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 Abstract: This paper investigates various aspects of voltage-power relationships in power systems. Conditions 

for feasible generating points are analytically derived for a simple power system with a detailed generator 

model. The set of Hopf Bifurcation points for the sample system are visualized on the feasible operating surface. 

The effect of damping on the onset of bifurcations in the system is briefly investigated. The role of different 

generator models in isolating bifurcations and subsidiary phenomena in a multi-machine system are also 

presented. The effect of nonlinear indices of voltage dependent load models on system bifurcations is dealt with 

as also the effect of AVR gains. 
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I. INTRODUCTION 
Power Systems are large complex dynamical systems. The nature of voltage-power relationships at any 

bus within such systems likewise varies in a complex manner depending on where and how the system is 

stressed, where the generating nodes are, network parameters and a host of other factors. Deriving explicit 

expressions for such complex voltage-power behaviour at any bus in a stressed system is too intricate. However, 

power system researchers have visualized such relationships using power-voltage (PV) curves constructed using 

detailed power system models. 

 Power voltage curves have as such long been visualized and used in the analysis for various 

phenomena in stressed power systems including structural stability, voltage instability, bifurcations etc. ([2]-

[5]). The dynamic aspects of such voltage power characteristics have also been studied in detail ([2]-[4]). 

Dynamic models of power systems coupled with P-V curves present the researcher with tools to analyze both 

static and dynamic aspects of power systems. However, it is interesting to note that the amount of detail used in 

constructing dynamic system models is crucial in highlighting phenomena which usually cannot be visualized in 

reduced order models. Adequate load modeling at different buses also play an important role in predicting the 

occurrence of such dynamic phenomena. 

This paper discusses the static and dynamic aspects of voltage-power characteristics in two sample 

power systems. The onset of dynamic phenomena such as Hopf bifurcations is visualized using voltage-power 

characteristics at a load bus. The effect of different detailed models on defining the onset of such phenomena is 

investigated. The nature of different static load models, their power-voltage characteristics, their sensitivities 

with respect to voltage variations and their effect on the occurrence of Hopf bifurcations is also investigated. 

The effect of AVR gain Ka on the onset of such dynamic phenomena is also briefly dealt with. 

 

II. SYSTEM DYNAMIC MODEL 

A simple power system consisting of a single generator synchronized on an infinite bus through a 

lumped transmission line, as shown in Fig. 1, is analyzed. The generator is modeled by a two axis machine 

model with IEEE Type 1 exciter and a simplified turbine-governor model. The saturation effects in the generator 

along with both stator and network transients are neglected. The synchronous machine equations are: 
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The IEEE Type I exciter dynamics are given by: 
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where  refV  is a set point and V  is the magnitude of the generator terminal voltage. The simplified turbine and 

governor model is given by: 
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In the above model,   )( fdex EB

exfdE AES   models the saturation  in the exciter and   M = 2H/ S , S  = 

120 rads/sec. The following limit constraints also apply to the model    

   maxmin
RRR VVV              and     max0 SVSv PP                                                (2.11) 

The stator algebraic equations to be satisfied are: 

    0sin  qqdSd IXIRVE                  (2.12) 

    0cos  ddqSq IXIRVE                                                  (2.13) 

For the single machine infinite bus case the network equations to be satisfied are :  

    0sinsin    VVIXIR qede                                      (2.14) 

    0coscos    VVIRIX qede                             (2.15) 

The differentio-algebraic model illustrated above can be symbolically represented as : 

 pYXfX ,,                           (2.16) 

 pYXg ,,0                         (2.17) 

where X is the vector containing all differential states, Y is the vector containing all algebraic states and p is the 

vector of all system parameters. The above model can be linearized about an equilibrium point. The symbolic 

representation of the perturbation model has the form: 
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pEYBXAX                                            (2.18) 

pFYDXC 0                                       (2.19) 
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and YX  ,  denote perturbation in the differential and algebraic states, p  denotes perturbation in system 

parameters. Eliminating Y  from equations (2.18) and (2.19) we have the following representation: 

 pGXAX SYS                     (2.20) 

where        FBDEGCBDAASYS
11 ,   .  The eigenvalues to be observed are the eigenvalues of the 

SYSA  matrix. 

