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Abstract:Load frequency control has a very important role in power system operation and control. The main 

objective of load frequency control are to keep the frequency deviation and tie line power deviation within 

acceptable limit when a load change occurs in that power system. This paper demonstrates an integral 
controller action to minimize the frequency deviation and the tie line power deviation. Also to determine the 

stability of the system, an optimal controller which is known as ‘Linear Quadratic Regulator’ is used. The 

results are illustrated by using MATLAB/SIMULINK. 
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I. Introduction 
Load frequency control is a control mechanism which minimizes frequency deviation and tie line 

power deviation to an acceptable limit. To model a load frequency control model it is necessary to model 

governor, turbine and generator-load model [5]. 

 
Governor Model: The governor has two inputs. 

i. ΔPrefi.e change in speed changer position. 

ii. Δfi.e change in frequency. 

 

 An increase in ΔPref causes an increase in output whereas a decrease in Δf causes an increase in output. 

Therefore governor command is given as. 

 

  ΔP0 = 𝛥𝑃𝑟𝑒𝑓 −
1

𝑅
𝛥𝑓 ……(1) 

 

Where, R = Speed regulation of governor in Hz/MW 
 

If Tg is the time constant and Kg is the gain of the governor, then governor output  𝛥𝑃𝑉  can be expressed as         

ΔPv(s) = ΔPref(s) - 
1

𝑅
  ΔF(s) …(2) 

 

Turbine Model: The response of non-reheat turbine can be expressed as 

 

           𝛥𝑃𝑚 (𝑠) =  
𝐾𝑡

1+𝑇𝑡𝑠
𝛥𝑃𝑣(𝑠)….(3) 

Where, 𝐾𝑡  = turbine gain constant 

𝑇𝑡  = turbine time constant 

𝛥𝑃𝑚  = change in power developed by turbine 
 

Generator-Load Model: The change in power developed by turbine causes a change in alternator output ΔPG . 

The difference between the change in alternator output and change in load (ΔPL) tends to change in system 

frequency.   

 

   The power system response is given by 

 

ΔF(s) = 
𝐾𝑃

1+𝑠𝑇𝑃
 Δ𝑃𝐺 𝑠 − 𝛥𝑃𝐿 𝑠  ……….(4) 

Where, KP = Power system gain constant 

             TP = Time constant 
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If two control areas are connected by a single tie line, change in frequency in area 1 is given by 

  ΔF1(s) =
𝐾𝑃

1+𝑠𝑇𝑃
[ΔPG1 (s) – ΔPL1(s) – ΔPTL1(s) ] ……….(5) 

Where ,ΔPTL1 = change in tie line power in area 1 

 

ΔPTL1(s)    = 
2∗𝑝𝑖𝑒 ∗𝑇0

𝑠
 (Δ𝐹1 𝑠 − 𝛥𝐹2(𝑠)) …………….(6) 

Where, T0 = Synchronizing coefficient 

𝛥𝐹2 = Change in frequency in area 2 

 

PI Controller: The steady-state frequency can be adjusted to the desired limit by adjusting the speed changer 

setting of the governor. Proportional integral controller has been developed to improve the dynamic response of 

the system to minimize the steady-state error [3, 4]. 

 

 
Fig (1): Complete block diagram of single area load frequency control 

 

State-Space Representation: Consider a two area thermal system with non-reheat turbine as shown in fig (2). 

