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Abstract 
The first objective in this research is to solve a wave propagation in a straight waveguide where the 

rectangular cross section consists of a periodic array with seven alternating hollow and dielectric layers. 

The analytical methods are not effective for solving complex inhomogeneous problems in the cross section 

of the waveguide. Therefore, it is necessary to find an effective numerical technique. We will develop an 

efficient technique that will solve this problem by using the mode model that based on Laplace and Fourier 

transforms and the inverse Laplace and Fourier transforms. The technique is important in order to 

generalize the mode model also for solve a complex and inhomogeneous problem in the cross section. The 

second and the main objective is to examine the effect of the wave propagation along a periodic array on 

the behavior of the output fields. The application is effective in the microwave and millimeter-wave regimes. 

Keywords: Wave propagation, dielectric profiles, rectangular waveguide, dielectric material, rectangular 

cross section.  
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I. Introduction 
The analytical methods are limited to relatively simple problems and over the years numerical 

methods and other interesting methods were proposed for solving complex problems. We will review 

examples of published articles that are based on interesting methods and techniques for a more efficient 

solution to complex problems in the cross section. Theoretical studies on microwave dielectric waveguides 

were presented in the previous publications using approximate or numerical methods. Two most common 

approximate techniques are the Marcatily approach [1] and the circular harmonic point matching technique 

[2]. Other approximate techniques were given in [3,4], by using the extended boundary condition method 

[3], and by using the rectangular harmonics [4]. 

A method of solving the propagation constant for the bound modes in the dielectric rectangular 

waveguides was introduced in [5]. This method provides a graphical solution of the characteristic equations 

obtained by complete mode matching at the interfaces of the guide without using any approximations. The 

rectangular dielectric waveguide technique was described in [6] for the determination of complex 

permittivity of a wide class of dielectric materials of various thicknesses and cross sections. This paper 

presents a unified rectangular dielectric waveguide technique for determination. A design strategy was 

proposed in [7] for microwave devices built with dielectric-loaded waveguides having one- or two-

dimensional discontinuity profiles. The problem was formulated as an inverse problem where the predefined 

scattering parameters were aimed to be the final response of the system. This goal was achieved by optimizing 

the dimensions of the filling materials. To increase the success of the optimization, the problem was reduced 

to the longitudinal and widthwise thickness determination of the unit cell, which constitutes the whole 

structure in a cascade form. To this aim, the frequency response of the unit cell was targeted and then that of 

the whole system, which was achieved by a two-level optimization procedure of the unit cell. 

A fundamental and accurate approach to compute the attenuation of electromagnetic waves 

propagating in dielectric rectangular waveguides were presented in [8]. The transverse wave numbers were 

first obtained as roots of a set of transcendental equations developed by matching fields with the fields with 

the surface impedance of the wall. The propagation constant was found by substituting the values of 

transverse wave numbers into the dispersion relation. The analysis also shows that a hollow waveguide was 

found to have much lower attenuation than its dielectric coun- teparts. Sinch the cutoff frequency is usually 

affected by the constitutive properties of the dielectric medium, for a waveguide designed for wave with the 

same cutoff frequency, hollow waveguides turn out to be relatively larger in size.  

The radiation characteristics of an antenna composed by a rectangular guide loaded with dielectric 
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slab were analyzed and presented in [9]. A parametric study involving the dielectric loading level and the 

behavior of the cross-polarization was also included. The problem of electromagnetic- wave propagation in 

junctions between two symmetrically, partially dielectric-filled waveguides was investigated in [10], and the 

solution was presented in the form of a two-port equivalent circuit. The equivalent  circuit includes an ideal 

1:1 transformer, which is connected to transmission lines with impedances equal to those of the two 

waveguides, in cascade with a T network. Elements of the T network and the results were presented in graphs 

for different dielectric constants, slab thicknesses, and operating frequencies. 