 

III. FEASIBLE GENERATING SET  
  The network algebraic equations (2.14) and (2.15) of the single machine infinite bus system model 

outlined in section 2 are derived from the following equation satisfying Kirchoff’s voltage law in the network: 
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The complex generated power at the generator bus is given by: 
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Using (3.2) we can eliminate the currents qd II ,  from (3.1) which then can be written as: 
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Separating (3.4) into real and imaginary components and taking 1V  p.u we have: 

    0cos2  aVV                                  (3.5) 

             0sin bV               (3.6) 

where  eGeGeGeG RQXPbXQRPa  , . Eliminating   from (3.5) and (3.6) we have the following 

equation which can be solved for V 

0222  abVV                                           (3.7) 

Multiplying the two equations corresponding to each of the two different signs in (3.7) we have:  

  012 2224  baVaV                                          (3.8) 

Two of the four solutions of (3.8) will correspond to two solutions of each of the two equations forming it. 

Substituting 2Vq   in (3.8) we have: 

  012 222  baqaq                                         (3.9) 

which has two roots 
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The two roots in (3.10) can be  (a) both real and   0 or both real and   0  or  (b) both imaginary with real parts 

the same, depending on the term inside the square root being (i)   0  or  (ii)  < 0  respectively. When the two 

solutions for q given by (3.10) are both real and < 0 or both imaginary then the four solutions for V in (3.8) are 

guaranteed to be all imaginary leading to a loss of a feasible solution. Both solutions for q in (3.10) are negative 

when   

012 a  or  21a                  (3.11) 

Both solutions of q in (3.10) are imaginary when 

                                              0412 222
 baa     or    0144 2  ab     

 41 ab              (3.12) 

Consider again (3.7). The Jacobian of the L.H.S of (3.7) yields  
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1J  fails to exist when V=0  which is a trivial solution or when 
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The critical value of generator terminal voltage can thus be derived by substituting the critical value of b from 

(3.12) into (3.14) which gives:  

2141 22  abV CC                                     (3.15) 

From (3.11),(3.12) and (3.15) the set of all feasible generating points for the single machine infinite bus system 

can be constructed as shown in Fig. 2b for a lossless line. The 3-dimensional feasible operating surface is a 

conglomeration of all PG vs V curves of the form shown in Fig. 2a (for QG = 0.5 p.u), for all QG within the 

desirable operating range. The locus of all operating points (where loss of existence of a feasible solution 

occurs) can be found by joining the tip of all PG vs V curves for different QG in the desired range. 

 

IV. BIFURCATION ANALYSIS 
 For the system (2.16)-(2.17) with perturbation model given by (2.20), conditions for Hopf bifurcation 

to occur are (a) a simple pair of imaginary eigenvalues of ASYS  matrix cross the imaginary axis while the other 

(n-2) eigenvalues are all in the left half plane and  

(b)     0Re 

 jCj pp

j
j

p
dp

d
             (4.1)   

that is, the rate of change of the real part of the critical pair of eigenvalues with variation of the jth parameter  

jp , is nonzero at the point where the critical parameter  jCj pp   . In the feasible generating space shown in 

Fig. 2b, the set of Hopf bifurcating points are isolated using the above criteria and the results shown in Fig. 2b. 

The Hopf Bifurcating locus is plotted only for the upper part of the feasible operating surface that is only when 

the critical eigenvalues move over from the left half to the right half of the complex plane. Increased damping 

D, in equation (2.2), in the system causes the Hopf bifurcation locus to shift lower down the feasible operating 

surface till for some value of damping the locus vanishes and the upper part of the feasible operating surface 

ceases to have Hopf Bifurcation points beyond that critical damping. A critical value exists too when damping D 

becomes negative in the model. To verify that the above linearized analysis is actually coherent with nonlinear 

time domain simulation, three different feasible operating points in the feasible operating surface were chosen as 

shown in Table 1. 

 The system was perturbed from these operating points and the nonlinear model was simulated using the 

Simultaneous Implicit Trapezoidal Method with a constant time step of 0.005 sec. The results for each case are 

as shown in Fig. 3. The system is stable for case (a), exhibits periodic cycles for case (b) which is the Hopf 

bifurcation point under study and is constrained to exhibit supercritical bifurcation like phenomena for case(c) 

depicting a realistic scenario. 

