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Abstract: In a power system, as a power load demand varies randomly, both area frequency and line power 

also vary. The objectives of load frequency control (LFC) are to minimize the transient deviations in these 

variables (area frequency and line power) and to ensure their steady state errors to be zeros. When dealing with 

the LFC problem of power systems, unexpected external disturbances, parameter uncertainties and the model 

uncertainties of the power system pose big challenges for controller design. 

In this project, a reduced-order state observer with a practical point of view for LFC problem in a power system 

is proposed based on the pole-placement method. A proper choice of closed-loop pole location has been 

proposed using symmetrical root locus (SRL) method. In the practical environment, there is limited access to all 

state variables of system and measuring all of them is usually impossible. So when the available sensors are less 

than the number of states or when it may be undesirable, expensive or impossible to measure directly all of the 

states, a reduced-order state observer can be applied as proposed in this project. The proposed strategy is 

tested on a single area power system. The dynamic model of the power system and the controller design based 

on the model are elaborated. The robustness and stability of the control schemes is examined through 

simulations. 
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I.       Introduction 

[1] Frequency regulation is necessary to control the flow of alternating current power from multiple generators 

through the network. The change in system frequency provides a measure of mismatch between demand and 

generation, and thus is a necessary parameter for load control. Frequency changes are an unavoidable 

consequence of changing demand. Rapidly changing mains frequency is often a sign that a distribution network 

is operating close to its capacity limits, dramatic examples of which can be observed just before major power 

outages. During an overload caused by the failure of generators or transmission lines, the power system 

frequency will decline, due to an imbalance of load versus generation. On the other hand, the sudden loss of an 

interconnection, while exporting power will cause the system frequency to rise. 

[2] A state observer estimates the state variables based on the measurements of the output and control variables. 

A state Observer can be designed if and only if the observability condition is satisfied. A state vector x is an n-

vector and the output vector y is an m-vector that can be measured. Here, m-state variables need not be 

estimated. We need to estimate only n-m state variables. 

 

[3]-[4] The state observation problem has been widely studied since the original works of Kalman and 

Luenberger. In this respect, many papers aim at designing reduced-order observers, which provide an estimate 

of a linear functional of the state. 

 

[5] In this paper a reducer order observer is analyzed for so-called generalized state space (or descriptor) 

systems. Based on the staircase form for generalized stair space models. A recursive algorithm is presented to 

construct a reduced order observer for a given observable description system. 

 

[6] This paper presents a reduced-order estimator by using an LQR regulator with a prescribed degree of  

 

Stability for two-area load frequency control problem in a deregulated power system. It shows that the 

load frequency control requirements in a practical environment are satisfied and also with so good dynamic 

responses, sensitivity to plant-parameter variations is reduced. 

[7] One major approach to achieve a better system performance is through the closed loop pole placement using 

Symmetrical Root Locus (SRL). In this method, the poles of closed loop system can be placed arbitrarily at any 

locations in the complex plane. 

[10] Also, the LFC problem is very important in interconnected power system because the load perturbation in 

any areas disturb the frequency of others. 
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The paper is organized as follows. Section I presents introduction to LFC. Section II presents modeling 

of major components of power system. Section III presents the proposed model. Section IV shows the 

simulation results of our plant with parameters uncertainty. Section V Conclusion and references of our 

generated plant stability is discussed. 

 

II.      Power System Model 
The first step in analysis and design of a control system is mathematical modeling of the system. The 

modeling of various components of LFC is done by using transfer function approach [9] suggested simple 

modeling of governor, turbine & power system parts of LFC and putting dynamic model in state variable form. 
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Figure 1: Primary ALFC loop 

 

We use three state variables 1 2,x x and 3x  forming the state vector  
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In more compact form, 

.
X = X DA Bu P                                      (3) 

 

This chapter has laid the groundwork for both the controller design and the constructions of the power systems. 

 

III.      Proposed Model 
[2] It is well known that to minimize frequency variations, a large proportional feedback gain is desirable. To 

show how to construct and estimate of the state vectors using the system inputs and outputs, we consider our 

proposed system governed by 

 

.
X = XA Bu                                                    (4)  

CXy                                                                    (5) 

 

And the observer designed for the free system can be used if the input is connected to the observer  
.

