Characterization and Classification of the Saline Groundwaters within Parts of the Central Benue Trough, Nigeria

Nandom Abu¹ and Sallau, A.K²
Raw Materials Research & Development Council, Abuja
Jimmy Carter Foundation, Jos, Plateau State, Nigeria
Corresponding Author: Nandom Abu

Abstract: The aim of this study is to characterize and classify the saline groundwaters within parts of the Central Benue Trough, Nigeria employing chemical indicators. Saline groundwater samples were collected and analyzed for a wide range of major and trace elements through Inductively Coupled Plasma Mass-Spectrometry using direct current plasma Optical Emission Spectrometry (ICP-OES). Piper/Trilinear diagram was used in classifying the groundwaters. Rock-water interaction, leaching of bed rock, carbonates weathering, oxidation of Fe-bearing sulfide minerals and silicate weathering were interpreted as major processes controlling the saline groundwater geochemistry.

Keywords: Central Benue Trough, Carbonate-Pyrite-Oxidation, ion-exchange reaction.

I. Introduction

The study area is defined by longitudes 8° 30'E and 9° 30'E and latitudes 8° N and 8° 30'N on a total area of about 600m².

The dissolution of halite, gypsum, dolomite and calcite minerals determines Na+, Mg²⁺, Ca²⁺, Cl⁻, SO₄²⁻ and HCO₃⁻ chemistry in groundwaters, while others such as evaporation and ion exchange influences its composition. The contents of dissolved solids in groundwater vary highly from one location to another on earth, both in terms of specific constituents (e.g. halite, anhydrite, carbonates, gypsum, fluoride-salts, and sulphate-salts) and regarding the concentration level. The latter, often called salinity level is a convenient macro-parameter for a first general characterization of water quality. It is usually expressed as Total Dissolved Solids (TDS) – i.e. milligrams dissolved solids per litre of water, but the use of proxies such as the Chloride Content (mg/l) or the Electrical Conductivity (EC, in µS/cm) is widespread as well.

In practice, water often is classified into a number of discrete salinity classes. Number and names of classes, parameters to which class limits are linked (Total Dissolved Solids, chloride content, EC) and numerical values of class limits vary among published classifications. The occurrence of saline groundwaters (brines) has been known for a long time in parts of the Benue Trough of Nigeria. Prominent occurrences have long supported local salt production at Uburu-Okposi, Enyigba-Abakaliki and in the Ogoja-Okpoma area, in the Lower Benue Trough; Awe, Azara, Ribi, Akiri and in the Kanje area in the Middle Benue Trough [19], [20].

II. Geology of the Study Area

The Benue Trough of Nigeria is a linear NE-SW trending rift system whose development is closely associated with the separation of Africa from South America and the opening of the South Atlantic Ocean during the Cretaceous period, with its origin and evolution being fairly well documented [1], [2], [3], [5], [7], [8].
Characterization And Classification Of The Saline Groundwaters Within Parts Of The Central West African Rift System...
Characterization And Classification Of The Saline Groundwaters Within Parts Of The Central...

Fig. 2: Geological Map of the Study Area, [12].

Fig. 3: Crest of the Awe minor anticlinorium, Old Awe town with pockets of brine lakes and salt crystals on the sandstone series of the Keana Formation. Extreme left corner is the fold direction of the anticline.

Fig. 4: Steeply dipping sandstones of the Keana Formation, Old Awe town
Sedimentation and stratigraphic settings are characterized by transgressive and regressive cycles, starting in the pre-Albian or mid-Albian times with the Asu-River Group, which lies directly over the Precambrian Basement and is followed by subsequent Cretaceous sediments up to the Maastrichtian. These sedimentary fills range from predominantly shale to various degrees of interlayering of moderate to well-indurated shale, mudstone, sandstone and even limestone and have been affected by two main (major) tectonic episodes during the pre-Turonian and Santonian periods. In terms of the hydrogeological setting, the saline groundwaters and brines in the Central Benue Trough are primarily confined to the predominantly shaly marine and paralic sequence of the Asu-River Group, Awe Formation (Albian-Cenomanian) and the Eze-Aku as well as the Awgu Formation (Turonian-Coniacian) [1], [3], [8], [14].

