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Abstract: This paper investigates various aspects of voltage-power relationships in power systems. Conditions
for feasible generating points are analytically derived for a simple power system with a detailed generator
model. The set of Hopf Bifurcation points for the sample system are visualized on the feasible operating surface.
The effect of damping on the onset of bifurcations in the system is briefly investigated. The role of different
generator models in isolating bifurcations and subsidiary phenomena in a multi-machine system are also
presented. The effect of nonlinear indices of voltage dependent load models on system bifurcations is dealt with
as also the effect of AVR gains.
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l. INTRODUCTION

Power Systems are large complex dynamical systems. The nature of voltage-power relationships at any
bus within such systems likewise varies in a complex manner depending on where and how the system is
stressed, where the generating nodes are, network parameters and a host of other factors. Deriving explicit
expressions for such complex voltage-power behaviour at any bus in a stressed system is too intricate. However,
power system researchers have visualized such relationships using power-voltage (PV) curves constructed using
detailed power system models.

Power voltage curves have as such long been visualized and used in the analysis for various
phenomena in stressed power systems including structural stability, voltage instability, bifurcations etc. ([2]-
[5]). The dynamic aspects of such voltage power characteristics have also been studied in detail ([2]-[4]).
Dynamic models of power systems coupled with P-V curves present the researcher with tools to analyze both
static and dynamic aspects of power systems. However, it is interesting to note that the amount of detail used in
constructing dynamic system models is crucial in highlighting phenomena which usually cannot be visualized in
reduced order models. Adequate load modeling at different buses also play an important role in predicting the
occurrence of such dynamic phenomena.

This paper discusses the static and dynamic aspects of voltage-power characteristics in two sample
power systems. The onset of dynamic phenomena such as Hopf bifurcations is visualized using voltage-power
characteristics at a load bus. The effect of different detailed models on defining the onset of such phenomena is
investigated. The nature of different static load models, their power-voltage characteristics, their sensitivities
with respect to voltage variations and their effect on the occurrence of Hopf bifurcations is also investigated.
The effect of AVR gain Ka on the onset of such dynamic phenomena is also briefly dealt with.

1. SYSTEM DYNAMIC MODEL
A simple power system consisting of a single generator synchronized on an infinite bus through a
lumped transmission line, as shown in Fig. 1, is analyzed. The generator is modeled by a two axis machine
model with IEEE Type 1 exciter and a simplified turbine-governor model. The saturation effects in the generator
along with both stator and network transients are neglected. The synchronous machine equations are:
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Fig. 1 Single Machine Infinite Bus System
The IEEE Type | exciter dynamics are given by:

dE KE+SE(Efd) (VR)
= - — — E + — (2.5)
dt TE ( fd) TE
dVg (VR) Ka KaKe Ka
Ve _ o Me) , Kagpy o Eg) + ~2p -V
dt Ta Ta (Re) TaTe ( fd) Ta ( o ) 26)
dRe (RF) Ke
~—F - _ 1/ —F(E 2.7
dt T T,:Z( o) @0

where V¢ isasetpointand V is the magnitude of the generator terminal voltage. The simplified turbine and
governor model is given by:

dTy, (Tw) 1 K Khp
LR - P Bee (p
dt TrH ’ Tew  Tew ( o ) " Ten ( SV) (28)
dpﬁ - _ (PCH ) + (PSV ) (2_9)
dt Ten Ten
dPsv (Psv ) " ke 1 (ﬂ _1J (2.10)
dt Toy Tsy RaTsv \ s

B. (E - ,
In the above model, SE(E d ): A, e «(E6) models the saturation in the exciter and M = 2H w5, ws =

120 7 rads/sec. The following limit constraints also apply to the model

Vi< (Vg ) < Ve and  0<(Ry,)< PO (2.11)
The stator algebraic equations to be satisfied are:
(Ej)-V sin(6—0)—Rglg + X{1,=0 (2.12)
(Ey)-V cos(6—6)-Rslq —Xj14=0 (2.13)
For the single machine infinite bus case the network equations to be satisfied are :
Relg = Xelg —Vsin(6—0)+V,,sin(5) =0 (2.14)
Xely +Relq —V cos(6 —0)+V,, cos(5) =0 (2.15)
The differentio-algebraic model illustrated above can be symbolically represented as :
X =1(X,Y,p) (2.16)
0=g(X,Y,p) (2.17)