A partially filled waveguide method was presented in [11] that enhances transmission quality and 

accuracy in electromagnetic material but leads to the excitation of higher-order modes. A mode-matching 

technique was developed to accommodate the resulting waveguide discontinuity and a Newton root search 

method was utilized to subsequently extract the electromagnetic properties of the test sample. 

A novel method for analyzing electromagnetic wave propagation in dielectric waveguides with 

arbitrary profiles was proposed in [12].  The transfer matrix function relates the wave profile at the output 

to the input wave in the Laplace space and is applicable for inhomogeneous dielectric profiles with single or 

multiple maxima in the transverse plane. The method is particularly useful for analyzing dielectric 

waveguides in the microwave and millimeter-wave regimes. This method is applicable for arbitrary profiles 

of the input field and the dielectric and is particularly useful for smoothly varying profiles. This makes it a 

versatile tool for analyzing a wide range of dielectric waveguides. The method is based on the Laplace and 

Fourier transforms, and the inverse Laplace and Fourier transforms. 

In this research the first objective is to solve a propagation problem in a straight waveguide where the 

rectangular cross section consists of a periodic array with seven alternating hollow and dielectric layers, as shown 

in Fig.1. We will present an efficient technique to solve the inhomogeneous cross section of a periodic array 

with seven alternating hollow and dielectric layers. The technique is important  in order to generalize the mode 

model [12] also to solve a complex and inhomogeneous problem in the cross section. The method is based on 

Laplace and Fourier transforms and the inverse Laplace and Fourier transforms. A Laplace transform is 

necessary to obtain convenient and simple input-output connections of the fields. The method is based on 

both the Fourier transform application and the wave equation solutions in a frequency domain. This paper is 

organized as follows. The periodic structure of the cross section of a rectangular waveguide is given in the 

second section. The proposed technique to solve a periodic array with seven alternating hollow  and dielectric 

layers is given in the third section. The numerical results are presented in the fourth section, and conclusions 

are given in the last section. 

 

II.  The periodic structure of the cross section of a rectangular       waveguide. 
Figure 1 shows a rectangular cross section of a straight waveguide that consists of seven layers 

where the three layers 2, 4, and 6 are coated with a dielectric material. 

 

 
 

 

Figure 1: The cross section consists of a periodic array with seven alternating hollow and dielectric 

layers. 
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The dimensions of the cross section of the rectangular waveguide are denoted by the parameters a and 

b, where 0 ≤ x ≤ a, and 0 ≤ y ≤ b. This is an interesting structure of a periodic array that changes alternately 

between a hollow layer and a layer that is coated with a dielectric material. The parameters d1, d2 and d3 are 

the thicknesses of the dielectric layers 2, 4, and 6, respectively. We assume that d1=d2=d3=d. In addition, 

we assume that the dielectric material (ϵr1, ϵr2, ϵr3) in layers 2, 4, and 6 can be different. The parameters 

L1, L2, and L3 are the distances from the left edge of the cross section to the middle of each thickness of 

the dielectric material, respectively. 

 

 

III.  The proposed technique to solve a periodic array with seven alternating hollow 

and dielectric layers by using the 𝝎𝜺 function. 
 In order to solve a periodic array with seven alternating hollow and dielectric hollow and 

dielectric layers in the cross section (Fig. 1), we need to develop an exact expressions for the element 

of the matrices. In order to find the elements of the matrices of the inhomogeneous geometry of the 

cross section in Fig. 1, we can use with the 𝜔𝜀 function [13]. Fig. 2 shows the 𝜔𝜀 function. We need to 

take the limit 𝜀 ⟶ 0 for the 𝜔𝜀 function, as shown in Fig. 2. The 𝜔𝜀 function is defined as  

 

 𝜔𝜀(𝑟) = 𝐶𝜀exp [− 𝜀2(𝜀2 −|𝑟|2)].               (1) 
 

for |𝑟| > 𝜀, where 𝐶𝜀  is a constant, and ∫ 𝜔𝜀(𝑟)𝑑𝑟 = 1. The 𝜔𝜀 function enables us to solve an 

inhomogenous and discontinuous transition problem at the boundary between any hollow layer and 

a layer with a dielectric coating. In our cross section (Fig. 1), we have six discontinuous transitions. In 

each of the six transitions, we must use this 𝜔𝜀 function.  
 