 
 

V. MULTIMACHINE SYSTEMS 
The system model for a multimachine system is represented by a set of machine models each of the 

form (2.1)-(2.11), along with the associated stator algebraic equations of the form (2.12)-(2.13) with parameters 

in the above equations corresponding to each machine in the system. The set of network equations derived by 

applying Kirchoff’s voltage laws to the system network are: (assuming an n bus system with m generators 

synchronized on the first m network buses) 

        0coscossin
1

 


n

k

ikkiikkiiLiiiqiiid YVVVPVIVI
iii

                        (5.1) 

        0sinsincos
1

 


n

k

ikkiikkiiLiiiqiiid YVVVQVIVI
iii

  i =  1, ......., m (5.2) 



Static and Dynamic Aspects of Voltage-Power relationships in Electric Power Systems 

www.iosrjournals.org                                                     6 | Page 

      0cos
1




n

k

ikkiikkiiL YVVVP
i

                          (5.3) 

    0sin
1




n

k

ikkiikkiiL YVVVQ
i

  i  =  m+1, ....., n                                   (5.4) 

where  PLi (Vi) , QLi(Vi)  denote voltage dependent exponential load models at the ith bus. 

 

TABLE 1 

Case GG jQP   Critical Eigenvalue Pair 

(a) 1.14  +  j 0.2 - 0.2028   j 4.7868    in L.H.P 

(b) 1.14637 + j 0.2 0.0000   j 4.4518   at Hopf Bif. 

(c) 1.15 + j 0.2 + 0.1523   j 4.3125  in R.H.P 

 

The three machine nine bus Western System Coordinating Council (WSCC) system shown in Fig. 4 with model 

parameters as given in [6] is chosen for analysis in this section. Four different generator models are used to 

study the role of bifurcations in this system. The generator models chosen are: 

(a) Model-A:  Two-axis model with IEEE Type I exciter; same as outlined in section 2. 

(b) Model-B:  Flux decay model with fast exciter. The damper winding constants in model (a) are assumed to 

be very small and are set to zero which in essence means that an integral manifold exists for these states. 

Equation (2.4) can then be written as: 

  qqqd IXXE 0                   (5.5) 

We use equation (5.5) to eliminate dE   from equations (2.4) and (2.12). The exciter is modeled   

 by one dynamic equation: 
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(c) Model C: Two-axis model with fast exciter. The model is essentially the same as in (a) except that the 

single exciter equation (5.6) replaces the set of three equations representing the IEEE Type I exciter. 

(d) Model D:  Flux decay model with IEEE Type I exciter. The generator model is the same as in case (b) but 

the exciter is IEEE Type I with three dynamic equations, (2.5)-(2.7). For convenience, the turbine-governor 

dynamics are not modeled in any of the above. The zero eigenvalue inherent in such models is removed by 

introducing relative rotor angles. 
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VI. STATIC LOAD MODELS 
Loads are a part of every power system and their characteristics do affect the dynamic behaviour of 

such systems. So, when power networks are modeled for analysis effective load modeling becomes an essential 

step in the process. Past literature ([7]-[12]) abounds in different modeling aspects of static and dynamic load 

models. 

Effective load models as such, should be realistic, simple and strike a proper balance among the 

different load mixes existing in the actual system. Such load mix composition modeling requires reliable 

estimation. Since, there is always an element of uncertainty in such estimation, prevalent load models are 

inherently conservative by design. In this analysis presented here we stick to the generic load models which 

have been presented in literature, more precisely we consider only voltage dependent exponential load models 

of the form: 
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The load-voltage characteristics for such load models are as shown in Fig. 5(a)-(b) for different nonlinear load 

indices. The endeavour in this and subsequent sections is to investigate the nature of voltage sensitivities of such 

generic load models in an effort to visualize what effects such characteristics have on system stability and on the 

onset of bifurcations when carrying out a dynamic analysis of power systems using power-voltage curves at a 

critical load bus. Consider the exponential real load model approximation at the ith bus: 
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The sensitivity of  
iLP  with respect to inp  can be written as: 

        
















































i

i

i

i

i

i

i

V

V
P

V

V

V

V
P

np

P
i

L
i

np

i

i

L

000
0 lnln  

Further                    

















 

2

0

2

02

2

11.

i

i
iinp

np
i

ii

i

L

V

P
npnp

V

V
Pnpnp

V

P

i

i

i

i

i                 (6.4) 

And         0
2

2


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i   if  0,1 inp  if  1inp  

This implies that the voltage sensitivity of the load follows the variation in voltage for 1inp  (namely 

increases with increasing voltage or vice versa), remains constant for 1inp  and changes in the opposite 

direction for 1inp  (namely decreases with increasing voltage). For the load-voltage sensitivity to be a 

constantly increasing function of the load index we then have (rate of change of voltage sensitivity with load 

index should be positive): 

 
Fig. 5a. Voltage Dependent Load Vs Voltage for varying Indices              Fig. 5b  Voltage dependent load vs Indices for varying Voltage 
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Fig. 5c. Voltage Dependent Load Sensitivity vs Voltage for               Fig.5d. Voltage Dependent Load Sensitivity (w.r.t Index) vs Indices for 

            varying Indices     varying Voltages    

   

