocity, and acceleration error. This 

advantage is considered critical in many industry applications, i.e., control of electrical motor drives and 

control of power converters, since it allows the output variable, i.e., current or speed, to track perfectly step, 

ramp, and parabolic reference signals. Here we are investigating the problem of designing PID type III control 

loop using the Revised symmetrical optimum criterion. The proposed PID control law has the following 

characteristics: 1) it consists of analytical expressions that involve all modeled process parameters; 2) it can be 

straightforwardly applied to any process regardless of its complexity since, for its development, a generalized 

transfer function process model is employed consisting of n poles and m zeros plus unknown time delay d; and 

3) it allows for accurate investigation of the performance of the control action to exogenous and internal 
disturbances in the control loop and investigation of different operating points. Here we are comparing the 

conventional symmetrical optimum criterion with the revised symmetrical optimum criterion and justifying how 

the proposed control technique is best by considering three different examples. 

Keywords- Conventional Symmetrical optimum criterion, control schemes, PID control,  Revised Symmetrical 

optimum criterion, type III control loop. 

 

I. Introduction 
1.1 Definitions and Preliminaries 

The core of a closed-loop control system is namely the plant or the process. The plant receives signals 

from the outer world, commonly known as inputs, depicted by u(t) in Fig, and acts at the same time to the outer 
world with its response, known as output, y(t). Moreover, the whole process can also be described by its states 

x(t), which along with the inputs u(t), determine the response y(t) of the plant itself process itself, known as 

internal disturbances.  

 
Fig 1 Controlled process 

 

The second category includes any external or exogenous disturbance that can be relevant basically to 

the environmental conditions the process is located at, i.e., varying loads acting as input signals to the output of 

the process, noise coming from the measuring equipment, etc. With respect to the above, it is without any doubt 

apparent that during the plants operation, perfect tracking of the output y(t) for repetitive and different input 
signals u(t) can only be satisfied if fast suppression of internal and external disturbances is achieved. 

Ideally, there are two fundamental requirements of a process in any real time application: 

1. From a plant, it is required that its output y(t) must track perfectly its input u(t). 

2. The aforementioned output tracking of the input u(t) must also be repetitive and for several deferent input 

signals u(t).  
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Of course, these two aforementioned requirements are practically impossible to be satisfied at the same 

time in real-world plants and applications, since the existence of disturbances d(t) alters the behavior of the 
process during its operation. In real-world problems, disturbances d(t) are classified into two categories. The 

first category involves disturbances coming from the process itself, known as internal disturbances. The second 

category includes any external or exogenous disturbance that can be relevant basically to the environmental 

conditions the process is located at, i.e., varying loads acting as input signals to the output of the process, noise 

coming from the measuring equipment, etc. With respect to the above, it is without any doubt apparent that 

during the plants operation, perfect tracking of the output y(t) for repetitive and different input signals u(t) can 

only be satisfied if fast suppression of internal and external disturbances is achieved. 

 

1.2 Closed loop control system 

In this section, we refer to the closed-loop control system presented in Fig.2 where G(s), C(s) stand for 

the process and the controller transfer functions, respectively. Output of the control loop is defined as y(s) and 
kh stands for the feedback path for the output y(s). Signal r (s) is the reference input to the control loop, do(s) 

and di(s) are the output and input disturbance signals, respectively, and nr(s), no(s) are the noise signals at the 

reference input and the process output, respectively. Finally, kp stands for the plant's dc gain at steady state. 

 

 
Fig 2 Closed loop control system 

 

G(s) is the plant transfer function, C(s) is the controller transfer function, r(s) is the reference signal, 

y(s) is the output of the control loop, yf (s) is the output signal after kh, do(s) and di(s) are the output and input 

disturbance signals, respectively, and nr(s) and no(s) are the noise signals at the reference input and process 

output, respectively. kp stands for the plants dc gain, and kh is the feedback path. 

 

1.3 Type of control loop 

Preliminary definitions regarding the type of control loop are given in this section. The error e(s) is defined as 
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Where r(s) = Reference input signal 

           y(s) = output signal 
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Where    
j j jc a b   

According to the final value theorem, e(s) is stable whenever ( )e  is equal to 
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1.3.1 Type 1 control loop  
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At 0 0c    or 0 0a b   

 

1.3.2 Type 2 control loop 
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At 1 0c    or  1 1a b   

 