III. Methodology

A total of nineteen (19) saline groundwater samples were collected for analysis. Their positions were determined using the Global Positioning System (GPS). Physical parameters such as temperature, pH, conductivity and total dissolved solid (TDS) were measured in the field using TDS/conductivity meter (HACK KIT, Optima 2000 DV PerkinElmer model). Major cations and trace elements were analysed with Inductively Coupled Plasma Mass-Spectrometry using direct current plasma Optical Emission Spectrometry (ICP-OES) at the Geology Laboratory of the University of Jos-Nigeria. The major anions (HCO₃⁻, Cl, Br, F, SO₄²⁻, and NO₃⁻) were analyzed with Ion Chromatography at Activation Laboratories, Ontario, Canada. Hydrogeochemical characterization of the saline groundwater was evaluated by means of physico-chemical analysis. Trilinear diagram of Piper was employed in the hydrogeochemical classification. Geochemical processes were studied and interpreted using.

IV. Results

<table>
<thead>
<tr>
<th>S/No</th>
<th>Samples Location</th>
<th>pH</th>
<th>Eh</th>
<th>Temp.</th>
<th>TDS</th>
<th>Ekv.</th>
<th>Cs</th>
<th>Fe</th>
<th>Mg</th>
<th>K</th>
<th>Na</th>
<th>F</th>
<th>S</th>
<th>Se</th>
<th>Cl</th>
<th>F</th>
<th>Br</th>
<th>SO₄²⁻</th>
<th>H₂CO₃</th>
<th>H⁺</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ZEB House, Lokoja</td>
<td>5.48</td>
<td>0.56</td>
<td>30.8</td>
<td>176</td>
<td>138</td>
<td>26.45</td>
<td><DL</td>
<td>62.16</td>
<td>0.014</td>
<td>41.82</td>
<td>0.073</td>
<td>33.7</td>
<td>0.114</td>
<td>10</td>
<td>0.07</td>
<td>0.06</td>
<td>0.14</td>
<td>255</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Akpuwure, Gogo, Kogi</td>
<td>5.64</td>
<td>0.77</td>
<td>29.9</td>
<td>180</td>
<td>134</td>
<td>62.33</td>
<td><DL</td>
<td>11.22</td>
<td>28.74</td>
<td>231.2</td>
<td>0.248</td>
<td><DL</td>
<td>81.6</td>
<td>0.1</td>
<td>0.06</td>
<td>3.33</td>
<td>426</td>
<td>-4.8</td>
<td>-25.1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Fed. Govt. Grd. Coll., Kebbi</td>
<td>10.8</td>
<td>0.32</td>
<td>33.6</td>
<td>172</td>
<td>153</td>
<td>3.043</td>
<td>0.392</td>
<td>0.747</td>
<td>1.176</td>
<td>34.23</td>
<td>0.052</td>
<td>19.25</td>
<td><DL</td>
<td>5.23</td>
<td>0.12</td>
<td>0.03</td>
<td>10.7</td>
<td>149</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Akpuwure Water Works</td>
<td>10.5</td>
<td>0.41</td>
<td>29.3</td>
<td>237</td>
<td>197</td>
<td>0.997</td>
<td>0.672</td>
<td>0.126</td>
<td>4.003</td>
<td>38.85</td>
<td>0.048</td>
<td>2.959</td>
