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Abstract 
This paper presents the development and simulation of a real-time, crop-specific, feedback-driven irrigation 

and fertilization management system designed to optimize the use of limited water and nutrient resources. 

Implemented using MATLAB Simulink and Python 3.7, the system integrates simulated multi-sensor inputs, PID 

controller, fuzzy inference, and actuator modeling to dynamically adjust irrigation and fertigation schedules 

based on soil moisture, nutrient content, temperature, and crop growth stages. An artificial neural network 

trained via transfer learning was employed to enhance predictive decision-making. Simulation results 

demonstrated that the irrigation model achieved 100% accuracy, while the fertilization model achieved over 

91% accuracy. These findings underscore the system’s potential to maintain optimal soil conditions, minimize 

water and fertilizer wastage, and improve crop growth outcomes. The research highlights the promise of real-

time, AI-driven feedback systems in advancing precision agriculture, ensuring sustainable resource 

management, and supporting climate-smart farming practices. 

Keywords: Precision irrigation, fertigation, fuzzy logic, PID control, artificial neural networks, MATLAB 

Simulink. 
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I. Introduction 
Water scarcity and climate variability pose significant threats to global food security, with agriculture 

consuming about 70% of global freshwater resources. Hence, inefficiencies in traditional irrigation often lead to 

substantial water losses and reduced resource sustainability (Gu et al., 2020; Ray & Majumder, 2024). 

Advances in precision irrigation, powered by ICT, IoT, and sensor networks, have enabled real-time monitoring 

of soil and environmental parameters, improving decision support systems (García et al., 2020; Morchid et al., 

2025). Despite progress made, most existing smart irrigation systems primarily respond to external factors like 

soil moisture or weather, while insufficiently integrating internal plant development processes (Wilkening, 

2023; Bhatti et al., 2023). Furthermore, the coupling of nutrient delivery with specific crop growth demands 

remains limited, often treating irrigation and fertigation as separate processes (Evans et al., 2013). This study 

addresses these gaps by simulatiing a real-time, crop-specific irrigation system that integrates multi-sensor 

feedback with phenology-driven decision models to synchronize water and nutrient supply with crop 

developmental stages. 

 

II. Related Works 
Earlier research highlights significant contributions to precision irrigation. Mishra et al. (2021) 

demonstrated IoT-enabled irrigation that saved up to 35% water by responding to soil moisture data. Zhang et 

al. (2020) explored fuzzy logic for irrigation scheduling in tomato farming, showing improvements over static 

methods. Patel and Gupta (2019) introduced machine learning for predicting irrigation needs, enhancing 

scheduling efficiency. Therefore, many systems lack integration of multi-input feedback that includes both soil-

plant dynamics and nutrient requirements, and few adapt to specific crop growth stages or phenological 

milestones (Wilkening, 2023; Naziq et al., 2024). The current study builds on these foundations by coupling 

crop-specific moisture thresholds, nutrient demands, and growth measurements with advanced control logic for 

truly tailored irrigation and fertigation. 
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III. System Methodology 
System Design 

High-level system architecture was first designed to define the main components and data flow within 

the irrigation system. This architecture includes three major subsystems, which entail Sensor Input Subsystem 

(soil moisture, temperature, nutrient), Crop-Specific Irrigation Decision Unit, Actuation and Feedback 

Subsystem. This modular breakdown was implemented in MATLAB Simulink as shown in fig.1 for clarity and 

flexibility 

A. Sensor Input Simulation: Generated dynamic signals for soil moisture, temperature, nutrient levels, and 

growth using MATLAB Simulink signal generators and lookup tables. 

B. Decision Logic: Applied PID controllers and fuzzy inference systems to maintain optimal ranges specific to 

maize, tomato, and rice moisture needs. Various thresholds were selected based on the crop type as follows: 

i. Maize: 20%–40% optimal moisture range 

ii. Tomato: 30%–50% optimal moisture range 

iii. Rice: 50%–75% optimal moisture range 

Rule-based logic triggered irrigation or fertigation when sensor values crossed critical thresholds. This 

module received sensor inputs and determined whether to turn irrigation ON or OFF based on predefined rules: 

Rule 1: If soil moisture < lower threshold → Irrigation ON 

Rule 2: If soil moisture > upper threshold → Irrigation OFF 

C. Actuation & Feedback: Modeled actuator response through integrator and transfer function blocks to 

emulate water inflow effects on soil moisture. 