Z = Dz Cx Gu                                              (6) 
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After analysis it is found that 
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The above equations can be framed into model as shown below in Figure [2]  

 

 
Figure 2: Design of Reduced Order Observer with its Derived Parts. 
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Now Fig [2] can be implemented as full state feedback based reduced observer with integral controller scheme 

for LFC as shown in Figure [3] 

 

 
Figure 3: Proposed Reduced Order Observer Model 
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The control input U(s) which is directly related to actuator and it tries to rotate the motor thus the speed 

changer which provides upward and downward vertical movements proportional to the change in speed. The 

control input sets the integrator pole (ρi) and the closed loop pole (ρo) values. The value of integrator pole is 

selected as 600 with trial and error method which gives closed loop pole range 0<Po<24. We will set ρi =600 

and ρo =8 as specified value for the proposed model. Now we will check for its stability in two cases, before and 

after the integral controller at the given ρi and ρo value. 

 

IV.      Selection Of Closed-Loop Poles 
[11] The Symmetric Root Locus used in this project is to provide a basis for specifying closed-loop poles in 

pole-placement design. The SRL equation is described as 

    1 ( ) ( ) 0G s G s                        (8)       

 

 Here, ρi is set at large value of 600 to reduce the control effort. The gain matrices that places the closed 

loop poles at the stable roots of SRL are evaluate in TABLE [1] using parameters given in TABLE [2]. The SRL 

equation helps in the calculation, location and behavior of the system poles by proper choice of ρi. 

 

TABLE 1: GAIN VALUES AT ρi=600 & ρ0=8 
GAIN VALUE 

Ki 195.988673142098 

K1 2.52415578965696 

K2 20.6438888058237 

K3 46.0849611539983 

 

The closed loop eigenvalues of the system are 
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Since we can select the observer eigenvalues r0, r1 and r2 from 3 to 7 times of system poles. So, we will 

select observer poles 3 times of system poles for our proposed model. 

 

V.       Stability Margins 
In this section, two break points X1 and X2 from Figure [3] are considered. X1 is provided after the 

integral controller (Ki) and the required Gain Margin (GM1) and Phase Margin (PM1) are determined using 

TABLE [2]. The open loop transfer function Gx1(s) of this system is determined as 
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Where, 
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Using above expression it is found that the Gain Margin and Phase Margin at ρi =600 and ρo =8 are 

12.4db and 30.5 Degree respectively. Fig [4] shows bode-plot for ρi =600 and ρo =18 using Equ. [10] 
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Similarly, the break point X2 is provided before the integral controller and the required Gain Margin 

(GM2) and Phase Margin (PM2) are determined using TABLE [2]. The open loop transfer function Gx2(s) of this 

system can be determined as 
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Where, 
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Similarly, Using above expression it is found that the Gain Margin and Phase Margin at ρi =600 and ρo 

=8 are 11.7dB and 15.7 Degree respectively. Fig [5] shows bode-plot for ρi =600 and ρo =18 using Equ [11]. In 

both cases, the system is stable and thus, a necessary and sufficient condition for the system to be stable is 

fulfilled. 

 

 
Figure 4: Gx1(s) Bode plot for ρi =600 and ρo =18 

 

 
Figure 5: Gx2(s) Bode plot for ρi =600 and ρo =18 
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VI.      Simulation 
In the simulation study, the proposed reduced order model is applied for one area power system LFC. 

To illustrate the performance of this model, simulations are performed for without observer and with observer. 

In this simulation the performance of the proposed simulations are done using MATLAB [12]. The power 

system parameters are given in TABLE [2]. 

 

 
Figure 6: Symmetrical Root Locus 

 

Since ρi is set at 600 and from SRL the closed-loop poles on the left half plane of jw-axis are 

considered as our desired closed-loop poles. Thus SRL provides a basis for specifying CLPs in a pole-placement 

design. All the gain values Ki, K1, K2 and K3 in Figure [3] are determined by SRL and tabulated in TABLE [1]. 

 

Without Reduced order Observer 

In this model, observer part is excluded, which means that the output is directly connected to Ki, K1, K2 

and K3.  The Figure [7] shows the step-Response of state feedback and integral control system. 