<td>0.001</td>
<td>1.85</td>
<td>0.17</td>
<td>0.03</td>
<td>33.5</td>
<td>206</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Ohi Town</td>
<td>6.7</td>
<td>-</td>
<td>29.4</td>
<td>193</td>
<td>174</td>
<td>4.763</td>
<td>0.2</td>
<td>0.39</td>
<td><DL</td>
<td>5.023</td>
<td>1.711</td>
<td>49.24</td>
<td>0.015</td>
<td>34.4</td>
<td>0.07</td>
<td>0.03</td>
<td>17.9</td>
<td>84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Rih Town</td>
<td>6.3</td>
<td>0.12</td>
<td>32.1</td>
<td>170</td>
<td>156</td>
<td>313.1</td>
<td>21.9</td>
<td>77.33</td>
<td>168</td>
<td>68.63</td>
<td>0.142</td>
<td>2.322</td>
<td>1.04</td>
<td>58.9</td>
<td>0.14</td>
<td>0.46</td>
<td>58.3</td>
<td>214</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Aziara Town</td>
<td>5.96</td>
<td>0.72</td>
<td>35.1</td>
<td>410</td>
<td>118</td>
<td>34.5</td>
<td><DL</td>
<td>121</td>
<td>306</td>
<td>3622</td>
<td><DL</td>
<td><DL</td>
<td>44.3</td>
<td>22.1</td>
<td>0.11</td>
<td>4.53</td>
<td>23.3</td>
<td>341</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Akpi Hot Spring, Benue</td>
<td>4.76</td>
<td>0.76</td>
<td>46.7</td>
<td>508</td>
<td>115</td>
<td>209</td>
<td>90610</td>
<td>8758</td>
<td>3749</td>
<td>11700</td>
<td>2875</td>
<td>6192</td>
<td><DL</td>
<td>3500</td>
<td>0.98</td>
<td>1.81</td>
<td>1.81</td>
<td>371</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Alibi Town</td>
<td>4.66</td>
<td>0.2</td>
<td>34.6</td>
<td>120</td>
<td>120</td>
<td>101</td>
<td><DL</td>
<td>20.2</td>
<td>82.9</td>
<td>2381</td>
<td><DL</td>
<td><DL</td>
<td>8.3</td>
<td>11.2</td>
<td>0.11</td>
<td>2.4</td>
<td>6.67</td>
<td>83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Wuse Town</td>
<td>4.91</td>
<td>0.38</td>
<td>32.3</td>
<td>222</td>
<td>120</td>
<td>68.16</td>
<td>0.029</td>
<td>28.56</td>
<td>4.087</td>
<td>103.1</td>
<td><DL</td>
<td><DL</td>
<td>0.768</td>
<td>5.58</td>
<td>0.16</td>
<td>0.03</td>
<td>4.1</td>
<td>188</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Rih Health Center</td>
<td>5.82</td>
<td>0.91</td>
<td>35.6</td>
<td>160</td>
<td>163</td>
<td>123.3</td>
<td>0.864</td>
<td>24.44</td>
<td>4.016</td>
<td>4.142</td>
<td>0.109</td>
<td>236.3</td>
<td><DL</td>
<td>4.550</td>
<td>0.01</td>
<td>6.13</td>
<td>16.3</td>
<td>238</td>
<td>-6.3</td>
<td>-35.8</td>
</tr>
<tr>
<td>12</td>
<td>Aduka Town</td>
<td>5.7</td>
<td>0.61</td>
<td>31.7</td>
<td>356</td>
<td>188</td>
<td>90.74</td>
<td>0.001</td>
<td>0.02</td>
<td><DL</td>
<td>0.166</td>
<td><DL</td>
<td><DL</td>