for |𝑟| > 𝜀, where 𝐶𝜀  is a constant, and ∫ 𝜔𝜀(𝑟)𝑑𝑟 = 1. The 𝜔𝜀 function enables us to solve an 

inhomogenous and discontinuous transition problem at the boundary between any hollow layer and 

a layer with a dielectric coating. In our cross section (Fig. 1), we have six discontinuous transitions. In 

each of the six transitions, we must use this 𝜔𝜀 function.  

 

 
 

Figure  2: The 𝜔𝜀 function (Eq. 1) for inhomogeneous problem of Fig. 1. 

 

 

  

 Figure 1 shows the cross section of the rectangular waveguide where the centers of the first, 

the second and the third dielectric rectangles relative to the X-axis are located at 𝐿1=0.25 a, 𝐿2=0.5 a, 

and 𝐿3=0.75 a, respectively. The dimensions of the cross section of the rectangular waveguide are 

denoted by the parameters a and b, where 0 ≤ 𝑥 ≤ 𝑎, and 0 ≤ 𝑦 ≤ 𝑏. The parameters 𝑑1, 𝑑2 and 𝑑3 

are the thicknesses of the dielectric layers 2, 4, and 6, respectively. The elements of the matrix for 

these parameters are calculated according to  
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𝑔(𝑥) =

{  
   
   
   
   
   
   
  𝑔01 exp(1 − 𝑞1(𝑥))                                (𝑎2) − 𝑑1 − 𝜀2 ≤ 𝑥 < (𝑎2) − 𝑑1 + 𝜀2𝑔01 (𝑎2) − 𝑑1 + 𝜀2 < 𝑥 < (𝑎2) + 𝑑1 − 𝜀2𝑔01 exp(1 − 𝑞2(𝑥)) (𝑎2) + 𝑑1 − 𝜀2 ≤ 𝑥 < (𝑎2) + 𝑑1 + 𝜀2𝑔02 exp(1 − 𝑞3(𝑥)) (𝑎) − 𝑑2 − 𝜀2 ≤ 𝑥 < (𝑎) − 𝑑2 + 𝜀2𝑔02 (𝑎) − 𝑑2 + 𝜀2 < 𝑥 < (𝑎) + 𝑑2 − 𝜀2𝑔02 exp(1 − 𝑞4(𝑥)) (𝑎) + 𝑑2 − 𝜀2 ≤ 𝑥 < (𝑎) + 𝑑2 + 𝜀2𝑔03 exp(1 − 𝑞5(𝑥)) (3𝑎2 ) − 𝑑3 − 𝜀2 ≤ 𝑥 < (3𝑎2 ) − 𝑑3 + 𝜀2𝑔03 (3𝑎2 ) − 𝑑3 + 𝜀2 < 𝑥 < (3𝑎2 ) + 𝑑3 − 𝜀2𝑔03 exp(1 − 𝑞6(𝑥)) (3𝑎2 ) + 𝑑3 − 𝜀2 ≤ 𝑥 < (3𝑎2 ) + 𝑑3 + 𝜀20 𝑒𝑙𝑠𝑒

 

 

where 𝜀 = 𝑎/50, and where  

 𝑞1(𝑥) = 𝜀2𝜀2−[𝑥−((𝑎/2)−𝑑1+𝜀)/2]2           ,          𝑞2(𝑥) = 𝜀2𝜀2−[𝑥−((𝑎/2)+𝑑1−𝜀)/2]2, 
 

 𝑞3(𝑥) = 𝜀2𝜀2−[𝑥−((𝑎)−𝑑2+𝜀)/2]2           ,          𝑞4(𝑥) = 𝜀2𝜀2−[𝑥−((𝑎)+𝑑2−𝜀)/2]2 
 

 𝑞5(𝑥) = 𝜀2𝜀2−[𝑥−((3𝑎/2)−𝑑3+𝜀)/2]2           ,          𝑞6(𝑥) = 𝜀2𝜀2−[𝑥−((3𝑎/2)+𝑑3−𝜀)/2]2. 
 