 

 
Figure 7: Step-Response without Observer. 

 

Control Input 

The control input (∆U/∆PD) which is directly related to actuator and it tries to rotate the motor thus the 

speed changer which provides upward and downward vertical movements proportional to the change in speed. 

The control input sets the integrator pole and the closed loop pole values. The required control input transfer 

function is  
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Where, 
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Using equation [12], the ρi is varied in the range between 100-1000. It is interesting to note that our 

desired value ρi =600 and closed-loop pole ρ0=8 not only gives optimal settling time but also provides balances 

between the acceptable response and the amount of control energy required. Also, Figure [8] shows that the 

peak and peak time is acceptable at ρi =600 which gives optimal control approach and provides optimal speed of 

response which requires smaller actuator and thus low cost.   

 

 
Figure 8: Control Input ∆u Plot for different ρi 

 

 

Figure 9: ∆u Plot for  10% Nominal Value change. 

 

Closed-Loop System of the proposed model ∆f/∆PD 

The step response of our model with reduced order observer is shown here. Figure [10] shows different 

responses for varying ρ0 and fixed ρi. It shows that the settling time required for the system which gives small 

transient amplitude is 4.37 seconds which is minimum settling time when we vary ρ0  from 1-25 keeping ρi=600. 

Step-Response of proposed model at  10% Nominal Value using TABLE [2] is also shown in Figure [11]. 

Besides, Fig [12] and Fig [13] shows identical output of proposed model using matlab program and simulink 

model. 
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Figure 10: ∆f Plot of model for different ρ0. 

 

 

Figure 11: ∆f Plot for  10% Nominal Value change 

 

 
Figure 12: Step Response of ∆f/∆PD at ρi = 600 &  ρ0 = 8 by matlab program. 
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Figure 13: Step Response of ∆f/∆PD  ρi = 600 & ρ0 = 8 by simulink. 

 

Simulink Model and Estimation of States 

Final simulink model of our proposed Reduced-Order Observer is shown in Fig [14]. Now using 

simulink model, we will compare the dynamic response of change in turbine power ∆PT and change in valve 

power ∆PV. 

 

 
Figure 14: Reduced Order Observer simulink model. 

 

Fig [15] and Fig [16] shows how the observer estimates the dynamic response of the system. The 

response pattern of the original response and the estimated response in Fig [15] and Fig [16] are nearly same but 

are slightly differ as there exist very small error between them which indicate that the estimated value will not 

be exactly like the original value. Therefore, the proposed control scheme shows the ability to measure all the 

states. Thus, the requirement of mechanical sensors is eliminated and reduces cost effects. 

 

 
Figure 15: comparison of original ∆PV and estimated ∆PV in simulink. 
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Figure 16: comparison of original ∆PT and estimated  ∆PT    in simulink. 

 

VI.       Conclusion 
In this paper, the capability of estimating the unmeasurable states using Reduced-Order Observer with 

integral control has been presented. The simulation results verified the effectiveness, stability and robustness of 

proposed strategy under parameter variations and external disturbances. Besides, the cost factor is reduced due 

to elimination of mechanical sensors. 

 

Table 2: Turbine And Governor System Parameters Lfc 
 Kp 

(pu/Hz) 
TP  
(s) 

TT  
(s) 

TH  
(s) 

R 
(Hz/pu) 

+10% 132 22   0.33 0.088     2.64 

Nominal 120 20  0.3 0.08     2.64 

-10% 108 18  0.27 0.072 2.16 

 

NOMENCLATURE 

R            Droop Characteristics (Hz/pu) 

∆f           Change in frequency (Hz) 

∆PG           Change in generator power (MW) 

∆PV        Change in valve power (MW) 

∆PT           Change in turbine power (MW) 

KP             Power system equivalent gain 

TP               Power system equivalent time constant (s) 

TT           Turbine time constant (s) 

TH           Governor Time constant (s) 

X(t)         State vector of order (nx1) 

Y(t)         Output vector of order (px1) 

A             System matrix of order (nxn) 

B             Input matrix of order (nxm) 

C             Output matrix of order (pxn) 

D             Transmission matrix of order (pxm) 
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