 

 
Fig(2):Block diagram of two area thermal system connected by tie line 

 

State Matrix: 

X = [ x1  x2   x3  x4  x5  x6  x7  x8  x9 ]
T 

Control Matrix :   u = [ u1 u2 ]
T 

Disturbance  Matrix  : d =[d1 d2 ]
T 

 

x1 = Δf1 ; x2 = ΔPt1 ; x3 = ΔPg1 ; x4 = Δf2 ; x5 = ΔPt2 ; x6 = ΔPg2 ; x7 = ΔPtie(1,2) ;  x8 =  𝐴𝐶𝐸1dt   ; x9= 𝐴𝐶𝐸2dt ; 

d1 = ΔPd1 ; d2 = ΔPd2 
 

State Equations : 
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𝑑

𝑑𝑡
x1 = −

1

𝑇𝑝1
𝑥1 + 

𝐾𝑝1

𝑇𝑝1
𝑥2 −

𝐾𝑝1

𝑇𝑝1
𝑥7 −

𝐾𝑝1

𝑇𝑝1
𝑑1    ……………………….(7) 

𝑑

𝑑𝑡
x2 = −

1

𝑇𝑡1
𝑥2 +

1

𝑇𝑡1
𝑥3 ………………………………………………(8) 

𝑑

𝑑𝑡
x3 = −

1

𝑅1𝑇𝑔1
𝑥1 −

1

𝑇𝑔1
𝑥3 +

1

𝑇𝑔1
𝑢1…………………………………....(9) 

𝑑

𝑑𝑡
x4 = −

1

𝑇𝑝2
𝑥4 + 

𝐾𝑝2

𝑇𝑝2
𝑥5 +

𝐾𝑝2

𝑇𝑝2
𝑥7 −

𝐾𝑝2

𝑇𝑝2
𝑑2 …………………………..(10) 

𝑑

𝑑𝑡
x5 = −

1

𝑇𝑡2
𝑥5 +

1

𝑇𝑡2
𝑥6 ………………………………………………. (11) 

𝑑

𝑑𝑡
x6 = −

1

𝑅2𝑇𝑔2
𝑥4 −

1

𝑇𝑔2
𝑥6 +

1

𝑇𝑔2
𝑢2………………………………..…(12) 

𝑑

𝑑𝑡
x7 = 2*pi*T0*x1 - 2*pi*T0*x4 ……………………………………...(13) 

𝑑

𝑑𝑡
x8 = B1*x1 + x7 ……………………………………..………………(14) 

𝑑

𝑑𝑡
x9 = B2*x4 - x7 …………..…………(15) 

 

The vector representation of above state equation is….. 
𝑑

𝑑𝑡
 x = Ax + Bu + Jd ………………..…(16) 

A = state matrix of dimension 9×9 

B = control matrix of dimension 9*2  

J = Disturbance matrix of dimension 9*2 

x = state vector of dimension 9×1 
u = control vector of dimension 2*1  

d = Disturbance vector of dimension 2*1 

A=

 
 
 
 
 
 
 
 
 
 
 
 
 
 −

1

𝑇𝑝1

𝐾𝑝1

𝑇𝑝1
0 0 0 0 −

𝐾𝑝1

𝑇𝑝1
0 0

0 −
1

𝑇𝑡1

1

𝑇𝑡1
0 0 0 0 0 0

−
1

𝑅1𝑇𝑔1
0 −

1

𝑇𝑔1
0 0 0 0 0 0

0 0 0 −
1

𝑇𝑝2

𝐾𝑝2

𝑇𝑝2
0

𝐾𝑝2

𝑇𝑝2
0 0

0 0 0 0 −
1

𝑇𝑡2

1

𝑇𝑡2
0 0 0

0 0 0 −
1

𝑅2𝑇𝑔2
0 −

1

𝑇𝑔2
0 0 0

2𝜋𝑇0 0 −2𝜋𝑇0 0 0 0 0 0 0
𝐵1 0 0 0 0 0 1 0 0
0 0 0 𝐵2 0 0 −1 0 0 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

B= 
0 0

1

𝑇𝑔1
0 0 0 0 0 0

0 0 0 0 0
1

𝑇𝑔2
0 0 0

 

𝑇

 

 

J =  
−

𝐾𝑝1

𝑇𝑝1
0 0 0 0 0 0 0 0

0 0 0 −
𝐾𝑝2

𝑇𝑝2
0 0 0 0 0

 