<td><DL</td>
<td>8.5</td>
<td>1.11</td>
<td>0.06</td>
<td>17.3</td>
<td>267</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Kanye Town</td>
<td>6.3</td>
<td>0.91</td>
<td>30.2</td>
<td>376</td>
<td>178</td>
<td>69.61</td>
<td>1.317</td>
<td>29.49</td>
<td>103.4</td>
<td>2857</td>
<td>0.119</td>
<td>10.19</td>
<td>0.497</td>
<td>68.8</td>
<td>0.08</td>
<td>0.1</td>
<td>4.73</td>
<td>404</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Abji Town</td>
<td>5.85</td>
<td>0.79</td>
<td>31.8</td>
<td>311</td>
<td>163</td>
<td>36.82</td>
<td>0.704</td>
<td>32.06</td>
<td>4.412</td>
<td>78.45</td>
<td>0.088</td>
<td>12.97</td>
<td><DL</td>
<td>18.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.94</td>
<td>256</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Naze Awe Town</td>
<td>7.03</td>
<td>0.37</td>
<td>31</td>
<td>324</td>
<td>144</td>
<td>103.2</td>
<td>0.04</td>
<td>4.48</td>
<td>8.9</td>
<td>22.83</td>
<td><DL</td>
<td><DL</td>
<td><DL</td>
<td><DL</td>
<td>13.7</td>
<td>0.18</td>
<td>0.06</td>
<td>34.6</td>
<td>207</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Old Awe Town</td>
<td>6.85</td>
<td>-</td>
<td>41.3</td>
<td>951</td>
<td>104</td>
<td>134</td>
<td><DL</td>
<td>40.25</td>
<td>53.99</td>
<td>30560</td>
<td>0.45</td>
<td>35.49</td>
<td><DL</td>
<td>5430</td>
<td>0.62</td>
<td>3.57</td>
<td>15.6</td>
<td>431</td>
<td>-5.98</td>
<td>-34.4</td>
</tr>
<tr>
<td>17</td>
<td>Apa waterfall, Obi</td>
<td>6.26</td>
<td>0.5</td>
<td>28.6</td>
<td>500</td>
<td>190</td>
<td>271.6</td>
<td>0.34</td>
<td>10.59</td>
<td><DL</td>
<td>26.83</td>
<td>0.322</td>
<td>124.1</td>
<td>0.015</td>
<td>70.6</td>
<td>0.72</td>
<td>0.18</td>
<td>33.6</td>
<td>110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>ERCU P College Obi</td>
<td>6.25</td>
<td>0.32</td>
<td>29.8</td>
<td>160</td>
<td>201</td>
<td>29.94</td>
<td>0.055</td>
<td>0.404</td>
<td><DL</td>
<td>6.931</td>
<td><DL</td>
<td>39.51</td>
<td>0.015</td>
<td>3.56</td>
<td>0.01</td>
<td>0.03</td>
<td>3.02</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Agaibi Town</td>
<td>6.18</td>
<td>0.66</td>
<td>30</td>
<td>365</td>
<td>158</td>
<td>40.61</td>
<td>1.317</td>
<td>29.43</td>
<td>160.4</td>
<td>2257</td>
<td>0.109</td>
<td>10.19</td>
<td>0.324</td>
<td>9.37</td>
<td>0.27</td>
<td>0.06</td>
<td>27.5</td>
<td>264</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DOI: 10.9790/1676-1403012332 www.iosrjournals.org 26 | Page
Characterization And Classification Of The Saline Groundwaters Within Parts Of The Central...