where X is the vector containing all differential states, Y is the vector containing all algebraic states and p is the
vector of all system parameters. The above model can be linearized about an equilibrium point. The symbolic
representation of the perturbation model has the form:
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AX = AAX + BAY + EAp (2.18)
0=CAX + DAY + FAp (2.19)
Al gt
where %)é %E %%
C=— , D=— , F=Z=2
oX oY op

and AX,AY denote perturbation in the differential and algebraic states, Ap denotes perturbation in system
parameters. Eliminating AY from equations (2.18) and (2.19) we have the following representation:
AX = Agys AX +G Ap (2.20)

where  Agyg = (A— BD’lc), G= (E - BD’lF). The eigenvalues to be observed are the eigenvalues of the
Agyg matrix.

1. FEASIBLE GENERATING SET
The network algebraic equations (2.14) and (2.15) of the single machine infinite bus system model
outlined in section 2 are derived from the following equation satisfying Kirchoff’s voltage law in the network:

Vel (g + 1) PR 4 jx,) = Vool (3.1)
The complex generated power at the generator bus is given by:
Po+iQs = Vel(ly - jlq)g_j('s_%) 3.2)
Using (3.2) we can eliminate the currents |4, | q from (3.1) which then can be written as:
Vel - Lj.QG)(Reﬂxe) = Vv, elo (3.3)
Ve 19
or V2 —(Pg - jQe MR, + jX,) = Ve v gl° (3.4)
Separating (3.4) into real and imaginary components and taking V_, =1 p.u we have:
VZ-Vcosf-a=0 (3.5)
Vsind-b=0 (3.6)

where a=PgR, +QgX,, b=P;X,—-QgR,. Eliminating ¢ from (3.5) and (3.6) we have the following
equation which can be solved for V

VZFJW2-p2 —a =0 (3.7)
Multiplying the two equations corresponding to each of the two different signs in (3.7) we have:

V4 —(2a+1)V2 +a® +b? =0 (3.8)
Two of the four solutions of (3.8) will correspond to two solutions of each of the two equations forming it.
Substituting g =V 2 in (3.8) we have:

g’ —(2a+1)q+a®+b?=0 (3.9)
which has two roots

(2a+1)+/(2a+1)? —4(a2 +b2)
2

G2 = (3.10)
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Fig 2b 3-Dimensional surface of feasible generating points for the infinite
bus system

The two roots in (3.10) can be (a) both real and = 0 or both real and > 0 or (b) both imaginary with real parts
the same, depending on the term inside the square root being (i) = 0 or (ii) <0 respectively. When the two
solutions for q given by (3.10) are both real and < 0 or both imaginary then the four solutions for V in (3.8) are
guaranteed to be all imaginary leading to a loss of a feasible solution. Both solutions for g in (3.10) are negative
when

2a+1<0or a<-1/2 (3.11)
Both solutions of g in (3.10) are imaginary when

(2a+1 -4(a2+b?) < 0 or 4b2-da-1 >0
= b > Jat+ys (3.12)
Consider again (3.7). The Jacobian of the L.H.S of (3.7) yields
J= V|21 (3.13)

YV 2 _p?

J -1 fails to exist when V=0 which is a trivial solution or when
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21% =0 = V= =+ b>+1/4 (3.14)
V2-b

The critical value of generator terminal voltage can thus be derived by substituting the critical value of b from

(3.12) into (3.14) which gives:
Ve =02 +1/4 = Ja?+1/2 (3.15)

From (3.11),(3.12) and (3.15) the set of all feasible generating points for the single machine infinite bus system
can be constructed as shown in Fig. 2b for a lossless line. The 3-dimensional feasible operating surface is a
conglomeration of all P vs V curves of the form shown in Fig. 2a (for Qg = 0.5 p.u), for all Qg within the
desirable operating range. The locus of all operating points (where loss of existence of a feasible solution
occurs) can be found by joining the tip of all P vs V curves for different Qg in the desired range.