According to the image method, in order to force the boundary conditions at location of the 

walls in real problem, we need to extend the waveguide region of Fig. 1 (0 ≤ 𝑥 ≤ 𝑎, and 0 ≤ 𝑦 ≤ 𝑏), 

to a four fold larger regions (−𝑎 ≤ 𝑥 ≤ 𝑎, and −𝑏 ≤ 𝑦 ≤ 𝑏). The boundary conditions and extend the 

problem to a periodic domain enable us the use of Fourier transform. By using with the image method 

and the 𝜔𝜀 function, the elements of the matrix for the cross section of Fig. 1 are calculated in Fourier 

space by  
 𝑔(𝑛,𝑚) = 1𝑎𝑏 {𝑔01∫((𝑎/2)−𝑑1+𝜀)/2((𝑎/2)−𝑑1−𝜀)/2 exp(1 − 𝑞1(𝑥))cos(𝑛𝜋𝑥𝑎 )𝑑𝑥 + 

 

 𝑔01 ∫((𝑎/2)+𝑑1−𝜀)/2((𝑎/2)−𝑑1+𝜀)/2 cos(𝑛𝜋𝑥𝑎 )𝑑𝑥 + 𝑔01 ∫((𝑎/2)+𝑑1+𝜀)/2((𝑎/2)+𝑑1−𝜀)/2 exp(1 − 𝑞2(𝑥))cos(𝑛𝜋𝑥𝑎 )𝑑𝑥 + 

 

 𝑔02 ∫((𝑎)−𝑑2+𝜀)/2((𝑎)−𝑑2−𝜀)/2 exp(1 − 𝑞3(𝑥))cos(𝑛𝜋𝑥𝑎 )𝑑𝑥 + 

 

 𝑔02 ∫((𝑎)+𝑑2−𝜀)/2((𝑎)−𝑑2+𝜀)/2 cos(𝑛𝜋𝑥𝑎 )𝑑𝑥 + 𝑔02 ∫((𝑎)+𝑑2+𝜀)/2((𝑎)+𝑑2−𝜀)/2 exp(1 − 𝑞4(𝑥))cos(𝑛𝜋𝑥𝑎 )𝑑𝑥 + 

 

 𝑔03 ∫((3𝑎/2)−𝑑3+𝜀)/2((3𝑎/2)−𝑑3−𝜀)/2 exp(1 − 𝑞5(𝑥))cos(𝑛𝜋𝑥𝑎 )𝑑𝑥 + 
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 𝑔03 ∫((3𝑎/2)+𝑑3−𝜀)/2((3𝑎/2)−𝑑3+𝜀)/2 cos(𝑛𝜋𝑥𝑎 )𝑑𝑥 + 𝑔03 ∫((3𝑎/2)+𝑑3+𝜀)/2((3𝑎/2)+𝑑3−𝜀)/2 exp(1 − 𝑞6(𝑥))cos(𝑛𝜋𝑥𝑎 )𝑑𝑥} 
 

 {∫𝑏0 cos (𝑚𝜋𝑦𝑏 ) 𝑑𝑦}.                                                    (2) 
 

From the elements of the matrix we obtain the matrix G given in Appendix A. It is important to note 

that this is a special matrix. Similarly, the 𝐺𝑥 matrix is obtained by the derivative of the Fourier 

components of the dielectric profile. The derivative of the dielectric profile (𝑔𝑥) is defined as 

 𝑔𝑥 ≡ 1𝜖(𝑥, 𝑦) 𝜕𝜖(𝑥, 𝑦)𝜕𝑥 = 𝜕[ln(1 + 𝑔(𝑥, 𝑦))]𝜕𝑥 .                    (3) 
 