Fig. 5: Ternary diagram displaying relative percentage of major cations within the study area

Fig. 6: Saline groundwater samples location plots on piper diagram

Fig. 7: Sodium-Calcium plot
Characterization And Classification Of The Saline Groundwaters Within Parts Of The Central...

Fig. 8: Sodium-Magnesium plot

Fig. 9: Sodium-Bicarbonate plot

Fig. 10: Chloride-Sulphate plot
Characterization And Classification Of The Saline Groundwaters Within Parts Of The Central...

Fig. 11: Scatter diagram of (Ca + Mg) vs (SO₄ + HCO₃)

Fig. 12: Reaction Dominance Diagram [6].

V. Interpretation and Discussion

The chemical composition of the analyzed saline groundwater samples are thus; Eh ranges from 0.12-9.01us/cm, the Principal Component Constituents (PCC) shows an order of abundance of the cations as Na⁺ > Mg²⁺ > K⁺ > Ca²⁺, with Na⁺ constituting more than 75% in most cases while for the anions the order is Cl⁻ > HCO₃⁻ > SO₄²⁻ > NO₃⁻ with Cl⁻ forming at least 80% in all cases (Table 1). Calcium constituents vary between 0.987mg/l-90.74mg/l, Sodium concentration vary from 0.166mg/l-30360mg/l, Chloride concentration ranges from 1.85mg/l-5430mg/l, Sulphate concentration ranges from 0.94mg/l-58.3mg/l, Bromide concentration ranges from 0.03mg/l-6.13mg/l. From the Ternary and Piper diagrams (Figs. 5, 6), the water samples within the study area are seen to display relative high percentage of major cations of Mg and Na and the prominent anions displayed are Cl⁻ and HCO₃⁻. The pH values as measured within the study area range from 4.66-10.8 in Akiri town through to Federal Government Girls’ College, Keana, respectively, indicating slight to high alkalinity. Temperature range within the study area span from 29.3°C to 41.3°C in Aloshi and Old Awe town spring, respectively. The Total Dissolved Solutes (TDS), range between 120ppm-951ppm in Akiri and Old Awe town spring, respectively.

Classification was achieved through the study of plots of concentrations of the major cations and anions on the Piper Trilinear diagram [4], [6], [10], [13], [15], [18]. To identify the hydrogeochemical processes controlling the chemistry within the study area, the following plots were used; (Figs 7, 8, 9, 10). These plots suggest that among the anions, Cl⁻ has a clear dominance, while cations Na⁺, Mg²⁺, HCO₃⁻ dominate. In Fig. 5 & 6, the plot shows that about 36.84% of the locations have Alkaline earth (Ca+Mg) minerals exceeding Alkalies(Na+K) in the following locations: Adudu, Wuse, Keana, Abuni, Obi and Akiri, [12].

DOI: 10.9790/1676-1403012332 www.iosrjournals.org 29 | Page
According to the Piper diagram, the distribution of hydrochemical facies of groundwater within the study area could be classified into five groups, [12];

(i) Magnesium-Bicarbonate Type (Adudu Town, Ze’s House, Keana, Wuse Town, Obi Town, Abuni Town) constituting about 31.05% of the studied locations.
(ii) Calcium-Chloride Type (Akiri hot spring) accounting for about 5.26%.
(iii) Sodium-Chloride Type (Ribi Town, Old Awe Town) accounting for about 15.79%.
(iv) Sodium-Bicarbonate Type (New Awe Town, Akyana Gbobgo, Azara Town, Alosi, Akiri Town, Agaza Town, Kanje town) accounting for about 42.11%.
(v) Mixed Type (ERCC Pastors College, Obi premises) accounting for about 5.26% of the studied locations.

The Sodium Bicarbonate type of saline groundwater therefore stood out to be the most prominent. The High concentration of Ca$^{2+}$, Na$^+$, and HCO$_3^-$ in the groundwater could also be due to the dissolution of plagioclase feldspars in the rocks resulting in the release of the elements responsible for the various hydrochemical facies. These elements, (Ca, Mg, Na, K, HCO$_3^-$, SO$_4^-$, Cl) are the major ions in groundwater which could have been derived from water rock interaction [4], [5], [12], [13], [18].

The Ca$^{2+}$-Mg$^{2+}$-HCO$_3^-$ content reflect carbonate weathering in sedimentary sequences rich in dolomite and calcite. This is further supported by the fact that alkaline earths (Ca+Mg) significantly exceed the alcalis (Na+K) and weak acids (HCO$_3^-$+CO$_3^{2-}$) exceed the strong acids. The predominance of Mg$^{2+}$, SO$_4^{2-}$, Na+, Cl and HCO$_3^-$ in some ground waters probably reflects the influence of evaporate minerals such as dolomite, gypsum, anhydrite, calcite and halite. The relationship between HCO$_3^-$ and Mg$^{2+}$ suggests a dolomite origin for the Mg$^{2+}$ and an additional source of CO$_3^{2-}$, probably of calcite dissolution. Dolomite is expected to contribute Mg$^{2+}$ and HCO$_3^-$+ CO$_3^{2-}$ to the groundwater. The relatively high content of Na$^+$ and Cl in surface water bodies and their increasing content detected in some groundwater samples suggest mixing with saline water or halite [4], [5], [12], [13], [18].