 

 
 

AI Model Training 

An artificial neural network (ANN) was developed in Python 3.7 using transfer learning to predict 

irrigation and fertilization actions from sensor data. Sample dataset generated as shown in table 1 was used to 

train the Artificial Neural Network. 

 
Time (s) Moisture Nutrients Temp growth 

0 51.2 12.0 17.9 1.87 

1 46.0 2.58 16.1 1.18 

2 35.0 37.3 12.2 3.71 

3 9.50 44.3 3.32 3.71 

4 43.3 51.4 15.1 4.73 

5 70.9 21.0 24.8 2.53 

6 11.5 28.5 4.05 3.07 

7 7.80 45.7 2.73 4.32 

8 36.9 1.90 12.9 1.13 
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Model performance was evaluated using accuracy, precision, recall, F1 score, and confusion matrices. 

The leave-one-out cross-validation was used to ensure the model's generalization capabilities. 

Accuracy is calculated by comparing the model's predictions with the actual labels in the validation 

dataset. The Formula for Accuracy used in this model evaluation is given by; 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
True Positives + True Negatives

True Positives + True Negatives + False Positives + False Negatives
 

Precision is one indicator of a machine learning model's performance and the quality of positive 

prediction made by the model. The Formula for Precision used in this model evaluation is given by; 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 =
True Positives in all classes

True Positives + False Positives in all classes
 

 

Recall measures how often a machine learning model correctly identifies positive instances (true 

positives) from all the actual positive samples in the dataset. The Formula for Recall used in this model 

evaluation is given by; 

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑑𝑖𝑣𝑖𝑑𝑖𝑛𝑔 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 𝑏𝑦 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 

F1 score computes the average of precision and recall, where the relative contribution of both of these 

metrics is equal to F1 score. The best value of F1 score is 1 and the worst is 0. The Formula for F1 score is 

given by; 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =
2 (Precision X Recall)

Precision + Recall
 

 

System Mathematical Model 

The mathematical model for the physical concept is given as follows for the real-time feedback control 

of irrigation and application of fertilizer based on real sensor values of soil parameters. Factors that influence 

the irrigation frequency are: 

Tomatoes optimum moisture requirement range is 30% to 50%. This implies that moisture content that 

is below this range should trigger the automated feedback for irrigation. 

Mathematically shown in equation 1 and equation 2; 

 

𝑡 = {
0, 𝑖𝑓 30 ≤ 𝑄 ≥  50
1,             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                (1) 

u(𝑡), = ∑ (𝑛
𝑘

)𝑎𝑛−𝑘
50

𝑘=30
                                                  (2) 

Maize optimum moisture requirement range is 20% to 40%. This implies that moisture content that is 

below this range should trigger the automated feedback for irrigation. 

Mathematically shown in equation 3 and equation 4; 

 

𝑚 = {
0, 𝑖𝑓 20 ≤ 𝑄 ≥  40
1,             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                    (3) 

u(𝑚) = ∑ (𝑛
𝑘

)𝑎𝑛−𝑘
40

𝑘=20
                         .                        (4) 

Rice optimum moisture requirement range is 50% to 75%. This implies that moisture content that is 

below this range should trigger the automated feedback for irrigation. 

Mathematically shown in equation 5 and equation 6 ; 

 

𝑟 = {
0, 𝑖𝑓 50 ≤ 𝑄 ≥  75
1,             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                      (5) 

u(𝑟) = ∑ (𝑛
𝑘

)𝑎𝑛−𝑘
75

𝑘=50
                                                     (6) 

Irrigation for tomatoes is denoted by u(t), for maize is denoted by u(m), for rice is denoted by u(r), and 

for growth by u(g). The total irrigation (k) model is given by equation 7 and equation 8: 

𝑘 = 𝑢(𝑡) + 𝑢(𝑚) + 𝑢(𝑟)                                                        (7) 

𝑓(𝐽) = ∑ (𝑡𝑛−𝑘 +  𝑚𝑛−𝑘 +  𝑟𝑛+𝑘)
60

𝑛=0
                                   (8) 

 

Factors that influence the fertilization frequency are: 

Nutrient requirement in the model is 0mg/kg to 60. However, nutrient content below the quantity of 

nutrient Q sensed triggers the automated fertilizer application feedback as shown in equation 9. 