1.3.3 Type 3 control loop 
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At 2 0c    or  2 2a b  
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II. Conventional Symmetrical Optimum Design Criterion 
In this section, the conventional PID tuning via the symmetrical optimum criterion is presented. The 

closed-loop system of Fig.2 is considered again, where r(s), e(s), u(s), y(s), do(s), and di(s) are the reference 

input, the control error, the input and output of the plant, and the output and input disturbances, respectively. An 

integrating process met in many real-world applications can be defined by 
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Where Tm is the integrator‟s plant time constant, Tp1 is the plant‟s dominant time constant, and TΣp is the 

plant‟s unmodeled dynamics. Supposing that the dominant time constant Tp1 is evaluated, the proposed 
controller is defined by 
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Where TΣc1, TΣc2 are known and sufficiently small time constants compared to Tp1, arising from the 

controller‟s implementation. By setting Tx = Tp1 (pole–zero cancellation) and assuming that TΣc = TΣc1+ TΣc2 

and TΣc1 TΣc2 ≈ 0, the transfer function of the closed-loop control system is equal to (12), shown at the bottom 
of the next page, where TΣ = TΣc + TΣp . The magnitude of (12) is given by (13), shown at the bottom of the 

next page. The denominator of (13) is defined by (14), shown at the bottom of the next page. One way to 

optimize the magnitude of (13) is to set the terms of ωj , j = 2, 4, 6, . . ., in (14) equal to zero, starting again from 

the lower frequency range [17]. Setting kh = 1 and the term of ω6 equal to zero leads to 
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In a similar fashion, setting the term of 
4  equal to zero, along with the aid of (15), results in 
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Summarizing the relations (15) and (17), the aforementioned PID control law defined in (18) results in 
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Finally  when we substitute equation (15) and ( 17)  in closed loop transfer function results in transfer function , 

now normalizing by setting 
's sT  we obtain closed loop transfer function T(s‟) 
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When we plot these two  

 
Fig 3: Frequency response of closed loop transfer function 

 

 

III. Revised Controller Or Explicit PID Tuning Technique 
For the derivation of the optimal control law, a general type-0 stable process model defined by is adopted, where 

n − 1 > m. 
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Since the target of the design is a type-III control loop and according to the analysis presented in Sections II , 

three integrators in ( ) ( ) ( ) ol h pF s k k G s C s  must exist. The proposed I I-PID controller is given by 
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Parameter Tpn stands for the parasitic controller time constant as mentioned in Sections III and III-B. In contrast 

with Sections III and III-B, the flexible form of the numerator 
2  1( )cN s sX s Y    defined in (22) allows 

its parameters X, Y to become complex conjugates if possible The purpose of this section is to determine 

explicitly controller‟s parameters, as a function of all plant parameters, without following the  rinciple of pole–
zero cancellation and ignoring other possible fundamental dynamics of the process. In that case, X, Y,  i will be 

determined at the end of this section as functions  

1 2 3,  ,  , ,  ,  ,  ,  ) ( ) ) ( ,( j j d j j d i j j dX f a b T Y f a b T andT f a b T   of all process parameters. To this end, 

the product ( ) ( )h pk k G s C s  is defined by 
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Where p0 = 1 and β0 = 1. For the need of the analysis, a general purpose time constant c1 is considered. 

Therefore, all time constants involved within the control loop are normalized by setting 
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1s sc  This results in 

the following substitutions: 

1

X
x

c
           

2

1

Y
y

c
        

1

i
i

T
t

c
      

1

dT
d

c
      

1

j

j j

p
r

c
       1,.....,j n      

1

i
i i

z
c


     1,.....,i m  

(26)Time delay constant 
's de   is approximated by the Taylor series 

'
7

'

0

1

!

s d k k

k

e s d
k

 
  

 
    (27) 

 

Finally we obtain a closed loop transfer function as T(s‟) given by  
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For determining explicitly the parameters x, y, and ti of the proposed PID controller, the magnitude optimum 

criterion presented in Appendix A will be adopted. 

There, it is shown that, for maintaining | ( )  1|T j    in the wider possible frequency range, certain 

optimization conditions have to hold and they will be applied in (28). From there, it is shown that, in similar 

fashion with Sections III and III-B, the optimal control law (x, y, ti) is finally given by 
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Let it be noted that parameters Cj, z1, z2, z3, z4, q1, and kp are coming from the model of the process G(s) and 

are assumed measurable.  
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IV. Simulation Result 
In this section, a comparison between the proposed and the conventional PID tuning is done, within the 

control loop; the same integrating process is involved. In each example, two sets of comparative responses are 

presented. 

1) The step response of the conventional tuning presented in Section II is compared with the revised control 

law presented in Section III. The response of the output y(s) and the control effort u(s) is investigated in the 

presence of reference tracking r(s), input di(s), and output do(s) disturbance rejection. 

2) The ramp ( )r    and parabolic 
2( )r     response y(s) of both the conventional tuning   and the 

revised control law are also investigated. In the sequel, three benchmark integrating processes met 

frequently in many industry applications are considered:  

 

1) a process with dominant time constants;  
2) a process with time delay equal with the plant‟s dominant time constant; and 

3) a non minimum phase process. 