The Chemistry of the saline groundwaters suggests that alkaline earths (Ca+Mg) significantly exceed the alcalis (Na+K) and weak acids (HCO$_3^-$+CO$_3^{2-}$) exceed the strong acids (Cl+SO$_4^{2-}$), suggesting the dominance of CO$_3$ weathering followed by silicate weathering. Hydrogeochemical studies disclosed that Na+, HCO$_3^-$ and Na+, Cl are the dominant ion types within the study area [11], [12]. The resultant is the release of Ca$^{2+}$ and Mg$^{2+}$ from the carbonate weathering into groundwater system through recharge. The weathering of calcite minerals which is responsible for the release of the ions is expressed through the following equations [10]:

\[
\begin{align*}
\text{CO}_2 + \text{H}_2\text{O} & \rightarrow \text{H}_2\text{CO}_3 \\
\text{CaCO}_3 + \text{H}_2\text{CO}_3 & \rightarrow \text{Ca}^{2+} + 2\text{HCO}_3^- \\
\text{CaMg} (\text{CO}_3) + 2\text{H}_2\text{CO}_3 & \rightarrow \text{Ca}^{2+} + \text{Mg}^{2+} + 4\text{HCO}_3^- \\
\end{align*}
\]

(1)
(2)
(3)

Carbonate weathering, which was prominently found to operating within the study, is usually caused by atmospheric water charged with CO$_2$ which further results in the formation of carbonic acid. The resultant is the release of Ca$^{2+}$ and Mg$^{2+}$ from the carbonate weathering into groundwater system through recharge. The weathering of carbonate minerals which is responsible for the release of the ions is expressed through equations 1-5.

Since the dissolution of carbonates and other related minerals are determined by the acidity of the environment, and having pH of 4.6 to 10.8 in the study area, it means that the acidity is generally low to slightly basic. The reaction mechanism for carbonate within sediment, accounting for high Ca$^{2+}$ concentration could be thus; CaCO$_3$(s) + CO$_2$(g) + 2H$_2$O (l) = Ca$^{2+}$(aq) + 2 HCO$_3^-$ (aq). ……(4)

At low acid concentration, CaCO$_3$ + H$^+$ = Ca$^{2+}$ + HCO$_3^-$, showing that H$^+$ takes CO$_3$ away from Ca$^{2+}$ to form the weak acid HCO$_3^-$. Also the solubility of CaCO$_3$, to an extent is determined in large part by the pH of the environment. When these carbonates dissolve in carbonic acid, eg Limestone, it equally accounts for the high Ca$^{2+}$ concentration within the study area, thus: CaCO$_3$ + H$_2$CO$_3$ = Ca$^{2+}$ + 2HCO$_3^-$ ………(5)

This reaction also accounts for high bicarbonate within the study area, (110 mg/l-431 mg/l). The resultant is the release of Ca$^{2+}$ and Mg$^{2+}$ from the carbonate weathering into groundwater system through recharge.
recharge. This ultimately accelerates the dissolution of carbonate rocks such as dolomite, limestone and gypsum along groundwater flow path.

Gibbs [12] indicated a close relationship between water composition and the hydrochemical processes involving precipitation, water interaction and evaporation. The interpretation of the plots is viewed from Figs. 11 and 12 which indicate that most points plotted in the region of rock dominance and carbonate weathering.