AV BIFURCATION ANALYSIS
For the system (2.16)-(2.17) with perturbation model given by (2.20), conditions for Hopf bifurcation
to occur are (a) a simple pair of imaginary eigenvalues of Agsys matrix cross the imaginary axis while the other
(n-2) eigenvalues are all in the left half plane and

(b) L (Rel2(p;))]  + o (4.1)
dpj Pj=Pjc

that is, the rate of change of the real part of the critical pair of eigenvalues with variation of the jth parameter
p;. is nonzero at the point where the critical parameter p; = p;c . In the feasible generating space shown in

Fig. 2b, the set of Hopf bifurcating points are isolated using the above criteria and the results shown in Fig. 2b.
The Hopf Bifurcating locus is plotted only for the upper part of the feasible operating surface that is only when
the critical eigenvalues move over from the left half to the right half of the complex plane. Increased damping
D, in equation (2.2), in the system causes the Hopf bifurcation locus to shift lower down the feasible operating
surface till for some value of damping the locus vanishes and the upper part of the feasible operating surface
ceases to have Hopf Bifurcation points beyond that critical damping. A critical value exists too when damping D
becomes negative in the model. To verify that the above linearized analysis is actually coherent with nonlinear
time domain simulation, three different feasible operating points in the feasible operating surface were chosen as
shown in Table 1.

The system was perturbed from these operating points and the nonlinear model was simulated using the
Simultaneous Implicit Trapezoidal Method with a constant time step of 0.005 sec. The results for each case are
as shown in Fig. 3. The system is stable for case (a), exhibits periodic cycles for case (b) which is the Hopf
bifurcation point under study and is constrained to exhibit supercritical bifurcation like phenomena for case(c)
depicting a realistic scenario.

3z

oY d7a as as2 Ged o0bs _ass 08 o o094 008
Epinpu

Case (a) - Case (b) Case (c)

Fig. 3 Nonlinear Simulation of the SMIB system around the Hopf Bifurcation point

V. MULTIMACHINE SYSTEMS
The system model for a multimachine system is represented by a set of machine models each of the
form (2.1)-(2.11), along with the associated stator algebraic equations of the form (2.12)-(2.13) with parameters
in the above equations corresponding to each machine in the system. The set of network equations derived by
applying Kirchoff’s voltage laws to the system network are: (assuming an n bus system with m generators
synchronized on the first m network buses)

n
I Vi sin(S; — 6 )+ 14V, cos(8; — 6;)+ P, (Vi) = D ViV, Y, cos(6; — 6, —ay ) =0 (5.1)
k=1

I V; cos(5; —6;)— 1, V; sin(s; —6,)+Q, (vi)—zn:vivk\(ik sin(@, —6 —ay)=0i=1,....m (52
k=1
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n
- ZVinYik COS(HI - gk - aik) = 0 (53)
k=1
n
QL (Vi)= D ViVy Yy sin(6; — 6 —ay )=0 i = m+1, ..., n (5.4)

k=1
where Py; (Vi) , Qui(Vi) denote voltage dependent exponential load models at the ith bus.

TABLE 1
Case Ps + Qg Critical Eigenvalue Pair
(a) 114 +j0.2 -0.2028 * j4.7868 inL.H.P
(b) 1.14637 +j 0.2 0.0000 * j4.4518 at Hopf Bif.
(© 1.15+j0.2 +0.1523 + j4.3125 inR.H.P

The three machine nine bus Western System Coordinating Council (WSCC) system shown in Fig. 4 with model

parameters as given in [6] is chosen for analysis in this section. Four different generator models are used to

study the role of bifurcations in this system. The generator models chosen are:

(@) Model-A: Two-axis model with IEEE Type | exciter; same as outlined in section 2.

(b) Model-B: Flux decay model with fast exciter. The damper winding constants in model (a) are assumed to
be very small and are set to zero which in essence means that an integral manifold exists for these states.