𝑇

  

II. Design of Linear Quadratic Regulator 
  

In this two area thermal system there are nine state variablesIn case of optimal control technique the inputs are 

taken as linear combination of all nine states being feedback [2]. 
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The nine states being feedback are x1, x2 … x9 and the control inputs can be written as below: 

 

u1=k11x1+k12x2+k13x3+k14x4+k15x5+k16x6+k17x7+k18x8+k19x9 ……………. (17)    

 

u2=k21x1+k22x2+k23x3+k24x4+k25x5+k26x6+k27x7+k28x8+k29x9    ………...…(18) 

 

k is a (2*9) matrix called feedback gain matrix. 

K=  
𝑘11 𝑘12 𝑘13 𝑘14 𝑘15 𝑘16 𝑘17 𝑘18 𝑘19

𝑘20 𝑘21 𝑘22 𝑘23 𝑘24 𝑘25 𝑘26 𝑘27 𝑘28
 
𝑇

 

 

 

The state equation of the system  
𝑑

𝑑𝑡
𝑥 = 𝐴𝑥 + 𝐵𝑢      ……….  (19) 

  Y= Cx              …………. (20) 

The equation for  control input is given by :               u= -kx ………..(21) 

 

III. Determination Of Feedback Gain Matrix (k): 
 To design the optimal gain problem first we have to find out the feedback gain matrix by minimizing a 

performance index. 

  PI = 
1

2
 [𝑥𝑇𝑄𝑥 + 𝑢𝑇𝑖𝑛𝑓

0
𝑅𝑢]𝑑𝑡 …………….. (22)  

 

Q= state weighing matrix which is real, symmetric and positive semi-definite 

R= control weighing matrix which is real, symmetric and positive definite 

The two matrices Q and R are obtained by the following requirements: 

 

(i) The deviation of area control errors about the steady state values are minimized. 

 

 ACE1 = B1Δf1 + Ptie(1,2) = B1x1 + x7 …………..(23) 

 ACE2 = B2Δf2 - Ptie(1,2) = B2x4 - x7 ………..…(24) 

(ii) The deviation of  𝐴𝐶𝐸𝑑𝑡 (x8 and x9) about the steady state values are minimized. 

(iii) The deviations of control inputs (u1 and u2) about the steady state values are minimized. 

By these considerations, 

PI=
1

2
 [(𝐵1

𝑖𝑛𝑓

0
𝑥1 + 𝑥7)2 +  𝐵2𝑥4 − 𝑥7)2 + 𝑥8

2 + 𝑥9
2 + 𝑢1

2 + 𝑢2
2 𝑑𝑡 …………………………………....(25) 

 PI=
1

 2
 [𝐵1

2𝑖𝑛𝑓

0
𝑥1

2 + 2 ∗ 𝐵1𝑥1𝑥7 + 2 ∗ 𝑥7
2 + 𝐵2

2𝑥4
2 − 2 ∗ 𝐵2𝑥4𝑥7+𝑥8

2 + 𝑥9
2 + 𝑢1 

2 +𝑢2
2]dt ………………. . (26) 

The matrices Q and R can be represented as 

                                                                  Q =

 
 
 
 
 
 
 
 
 
𝐵1

2 0 0 0 0 0 𝐵1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 𝐵2

2 0 0 −𝐵2 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
𝐵1 0 −𝐵2 0 0 2 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 
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R= 
1 0
0 1

  

 

The optimal control law is given by   

 U= -kx    …………….. (27) 

The feedback gain matrix „k‟ is given by  

 

   k= 𝑅−1𝐵𝑇𝑆……………(28) 
 

 Where „S‟ is a real, symmetric and positive definite matrix which is obtained by solving the matrix 

Riccati equation given by 

 

𝐴𝑇𝑆 + 𝑆𝐴 − 𝑆𝐵𝑅−1𝐵𝑇𝑆 + 𝑄 = 0   ………..…...(29) 
The overall closed loop equation with state feedback control is 

𝑑

𝑑𝑡
𝑥 = 𝐴𝑥 + 𝐵 −𝑘𝑥 =  𝐴 − 𝐵 𝑥 

 = 𝐴𝑓𝑥……. … (30) 

 

The Eigen values of Af will show the stability of the system with state feedback controller. 