Therfore, according to Eq. (3) and the cross section of Fig. 1, we obtain  

 

 𝑔𝑥(𝑥) =

{  
   
   
  
   
   
  𝑑𝑑𝑥 [ln(1 + 𝑔01 exp(1 − 𝑞1(𝑥)))] (𝑎2)−𝑑1−𝜀2 ≤ 𝑥 < (𝑎2)−𝑑1+𝜀20 (𝑎2)−𝑑1+𝜀2 < 𝑥 < (𝑎2)+𝑑1−𝜀2𝑑𝑑𝑥 [ln(1 + 𝑔01 exp(1 − 𝑞2(𝑥)))] (𝑎2)+𝑑1−𝜀2 ≤ 𝑥 < (𝑎2)+𝑑1+𝜀2𝑑𝑑𝑥 [ln(1 + 𝑔02 exp(1 − 𝑞3(𝑥)))] (𝑎)−𝑑2−𝜀2 ≤ 𝑥 < (𝑎)−𝑑2+𝜀20 (𝑎)−𝑑2+𝜀2 < 𝑥 < (𝑎)+𝑑2−𝜀2𝑑𝑑𝑥 [ln(1 + 𝑔02 exp(1 − 𝑞4(𝑥)))] (𝑎)+𝑑2−𝜀2 ≤ 𝑥 < (𝑎)+𝑑2+𝜀2𝑑𝑑𝑥 [ln(1 + 𝑔03 exp(1 − 𝑞5(𝑥)))] (3𝑎2 )−𝑑3−𝜀2 ≤ 𝑥 < (3𝑎2 )−𝑑3+𝜀20 (3𝑎2 )−𝑑3+𝜀2 < 𝑥 < (3𝑎2 )+𝑑3−𝜀2𝑑𝑑𝑥 [ln(1 + 𝑔03 exp(1 − 𝑞6(𝑥)))] (3𝑎2 )+𝑑3−𝜀2 ≤ 𝑥 < (3𝑎2 )+𝑑3+𝜀20 𝑒𝑙𝑠𝑒

.                        (4) 

 

The elements of the matrix for the derivative of the dielectric profile is given by  

 𝑔𝑥(𝑛, 0) = 1𝑎 { lim𝜖→∞∫((𝑎/2)−𝑑1+𝜀)/2((𝑎/2)−𝑑1−𝜀)/2 cos(𝑛𝜋𝑥𝑎 ) 𝑑𝑑𝑥 [ln(1 + 𝑔01exp(1 − 𝑞1(𝑥)))]𝑑𝑥 + 

 

 lim𝜖→∞∫((𝑎/2)+𝑑1+𝜀)/2((𝑎/2)+𝑑1−𝜀)/2 cos(𝑛𝜋𝑥𝑎 ) 𝑑𝑑𝑥 [ln(1 + 𝑔01exp(1 − 𝑞2(𝑥)))]𝑑𝑥 + 

 

 lim𝜖→∞∫((𝑎)−𝑑2+𝜀)/2((𝑎)−𝑑2−𝜀)/2 cos(𝑛𝜋𝑥𝑎 ) 𝑑𝑑𝑥 [ln(1 + 𝑔02exp(1 − 𝑞3(𝑥)))]𝑑𝑥 + 

 

 lim𝜖→∞∫((𝑎)+𝑑2+𝜀)/2((𝑎)+𝑑2−𝜀)/2 cos(𝑛𝜋𝑥𝑎 ) 𝑑𝑑𝑥 [ln(1 + 𝑔02exp(1 − 𝑞4(𝑥)))]𝑑𝑥 + 

 

 lim𝜖→∞∫((3𝑎/2)−𝑑3+𝜀)/2((3𝑎/2)−𝑑3−𝜀)/2 cos(𝑛𝜋𝑥𝑎 ) 𝑑𝑑𝑥 [ln(1 + 𝑔03exp(1 − 𝑞5(𝑥)))]𝑑𝑥 + 