Equation (2.4) can then be written as:

0=—Ey +(Xq—Xg)1, (5.5)
We use equation (5.5) to eliminate Ej from equations (2.4) and (2.12). The exciter is modeled
by one dynamic equation:
dE g4 E K
o~ Eu o Ka, ) ©9)
dt Ta Ta

(c) Model C: Two-axis model with fast exciter. The model is essentially the same as in (a) except that the
single exciter equation (5.6) replaces the set of three equations representing the IEEE Type | exciter.

(d) Model D: Flux decay model with IEEE Type | exciter. The generator model is the same as in case (b) but
the exciter is IEEE Type | with three dynamic equations, (2.5)-(2.7). For convenience, the turbine-governor
dynamics are not modeled in any of the above. The zero eigenvalue inherent in such models is removed by

introducing relative rotor angles.
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Fig. 4 WSCC 3 machine 9 bus system
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VI. STATIC LOAD MODELS

Loads are a part of every power system and their characteristics do affect the dynamic behaviour of
such systems. So, when power networks are modeled for analysis effective load modeling becomes an essential
step in the process. Past literature ([7]-[12]) abounds in different modeling aspects of static and dynamic load
models.

Effective load models as such, should be realistic, simple and strike a proper balance among the
different load mixes existing in the actual system. Such load mix composition modeling requires reliable
estimation. Since, there is always an element of uncertainty in such estimation, prevalent load models are
inherently conservative by design. In this analysis presented here we stick to the generic load models which
have been presented in literature, more precisely we consider only voltage dependent exponential load models
of the form:

SL =P+ jQLi at the ith bus where

np, ng
v, v,
P, = B [V—'J » Qp = Qqp (V_I] (6.1)
0; 0,

The load-voltage characteristics for such load models are as shown in Fig. 5(a)-(b) for different nonlinear load
indices. The endeavour in this and subsequent sections is to investigate the nature of voltage sensitivities of such
generic load models in an effort to visualize what effects such characteristics have on system stability and on the
onset of bifurcations when carrying out a dynamic analysis of power systems using power-voltage curves at a

np
critical load bus. Consider the exponential real load model approximation at the ith bus: P =P, (V—'J with
0;

operating constraints (relaxed) : V >0, np; 20, P, >0. The voltage sensitivity of P is given by:

oP, Py P,

— = np (VAL R np{V—J (6.2)

v, p i

Vo
The sensitivity of P with respect to np; can be written as:

np
P, i i i
_Li:povv_I |nV_.:PL_|nV_.
onp; Vo, Vo, L\ Vo,

52P V_ng—z >
L _ o i —nn.(nn. —1)
Further Py np;.(np; —1) Py, v np; (np; 1{\42} (6.4)

2

P,
V2

And

> 0 if np; >1, <0 if np; <1

This implies that the voltage sensitivity of the load follows the variation in voltage for np; >1 (namely
increases with increasing voltage or vice versa), remains constant for np; =1 and changes in the opposite
direction for np; <1 (namely decreases with increasing voltage). For the load-voltage sensitivity to be a

constantly increasing function of the load index we then have (rate of change of voltage sensitivity with load
index should be positive):

1
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Fig. 5a. Voltage Dependent Load Vs Voltage for varying Indices Fig. 5b Voltage dependent load vs Indices for varying Voltage
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°P, Py P v
i i np -1 0; np-1
—_— = TPVI P + npi Tﬁvl P In 1
onp; .oV; Vo \Y Vo,
Po. \YA
= —2 V"™ anpIn =L || > 0 (6.5)
V0i B Voi
V: Vi 1
or 1+npjInf——| >0 = In—"|>—-——
Vo, Vo, np;
_1
or Vi>V, 8( ) (6.6)

The load-voltage sensitivity is a constantly increasing function for V > 0 if np; =0, V > 0.3679 V, for
np; =1 and V >0.6065V, if np; = 2. | other words a positive change in voltage index np; (due to a change in
the aggregation of loads) brings about a positive change in the voltage sensitivity of load approximated by the
exponential load model. Figs. 5(c)-(f) show the behaviour of these sensitivities for V, =1pu, Py =1pu

(normalized load constants).