The study area is also characterized by widespread sulphide, sulphate and coal mineralizations with mainly mineral ores like Galena (PbS), Sphalerite (ZnS), Chalcopyrite (CuFeS₂), FeS₂ and Baryte among others and supporting artisanal mining activities in many locations. This is with particular reference to the Awe, Azara and Keana areas where sulfide minerals are mined and waste dumps, tailings, low-grade ore, overburden and run-off mill stockpiles are disposed of, without any consideration for its potential for pollution. Polluted or acid rich water released from the mines is a consequence of the oxidation of sulfide minerals mainly pyrite (FeS₂), galena (PbS), sphalerite (ZnS), pyrrhotite (FeS), marcasite (FeS₂), arseno-pyrite (FeAsS), and chalcopyrite (CuFeS₂). When these minerals are exposed to water and oxygen, they become oxidized in the presence of water to sulphuric acid and ferrous hydroxide as follows:

\[
2\text{FeS}_2 + 6\text{H}_2\text{O} + 7\text{O}_2 \rightarrow 4\text{H}_2\text{SO}_4 + 2\text{Fe} (\text{OH})_3 \quad (6)
\]

It is the sulphuric acid that gives the strong acidic property. This sulphuric acid further attacks other sulphide minerals and thus breaks them down to release trace elements/metals such as Pb, As, Cd, Cu, Zn, Cr, Co, Ni, others. The stronger the acid solution, the more the metals become soluble and this continues to lower the pH [11, 16].

The classification is interpreted through the scatter plots of Na vs Ca (Fig. 7) and Na vs Mg (Fig. 8), where most points plotted above the equiline of 1:1, thus indicating reduction in Na concentration in groundwater, due to ionic exchange. In the Na vs HCO₃ scatter diagram (Fig. 9) which indicates most plots occur above the equiline of 1:1, thus indicating increased HCO₃⁻ compared to Na which resulted from silicate weathering. The weathering is given by the following equation [10].

\[
2\text{NaAlSi}_3\text{O}_8 + 2\text{H}_2\text{CO}_3 + 9\text{H}_2\text{O} \rightarrow \text{Al}_2\text{Si}_2\text{O}_5(\text{OH})_4 + 2\text{Na}^+ + 4\text{H}_4\text{SiO}_4 + 2\text{HCO}_3^- \quad (7)
\]

In the scatter diagram (Fig. 9), about 90% of the samples plotted above the 1:1 equiline, thus representing carbonate weathering. Carbonate weathering may be caused by atmospheric water charged with CO₂ which further results in the formation of carbonic acid. This accelerates the dissolution of carbonate rocks such as dolomite, limestone and gypsum along groundwater flow path.

The mechanisms controlling the groundwater chemistry in the study area was interpreted from the Rock-Water interaction chart of Gibbs [6]. The Calcium source in Aloshi, Abuni and Zc’s House locations were from carbonates other than gypsum. Pyrite oxidation was noted to be dominant within Akiri and Wuse areas. HCO₃⁻/Sum Anions parameter show that Ribi, Akiri and Old Awe locations are likely sourced from Seawater while Carbonate weathering might have dominated the process that influenced the geochemistry of the remaining locations within the study area. Cl/Sum Anions parameter shows that rock weathering was the prominent process that influenced the geochemistry of the study area except for Old Awe and Ribi locations. These indicate that most areas in this study are dominantly influenced by rock weathering. It could therefore, be concluded that Ion Exchange Reactions, Pyrite Oxidation, Plagioclase and Carbonate Weathering Processes could have influenced the chemistry of the groundwater within the study area, with those from around Old Awe, Akiri and Ribi locations showing prominent traces of seawater source [12, 16, 17].

VI. Concluding Remarks

Detailed assessment and evaluation of the groundwaters within parts of the Central Benue Trough, Nigeria are presented in this study. The aim of the study was to characterize and classify the saline groundwaters within parts of the Central Benue Trough, Nigeria employing chemical indicators. The study area covered Awe-Azara-Keana areas that are characterised by occurrences of prominent saline groundwater systems. Piper’s trilinear diagram was used to characterized and classify the saline groundwaters as Magnesium-Bicarbonate, Calcium-Chloride, Sodium-Chloride, Sodium-Bicarbonate and Mixed Types, with Sodium-Bicarbonate type being most prevalent.

It is indicative that rock weathering, ion exchange reactions, pyrite oxidation, plagioclase and carbonate weathering processes could have influenced the chemistry of the saline groundwaters, with those from around Old Awe, Akiri and Ribi locations showing prominent traces of seawater source.
References