 

 lim𝜖→∞∫(3𝑎2 )+𝑑3+𝜀2(3𝑎2 )+𝑑3−𝜀2 cos(𝑛𝜋𝑥𝑎 ) 𝑑𝑑𝑥 [ln(1 + 𝑔03exp(1 − 𝑞6(𝑥)))]𝑑𝑥}.     (5) 
 

The matrix of the dielectric profile is given in Appendix A. We see that this is a special matrix. The 
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components of the fields obtained at the output of the straight waveguide according to the mode 

model [12] are briefly given in Appendix B. From the development of the matrices for the complex and 

inhomogeneous cross section (Fig. 1), we can use the components of the output fields as given in 

Appendix B and we also need to use Laplace and Fourier transforms on the components of the output 

fields. 
 

IV. Numerical results 
This section presents several examples for the propagation along a rectangular cross section as shown 

in Fig. 1. The cross section consists of a periodic array with seven alternating hollow and dielectric layers. 

All the next graphical results are demonstrated as a response to a half-sine (TE10) input- wave profile and the 

inhomogeneous geometries of the cross section. All the results are demonstrated for a=b=20 mm,  k0 = 167 

1/m, λ = 3.75 cm, β = 58 1/m,  and z= 0.15 m. 

In this study, the parameters L1=0.25 a, L2=0.5 a, and L3=0.75 a are the distances from the left edge 

of the cross section to the middle of each thickness of the dielectric material, respectively, as shown in Fig.1. 

The parameters d1, d2 and d3 are the thicknesses of the dielectric layers 2, 4, and 6, respectively. We assume 

that d1=d2=d3=d and that dielectric material (ϵr1, ϵr2, ϵr3) in layers 2, 4, and 6 can be different. 

Figures 3(a)-3(e) show the output field for the propagation along a rectangular cross section, where 

a=b=20 mm, d=a/7=2.86 mm, for ϵr1 = ϵr2 = ϵr3 = 7 (Fig. 3a), ϵr1 = ϵr2 = ϵr3 = 8 (Fig. 3b), ϵr1 = ϵr2 

= ϵr3 = 9 (Fig. 3c), and ϵr1 = ϵr2 = ϵr3 = 10 (Fig. 3d). Fig. 3(e) shows the output field for the same 

cross section of the results Figs.3(a)-3(d) where ϵr1 = ϵr2 = ϵr3 = ϵr = 7, 8, 9, and 10, respectively, 

and for x-axis where y=b/2=10 mm. 

Figures 4(a)-4(e) show the output field for the propagation along a rectangular cross section where 

a=b=20 mm and d=a/7=2.86 mm. This case is demonstrated for ϵr1 = ϵr3 = 1, where ϵr2 = 7 (Fig. 

4a), ϵr2 = 8 (Fig. 4b), ϵr2 = 9 (Fig. 4c), and ϵr2 = 10 (Fig. 4d). Fig. 4(e) shows the output field for the 

same cross section of the results Figs.(4a) - (4d) where ϵr2 = ϵr = 7, 8, 9, and 10, respectively, and for 

x-axis where y=b/2=10 mm. 

Figures 4(a)-4(e) show an interesting case in relation to Figs. 3(a)-3(e). In this case the dielectric 

layer is located at the middle of the cross section and the results of Figs. 4(a)-(e) are logical. The half-sine 

profile is dominant for the dielectric profile for each value of ϵr. 

Figures 5(a)-5(e) show the output field in relation to Figs. 3(a)-(e), by only decreasing the 

thickness of each dielectric layer from d=a/7=2.86 mm to d=a/8=2.5 mm, where the other          parameters 

are not changed. By only decreasing the thickness of each of the three layers coated with a dielectric material, 

the behavior of the output fields and the amplitudes are changed significantly.         Figures 6(a)-6(e) show the 

output field in relation to Figs. 4(a)-(e), by only decreasing the thickness of each dielectric layer from 

d=a/7=2.86 mm to d=a/8=2.5 mm, where the other parameters are not changed. 