VII. ROLE OF GENERATOR MODELS IN ISOLATING
BIFURCATION POINTS
The real power at load bus 5 in the WSCC system is chosen as the critical parameter for the system
represented by each of the models (a)-(d) in section 5. The bifurcation analysis yields the results as shown in
Table 2 for constant power case np; =ng; =0. The modal behaviour of each of these models is as shown in

Fig. 6(a)-(b). JLF denotes the Jacobian of the network equations with respect to the network variables and JAE,
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the Jacobian of the stator and network equations with respect to all the algebraic variables: network variables
and the stator currents. It is seen that in model (b) and (c) with fast exciters, another pair of eigenvalues joins
the critical pair in the left half plane. This second pair is associated with the rotor variables of the second
generator (52, a)z). They follow the movement of the critical pair and move back into the left half plane after
the critical pair have split along the real axis, point B, in Fig. 6(b). The movement of both these pairs are
captured in Table 3 as the real power at bus 5 is increased.

TABLE 2.1 Modal Behaviour of Model (a) for different Loads

Load at Bus 5 Sign(det JLF) Sign(det JAE) Critical Eigenvalue(s) Associated States
4.3 * + -0.1433 * j2.0188 o &Ryq
44 * * 0.0057 £ j2.2434 q &Ry
45 * * 0.3400 £t j2.5538 q &Ry
4.6 * * 1.1350 T j2.8016 q &Ry
41 * * 25961 1 j2.2768 Eq &R¢q
48 + + 9.2464, 1.8176 52 &602, Ec'ql & Rfl
49 + - 1.0542 i1 &Ry
5.0 + - 0.6298 t,ql &Ry,
51 + - 0.2463 t,ql &Ry
5.15 + - -0.6832 t,ql &Ry,
5.2 Load Flow does not converge

TABLE 2.2 Modal Behaviour of Model (b) for different loads

Load at Bus 5 Sign(det JLF) Sign(det JAE) Critical Eigenvalue(s) Associated States
44 + + -0.0957 & j0.1407 5y &
4.5 + + 0.0308 t j10.0034 5y & o
4.6 + + 0.3802 % j9.9008 5y &
4.7 + + 0.9344 % j10.1111 5y &
4.8 + + 1.3907 * j11.1963 5y &
4.9 + - 24.4174,0.1104 = j11.3605 Eqp &Efy1.5, &wy
5.0 + - 6.0978 Eq1 & E gy
51 + - 2.5680 Eal &Ey1
5.15 + - 0.5417 Eal &Ey1
52 Load Flow does not converge

TABLE 2.3 Modal Behaviour of Model (c) for different Loads

Load at Bus 5 Sign(det JLF) Sign(det JAE) Critical Eigenvalue(s) Associated States

42 + + -0.0048  j7.4848 5, &w,

4.3 + + 0.2522 + j7.4248 5, &,

4.4 + + 0.5333 & j7.4024 5, &,

4.5 + + 0.8574 t j7.4233 5, &,

4.6 + + 1.2592 + j7.5151 Oy & w,

4.7 + + 1.8164 & j7.7697 5, &,

4.8 + + 2.7800 * j8.6826 5, &,

4.9 + - 12.2699, 0.4398 = j10.0051 Ey&Ey, 6, &m,
50 + - 4.1693,0.1100 * j9.3208 Ey&Ey, 0, &,
51 + - 1.6687 Eéﬂ &Ey

5.15 + - 0.0369 6, &6,

52 Load Flow does not converge
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TABLE 2.4 Modal Behaviour of Model (d) for different loads

Load at Bus 5 Sign(det JLF) Sign(det JAE) Critical Eigenvalue(s) Associated States
44 * * -0.2388 1 j1.6434 Ey &Rsq
45 * * -0.1997 + j1.7778 Eq &Ry
46 * * -0.1265 1 19985 Eq &Ry
4.7 * * 0.0614 T j2.4531 Eq &Ry
48 * * 1.7612 % j3.9016 Eq &Ry
4.9 + - 1.8483 Eél & Rfl
5.0 + - 0.9059 Eél & Rfl
51 + - 0.3726 Eél & Rfl
5.15 + - -0.0424 El’:11'51 & Rf 5
5.2 Load Flow does not converge