  
Fig. 5e. Voltage dependent Load Sensitivity (w.r.t voltage) vs           Fig.5f. Voltage Dependent Load Sensitivity vs Voltage for varying              
            Indices for varying Voltage                 exponents 
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The load-voltage sensitivity is a constantly increasing function for  V  > 0 if 0inp , V > 0.3679 0V  for 

1inp  and 06065.0 VV   if .2inp  I other words a positive change in voltage index inp  (due to a change in 

the aggregation of loads) brings about a positive change in the voltage sensitivity of load approximated by the 

exponential load model. Figs. 5(c)-(f) show the behaviour of these sensitivities for upPupV
i

.1,.1 00   

(normalized load constants). 

 

VII. ROLE OF GENERATOR MODELS IN ISOLATING 

BIFURCATION POINTS 
The real power at load bus 5 in the WSCC system is chosen as the critical parameter for the system 

represented by each of the models (a)-(d) in section 5. The bifurcation analysis yields the results as shown in 

Table 2 for constant power case 0 ii nqnp . The modal behaviour of each of these models is as shown in 

Fig. 6(a)-(b). JLF denotes the Jacobian of the network equations with respect to the network variables and JAE, 
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the Jacobian of the stator and network equations with respect to all the algebraic variables: network variables 

and the stator currents. It is seen that in model (b) and (c) with fast exciters, another pair of eigenvalues joins 

the critical pair in the left half plane. This second pair is associated with the rotor variables of the second 

generator  22 , . They follow the movement of the critical pair and move back into the left half plane after 

the critical pair have split along the real axis, point B, in Fig. 6(b). The movement of both these pairs are 

captured in Table 3 as the real power at bus 5 is increased. 

 

TABLE 2.1  Modal Behaviour of Model (a) for different Loads 
Load at Bus 5 Sign(det JLF) Sign(det JAE) Critical Eigenvalue(s) Associated States 

4.3 + + -0.1433 j2.0188 11 & fq RE   

4.4 + + 0.0057 j2.2434 11 & fq RE   

4.5 + + 0.3400 j2.5538 11 & fq RE   

4.6 + + 1.1350 j2.8016 11 & fq RE   

4.7 + + 2.5961 j2.2768 11 & fq RE  

4.8 + + 9.2464, 1.8176 
1122 &,& fq RE  

4.9 + - 1.0542 
11 & fq RE   

5.0 + - 0.6298 
11 & fq RE   

5.1 + - 0.2463 
11 & fq RE   

5.15 + - -0.6832 
11 & fq RE   

5.2 Load Flow does not converge 

 

TABLE 2.2 Modal Behaviour of Model (b) for different loads 
Load at Bus 5 Sign(det JLF) Sign(det JAE) Critical Eigenvalue(s) Associated States 

4.4 + + -0.0957 j0.1407 22 &  

4.5 + + 0.0308 j10.0034 22 &  

4.6 + + 0.3802 j9.9008 22 &  

4.7 + + 0.9344 j10.1111 22 &  

4.8 + + 1.3907 j11.1963 22 &  

4.9 + - 24.4174, 0.1104 j11.3605 11 & fdq EE , 22 &  

5.0 + - 6.0978 
11 & fdq EE  

5.1 + - 2.5680 
11 & fdq EE  

5.15 + - 0.5417 
11 & fdq EE  

5.2 Load Flow does not converge 

 

TABLE 2.3  Modal Behaviour of Model (c) for different Loads 
Load at Bus 5 Sign(det JLF) Sign(det JAE) Critical Eigenvalue(s) Associated States 

4.2 + + -0.0048 j7.4848 22 &  

4.3 + + 0.2522 j7.4248 22 &  

4.4 + + 0.5333 j7.4024 22 &  

4.5 + + 0.8574 j7.4233 22 &  

4.6 + + 1.2592 j7.5151 22 &  

4.7 + + 1.8164 j7.7697 22 &  

4.8 + + 2.7800 j8.6826 22 &  

4.9 + - 12.2699, 0.4398 j10.0051 11 & fdq EE , 22 &  

5.0 + - 4.1693,0.1100 j9.3208 11 & fdq EE , 22 &  

5.1 + - 1.6687 
11 & fdq EE  

5.15 + - 0.0369 
21 &  

5.2 Load Flow does not converge 
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TABLE 2.4 Modal Behaviour of Model (d) for different loads 
Load at Bus 5 Sign(det JLF) Sign(det JAE) Critical Eigenvalue(s) Associated States 