From the results we see that by increasing ϵr, the amplitude of the output field decreases, and the 

width of the output profile is smaller. 

From all the graphical results, the dominant parameters that influence on the behavior of the output fields 

are the dimensions of the cross section, the dielectric profile, the thickness of the dielectric layers and their 

locations. 

 

V. Conclusions 
The first objective in this research was to solve a wave propagation in a straight waveguide where 

the rectangular cross section consists of a periodic array with seven alternating hollow and dielectric layers. 

The second and the main objective in this study was to show the effect of propagation in a straight 

waveguide with this interesting cross-section on the behavior of the fields at the output of the waveguide. 

The application is effective in the millimeter regime. All the graphical results are demonstrated as a response 

to a half-sine (TE10) input-wave profile and the inhomogeneous geometries of the cross section. 

Figures 4(a)-4(e) show an interesting case in relation to Figs. 3(a)-3(e). In this case the dielectric 

layer is located at the middle of the cross section and the results of Figs. 4(a)-(e) are logical. The half-sine 

profile is dominant for the dielectric profile for each value of ϵr. 

Figures 5(a)-5(e) show the output field in relation to Figs. 3(a)-(e), by only decreasing the 

thickness of each dielectric layer from d=a/7=2.86 mm to d=a/8=2.5 mm, where the other parameters 

are not changed. By only decreasing the thickness of each of the three layers coated with a dielectric material, 

the behavior of the output fields and the amplitudes are changed significantly.    Figures 6(a)-6(e) show the 

output field in relation to Figs. 4(a)-(e), by only decreasing the thickness of each dielectric layer from 

d=a/7=2.86 mm to d=a/8=2.5 mm, where the other parameters are not changed. 

From the results we see that by increasing ϵr, the amplitude of the output field decreases, and the 
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width of the output profile is smaller. 

From all the graphical results, the dominant parameters that influence on the behavior of the output fields 

are the dimensions of the cross section, the dielectric profile, the thickness of the dielectric layers and their 

locations. 
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Figure 3: The output field for the propagation along a rectangular cross section (Fig.1), where  

a=b=20 mm,  and d=a/7=2.86 mm. This case is demonstrated for (a) εr1 = εr2 = εr3 = 7, 

 (b) εr1 = εr2 = εr3 = 8, (c) εr1 = εr2 = εr3 = 9, and (d) εr1 = εr2 = εr3 = 10. (e). The output field in the 

same cross section of the results (a)-(d) where εr1 = εr2 = εr3 = εr = 7, 8, 9, and 10, respectively, 

for x-axis where y=b/2=10 mm. 
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Figure 4: The output field for the propagation along a rectangular cross section (Fig.1), where 

 

a=b=20 mm,  and d=a/7=2.86 mm. This case is demonstrated for εr1 = εr3 = 1, where (a) εr2 = 7, 

(b) εr2 = 8, (c) εr2 = 9, and (d) εr2 = 10. (e). The output field in the same cross section of the 

results (a)-(d) where εr2 = ε r = 7, 8, 9, and 10, respectively, for x-axis where y=b/2=10 mm. 
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Figure 5: The output field for the propagation along a rectangular cross section (Fig.1), where 

a=b=20 mm,  and d=a/8=2.5 mm. This case is demonstrated for (a) εr1 = εr2 = εr3 = 7,  

(b) εr1 = εr2 = εr3 = 8, (c) εr1 = εr2 = εr3 = 9, and (d) εr1 = εr2 = εr3 = 10. (e). The output field in the 

same cross section of the results (a)-(d) where εr1 = εr2 = εr3 = εr = 7, 8, 9, and 10, respectively, 

for x-axis where y=b/2=10 mm. 
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Figure 6: The output field for the propagation along a rectangular cross section (Fig.1), where 

a=b=20 mm,  and d=a/8=2.5 mm. This case is demonstrated for εr1 = εr3 = 1, where (a) εr2 = 7, 