Imag Imag D
A
S 1
\\ —D \\\
C \\ B C “ B

Real Real

Fig 6 (a) Critical Eigenvalue pair movement for Models (a) and (d) Fig 6(b) Critical eigenvalues movement for Models (b) and (¢)

TABLE 3. Modal Behaviour of Model (b) for increasing load at bus 5 for Ka=50

Load at Bus 5 Sign(det JLF) Sign(det JAE) Critical Eigenvalue(s) Associated States
4.80 + + 1.3907 * j11.1963 09, W9
4.82 + + 0.0443 =t j15.5037 09,9
484 + + 0.5983 = j11.7688 5y,
486 + + 0.3174 = j11.5990 5y,
488 + + 0.1862 = j11.4621 5y,
2.90 - - 24.4175,0.1%05 + j11.3605 Eqt, Ed1
4.92 + - 14.0688, 0.0611 * j11.2824 Eqt, Etd1
4.94 + - 10.5866, 0.0265 * j11.2200 Eqt, Etd1
4.96 + - 8.5713,0.0010 * j11.1686 Eqt, Etd1
4.98 + - 71711 Eq. Ef1
5.00 + - 6.0978 Eq. Ef1
5.02 + - 5.2207 Eq. Ef1
5.04 + - 4.4687 Eq. Ef1
5.06 + - 3.7973 Eq. Ef1
5.08 + - 3.1738 Eq. Ef1
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VIII. EFFECT OF NONLINEARITY OF LOAD MODELS ON
BIFURCATIONS
Table 4 depicts the effect of nonlinear load indices on Hopf bifurcation points for different generator
models chosen for each value of critical loading parameter, the real power at bus 5. The AVR gain Ka is chosen
as 25. It is seen that the flux decay model (heglecting damper winding dynamics) essentially makes the system
more stable and Hopf bifurcations occur at a later stage. The type of exciter model used also has some influence
on the bifurcation point; model (c), which is a flux decay model coupled with a fast exciter, undergoes Hopf

Bifurcations at a much later stage than the other models.

TABLE 4 Effect of Nonlinearity of Loads on Bifurcation Points of Different Models

Load (in p.u) at Bus 5 at corresponding Hopf Bifurcation Point
Load Index Model (a) Model (b) Model (c) Model (d)
0.0 4.4 4.6 4.4 4.7
0.1 4.55 4.7 45 48
0.2 4.65 4.8 4.6 4.95
0.5 5.05 5.1 4.95 5.15
0.6 5.05 -
0.7 5.10 -
0.8 5.15 -
0.9 - - - -
IX. EFFECT OF EXCITER GAIN

The exciter gain Ka (assumed same for all machines in the system) also has some influence on the
onset of Hopf bifurcations essentially prolonging their occurrence for higher values as shown in Fig. 7 for model
(a).

Variation of critical load at bus 5 with AVR gain Ka
4.52 g

4481

446+

44921

Critical real loading at bus 5

4.4

438

o 100 200 300 <00 500 600 700 800

Ka - Voltage Regulator Gain

Fig. 7 Effect of Regulator Gain Ka on bifurcation point

X. CONCLUSIONS
Power voltage relationships in power systems were investigated. The effect of different generator
models in defining stability of multimachine systems were dealt upon using power voltage relationships at a
critical load bus. The effect of nonlinear voltage dependent load characteristics on system stability and the onset
of bifurcations was shown as also the effect of AVR gain. Further work is needed to fully understand power
voltage relationships and the occurrence of dynamic phenomena apart from simple Hopf Bifurcations, for
example, period doubling bifurcations and chaos, in large power systems.
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APPENDIX A
Rs X4 Xq Xg Xq Tdo
0.00185p.u 1.942p.u 1.921p.u 0.330p.u 0.507p.u 5.330p.u
q0 H D Xe Ka Ta
0.593 s 2.8323s 0.0 p.u 05 50 0.02
Ke Te Kg Te Aex Bex
1.0 0.78 0.01 12 0.397 0.09
Vrmax Vrmin TrRH Kup Ten Tsv
9.9 -8.9 10.0 0.26 05 0.2
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