 

Note that, for deriving a type-III control loop, the process is assumed to have an integrating behavior, and 

therefore, one more integrator is added within the PID controller so that it becomes I-PID 

 

A. Process with Dominant Time Constants 

For testing the potential of the proposed method, the process defined by 
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The corresponding PID controllers regarding the conventional and the revised tuning are given by 

1 2

' ' ' ' ' '
'

'2 ' ' '2 ' '

(1 )(1 )(1 ) (1 7.46)(1 30.58)(1 )
( )

(1 )(1 ) 475.75 (1 0.1)(1 0.1)

n v x
PID SO

i sc sc

s t s t s t s s s
C s

s t s t s t s s s


     
 

   

'

1

' '2 ' '2

'2 ' '2 '( )

(1 ) (1 29.03 421.5)

(1 ) 942.8(1 0.1)PID s
i sc

s x s y s s
C

s t s t s s

   
 

 
   (33,34) 

 

 
Fig4 (a): step Response     Fig4 (b): Ramp response 

t 

1/ pt T    
1/ pt T    
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Fig4 (a): parabolic  Response 

  

B. Process With Time Delay Equal to Its Dominant Time Constant 

In this example, the process to be controlled is defined by \ 
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which exhibits a time delay constant Td equal with the dominant time constant Tp1 , d = (Td/Tp1) = 1. The 

resulting PID controller is given by  
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s t s t s t s s s
C s

s t s t s t s s s


     
 

   
 (36) 

 

'

1

' '2 ' '2

'2 ' '2 '( )

(1 ) (1 13.63 92.9)

(1 ) 97.6(1 0.1)PID s
i sc

s x s y s s
C

s t s t s s

   
 

 
 (37) 

 
 

  
Fig 5(a): step Response             Fig 5(b): Ramp Response 

 

Fig. 4(a), 4 (b) and 4(c) shows the Step, ramp 

and parabolic responses of the final closed-loop 

control system when the PID controller is tuned 

via (33) and (34), respectively. In Fig. 4(b), it is 

apparent that the revised tuning reaches steady 

state at T = 64 in contrast with the conventional 

tuning where its response remains practically 

unstable. 

1/ pt T    

t 

t 

1/ pt T    1/ pt T    
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Fig 5(c): Parabolic response 

 

C. Nonminimum Phase Process 

 

In this example, a nonminimum phase process is considered defined by 

 
' '

' 1.58(1 0.7 )(1 0.3 )
( )

'

s s
G s

s

 
    (38) 

 
The resulting PID control law according to the conventional and the revised tuning are given by 

 

1 2

' ' ' ' ' '
'

'2 ' ' '2 ' '

(1 )(1 )(1 ) (1 14.55)(1 7.47)(1 )
( )

(1 )(1 ) 669.4 (1 0.1)(1 0.1)

n v x
PID SO

i sc sc

s t s t s t s s s
C s

s t s t s t s s s


     
 

   
   (39) 

 

 

'

1

' '2 ' '2

'2 ' '2 '( )

(1 ) (1 122.02 242.8)

(1 ) 2577.41(1 0.1)PID s
i sc

s x s y s s
C

s t s t s s

   
 

 
 (40) 

 
Fig 6(a): Step response     Fig 6(b): Ramp response 

Fig. 5(a), 5 (b) and 5(c) shows the Step, 

ramp and parabolic responses of the final 

closed-loop control system when the PID 

controller is tuned via (36) and (37), 

respectively.. t 

t 

1/ pt T    

1/ pt T    1/ pt T    
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Fig 6(b): parabolic response   

 

V. Conclusion 
Explicit PID tuning rules have been presented toward they design of type-III control loops and 

regardless of the controlled process complexity. The proposed control law is considered feasible for many 
industry applications since it is PID type. For the definition of the optimal control law, the powerful principle of 

the symmetrical optimum criterion was adopted. The advantage of type-III control loops compared to type-I and 

type-II (control of integrating processes) is obvious since, the higher the type of the control loop is, the faster the 

reference signals can be tracked by the output of the process. This advantage has been justified through 

simulation examples for the control of process models met frequently in many industry applications. It was 

shown that the conventional PID tuning (type-II control loops, current state of the art) via the symmetrical 

optimum criterion fails to track parabolic reference signals. Even in cases when the conventional tuning is used 

for the design of a type-III control loop, the performance is still suboptimal, especially in cases when the process 

complexity is increased. In contrast to this, the proposed PID control law tracks the step, ramp, and parabolic 

reference signals with zero steady-state position, velocity, and acceleration error regardless of the plant 

complexity. The robustness of the proposed control law was tested also to parameter variations finally showing 
promising results. To this end, control engineers are capable of designing type-III control loops in many 

industry applications, first on a simulation level before going finally on a real-time implementation. 
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