Where Q ≤ 10 
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u(𝑛), = ∑ (𝑛
𝑘

)𝑎𝑛−𝑘
60

𝑘=0
                                               (9) 

Growth requirement in the model is 1 to 5. This implies that when the growth sensor senses growth not 

within the value of Q, automated fertilizer application feedback is triggered as shown in equation 10. 

Where Q >= 3.2 

u(𝑔) = ∑ (𝑛
𝑘

)𝑎𝑛−𝑘
5

𝑘=3.2
                                               (10) 

The fertilizer (k) model is given by the equations 11 and 12: 

𝑘 = 𝑢(𝑛) + 𝑢(𝑔)                                            (11) 

𝑓(𝐽) = ∑ (𝑛𝑛−𝑘 +  𝑔𝑛+𝑘)
60

𝑛=0
                                                          (12) 

 

Simulation & Validation 

Testing scenarios simulated variable crop types, moisture ranges (20–40% for maize, 30–50% for 

tomato, 50–75% for rice), and dynamic growth phases. Real-time system behavior was monitored via scopes 

and data exports to MATLAB workspaces, with additional graphical evaluations performed as shown in fig.2. 

 

 
 

IV. Results Obtained 
Simulation demonstrated that the system effectively maintained optimal moisture and nutrient levels. 

As seen in Table 2, irrigation was activated precisely when moisture fell below crop-specific thresholds such as 

<20% for maize, and fertigation responded to both nutrient concentration and growth metrics. 

 
Time 

(s) 

Moistur

e 

Nutrient

s 

Temp growth Crop-Specific Irrigation Irrigatio

n 

fertigation 

Maize Toma

to 

Rice 

1 33.6 5.05 11.7 1.36 0 0 1 1 1 

2 17.3 35.9 6.06 3.61 1 1 1 1 1 

3 8.61 22.8 3.01 2.66 1 1 1 1 0 

4 39.3 38.5 13.7 3.80 0 0 1 1 1 

5 80.4 50.0 28.1 4.64 0 0 0 0 1 

6 1.10 41.9 0.38 4.04 1 1 1 1 1 

7 23.3 14.4 8.15 2.04 0 1 1 1 0 
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8 93.3 2.61 32.6 1.18 0 0 0 0 1 

9 22.6 40.4 7.93 3.94 0 1 1 1 1 

10 78.5 18.0 27.5 2.31 0 0 0 0 0 

11 41.0 34.7 14.3 3.53 0 0 1 1 1 

12 11.9 41.6 4.17 4.02 1 1 1 1 1 

13 63.4 54.5 22.2 4.96 0 0 0 0 1 

14 86.2 20.0 30.1 2.46 0 0 0 0 0 

15 15.8 13.5 5.53 1.98 1 1 1 1 0 

16 60.1 54.0 21.0 4.93 0 0 0 0 1 

17 11.7 39.7 4.11 3.89 1 1 1 1 1 

18 62.6 41.4 21.9 4.01 0 0 0 0 1 

19 83.5 35.8 29.2 3.60 0 0 0 0 1 

20 94.0 3.99 32.9 1.29 0 0 0 0 1 

 

The ANN models yielded strong results: 

i.Irrigation model: Accuracy = 100%, F1 score = 1.0, Recall = 1.0, Precision = 1.0. 

ii.Fertilization model: Accuracy = 91.7%, F1 score = 0.91, Recall = 87.5%, Precision = 95.6%. 

 

Graphical plots shown in fig. 3 and fig.4 confirmed adaptive responses, irrigation cycles correlated 

tightly with moisture drops, while fertilizer application adjusted based on nutrient and growth readings. These 

results underline the system’s ability to minimize over-irrigation and unnecessary fertilizer use. 
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V. Conclusion 
This research demonstrates the feasibility and benefits of a real-time, crop-specific irrigation and 

fertilization system that integrates multi-sensor feedback, AI decision models, and advanced control logic. The 

approach offers substantial improvements in water and nutrient use efficiency, directly supporting sustainable 

agriculture. It is recommended that future work includes deploying prototype systems in actual farm settings, 

integrating reinforcement learning for continuous system adaptation, and developing farmer-friendly interfaces 

for widespread adoption. Such initiatives would further harness the power of smart irrigation systems to meet 

global food demands sustainably amid climate challenges. 
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