(b) εr2 = 8, (c) εr2 = 9, and (d) εr2 = 10. (e). The output field in the same cross section of the 

results (a)-(d) where εr2 = εr = 7, 8, 9, and 10, respectively, for x-axis where y=b/2=10 mm. 
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Appendix A 

The matrix 𝐺 is given by the form  

 

𝐺 =
[  
   
  𝑔00 𝑔−10 𝑔−20 … 𝑔−𝑛𝑚 … 𝑔−𝑁𝑀𝑔10 𝑔00 𝑔−10 … 𝑔−(𝑛−1)𝑚 … 𝑔−(𝑁−1)𝑀𝑔20 𝑔10 ⋱ ⋱ ⋱⋮ 𝑔20 ⋱ ⋱ ⋱𝑔𝑛𝑚 ⋱ ⋱ ⋱ 𝑔00 ⋮⋮𝑔𝑁𝑀 … … … … … 𝑔00 ]  

   
  
 

 

  Appendix B 

 The output components of the electric field according to [12] are given by   

 

 𝐸𝑥 = {𝐷𝑥 + 𝛼1𝑀1𝑀2}−1(𝐸̂𝑥0 − 𝛼2𝑀1𝐸̂𝑦0),                                                       (𝐴 − 2𝑏) 
 

 𝐸𝑦 = {𝐷𝑦 + 𝛼1𝑀3𝑀4}−1(𝐸̂𝑦0 − 𝛼3𝑀3𝐸̂𝑥0),                                                       (𝐴 − 2𝑏) 
 

 𝐸𝑧 = 𝐷𝑧−1 {𝐸̂𝑧0 + 12𝑠 (𝐺𝑥𝐸𝑥0 + 𝐺𝑦𝐸𝑦0) − 12 (𝐺𝑥𝐸𝑥 + 𝐺𝑦𝐸𝑦)},                        (𝐴 − 2𝑐) 
 

 where 𝐸𝑥0 , 𝐸𝑦0 , 𝐸𝑧0  are the initial values of the corresponding fields at z=0, i.e., 𝐸𝑥0 = 𝐸𝑥 (x, y, z=0), 

and 𝐸̂𝑥0 , 𝐸̂𝑦0 , 𝐸̂𝑧0  are the initial-value vectors,   

 

 𝐷𝑥 ≡ 𝐾(0) + 𝑘𝑜2𝜒02𝑠 𝐺 + 𝑗𝑘𝑜𝑥2𝑠 𝑁𝐺𝑥 ,      𝐷𝑦 ≡ 𝐾(0) + 𝑘𝑜2𝜒02𝑠 𝐺 + 𝑗𝑘𝑜𝑦2𝑠 𝑀𝐺𝑦 ,      𝐷𝑧 ≡ 𝐾(0) + 𝑘𝑜2𝜒02𝑠 𝐺, 
   

 𝐾(0)(𝑛,𝑚)(𝑛′,𝑚′) = {[𝑘𝑜2 − (𝑛𝜋/𝑎)2 − (𝑚𝜋/𝑏)2 + 𝑠2]/2𝑠}𝛿𝑛𝑛′𝛿𝑚𝑚′, 
 

 𝑀(𝑛,𝑚)(𝑛′,𝑚′) = 𝑚𝛿𝑛𝑛′𝛿𝑚𝑚′,      𝑁(𝑛,𝑚)(𝑛′,𝑚′) = 𝑛𝛿𝑛𝑛′𝛿𝑚𝑚′, 
 

 𝛼1 = 𝑘𝑜𝑥𝑘𝑜𝑦4𝑠2 ,      𝛼2 = 𝑗𝑘𝑜𝑥2𝑠 ,      𝛼3 = 𝑗𝑘𝑜𝑦2𝑠 ,         
 

 𝑀1 = 𝑁𝐺𝑦𝐷𝑦−1,      𝑀2 = 𝑀𝐺𝑥 ,      𝑀3 = 𝑀𝐺𝑥𝐷𝑥−1,      𝑀4 = 𝑁𝐺𝑦 . 
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