4.4 + + -0.2388 j1.6434 11 & fq RE  

4.5 + + -0.1997 j1.7778 11 & fq RE  

4.6 + + -0.1265 j1.9985 11 & fq RE  

4.7 + + 0.0614 j2.4531 11 & fq RE  

4.8 + + 1.7612 j3.9016 11 & fq RE  

4.9 + - 1.8483 
11 & fq RE  

5.0 + - 0.9059 
11 & fq RE  

5.1 + - 0.3726 
11 & fq RE  

5.15 + - -0.0424 
211 &, fq RE   

5.2 Load Flow does not converge 

 

   
 

TABLE 3. Modal Behaviour of Model (b) for increasing load at bus 5 for Ka=50 
Load at Bus 5 Sign(det JLF) Sign(det JAE) Critical Eigenvalue(s) Associated States 

4.80 + + 1.3907 j11.1963 22,  

4.82 + + 0.0443 j15.5037 

1.1546 j11.6623 

22,  

4.84 + + 0.5983 j11.7688 

1.9965 j15.7308 

22,  

4.86 + + 0.3174 j11.5990 

3.5964 j17.9186 

22,  

4.88 + + 0.1862 j11.4621 

8.8996 j26.1149 

22,  

11, fdq EE  4.90 + - 24.4175, 0.1105 j11.3605 11, fdq EE  

4.92 + - 14.0688, 0.0611 j11.2824 11, fdq EE  

4.94 + - 10.5866, 0.0265 j11.2200 11, fdq EE  

4.96 + - 8.5713, 0.0010 j11.1686 11, fdq EE  

4.98 + - 7.1711 
11, fdq EE  

5.00 + - 6.0978 
11, fdq EE  

5.02 + - 5.2207 
11, fdq EE  

5.04 + - 4.4687 
11, fdq EE  

5.06 + - 3.7973 
11, fdq EE  

5.08 + - 3.1738 
11, fdq EE  
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VIII. EFFECT OF NONLINEARITY OF LOAD MODELS ON  

BIFURCATIONS 
Table 4 depicts the effect of nonlinear load indices on Hopf bifurcation points for different generator 

models chosen for each value of critical loading parameter, the real power at bus 5. The AVR gain Ka is chosen 

as 25. It is seen that the flux decay model (neglecting damper winding dynamics) essentially makes the system 

more stable and Hopf bifurcations occur at a later stage. The type of exciter model used also has some influence 

on the bifurcation point; model (c), which is a flux decay model coupled with a fast exciter, undergoes Hopf 

Bifurcations at a much later stage than the other models. 

 

TABLE 4  Effect of Nonlinearity of Loads on Bifurcation Points of Different Models 
 Load  (in p.u) at Bus 5 at corresponding Hopf Bifurcation Point  

Load Index Model (a) Model (b) Model (c) Model (d) 

0.0 4.4 4.6 4.4 4.7 

0.1 4.55 4.7 4.5 4.8 

0.2 4.65 4.8 4.6 4.95 

0.5 5.05 5.1 4.95 5.15 

0.6 - - 5.05 - 

0.7 - - 5.10 - 

0.8 - - 5.15 - 

0.9 - - - - 

 
IX. EFFECT OF EXCITER GAIN 

The exciter gain Ka (assumed same for all machines in the system) also has some influence on the 

onset of Hopf bifurcations essentially prolonging their occurrence for higher values as shown in Fig. 7 for model 

(a). 

 
 

X. CONCLUSIONS 
Power voltage relationships in power systems were investigated. The effect of different generator 

models in defining stability of multimachine systems were dealt upon using power voltage relationships at a 

critical load bus. The effect of nonlinear voltage dependent load characteristics on system stability and the onset 

of bifurcations was shown as also the effect of AVR gain. Further work is needed to fully understand power 

voltage relationships and the occurrence of dynamic phenomena apart from simple Hopf Bifurcations, for 

example, period doubling bifurcations and chaos, in large power systems. 
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APPENDIX A 

SR  dX  qX  dX   qX   0dT   

0.00185p.u 1.942p.u 1.921p.u 0.330p.u 0.507p.u 5.330p.u 

0qT   H  D  eX  AK  AT  

0.593 s 2.8323 s 0.0 p.u 0.5 50 0.02 

EK  ET  FK  FT  exA  exB  

1.0 0.78 0.01 1.2 0.397 0.09 

maxrV  minrV  RHT  HPK  CHT  SVT  

9.9 -8.9 10.0 0.26 0.5 0.2 

 