 

 

 

 

IV. Result 
By putting the appropriate values of parameters, the matrices A, B, Q and R are calculated[1]. Proper 

MATLAB code is written in MATLAB-R2009b to obtain the matrices S, k and Af. A MATLAB command 
[k,S]=lqr(A,B,Q,R) is being used in this case to find out the values of the matrices „k‟ and „S[6]. 

 

A=

 
 
 
 
 
 
 
 
 

−0.05 6 0 0 0 0 −6 0 0
0 −2.5 2.5 0 0 0 0 0 0

−5.2083 0 −12.5 0 0 0 0 0 0
0 0 0 −0.05 6 0 6 0 0
0 0 0 0 −2.5 2.5 0 0 0
0 0 0 −5.2083 0 −12.5 0 0 0

0.4442 0 0 −0.4442 0 0 0 0 0
0.425 0 0 0 0 0 1 0 0

0 0 0 0.425 0 0 −1 0 0 
 
 
 
 
 
 
 
 

 

 

B= 
0 0 12.5 0 0 0 0 0 0
0 0 0 0 0 12.5 0 0 0

 
𝑇

 

 

Q=

 
 
 
 
 
 
 
 
 
0.180625 0 0 0 0 0 0.425 0 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0.180625 0 0 −0.425 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

0.425 0 −0.425 0 0 2 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 

 
 
 
 
 
 
 
 

 

 

R =  
1 0
0 1
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S = 

 
 
 
 
 
 
 
 
 

. 179 . 212 . 0338 −.046 −.039 −.0050 . 1026 . 330 −0.0226

. 212 . 368 . 0664 −.039 −.057 −.0092 −.0673 . 461 −0.0080

. 034 . 066 . 0123 −.005 −.009 −.0016 −.0219 . 080 0.0000
−.046 −.039 −.0050 . 179 . 212 . 0338 −.1026 −.023 0.3305
−.039 −.057 −.0092 . 212 . 368 . 0664 . 0673 −.008 0.4615
−.005 −.009 −.0016 . 0338 . 066 . 0123 . 0219 . 000 0.0800
. 103 −.067 −.0219 −.1026 . 067 . 0219 . 6086 . 153 −0.1527
. 330 . 461 . 0800 −.0226 −.008 . 0000 . 1527 1.854 0.0088
−.023 −.008 −.0000 . 3305 . 461 . 0800 −.1527 . 009 1.8540  

 
 
 
 
 
 
 
 

 

 

k=  
0.4226 0.8294 0.1538 −0.063 −0.115 −0.020 −0.2737 1.0 0.00
−0.063 −0.115 −0.020 0.4226 0.8294 0.1538 0.2737 0.0 1.00

  

 

Af =  

 

 
 
 
 
 
 
 
 
 

−0.05 6 0 0 0 0 −6 0 0
0 −2.5 2.5 0 0 0 0 0 0

−10.4908 −10.3673 −14.4230 0.7871 1.4444 0.2504 3.4207 −12.5000 −0.0000
0 0 0 −0.05 6 0 6 0 0
0 0 0 0 −2.5 2.5 0 0 0

0.7871 1.4444 0.2504 −10.4908 −10.3673 −14.4230 −3.4207 −0.0000 −12.5000
0.4442 0 0 −0.4442 0 0 0 0 0
0.425 0 0 0 0 0 1 0 0

0 0 0 0.425 0 0 −1 0 0  
 
 
 
 
 
 
 
 

 

 

 

The Eigen values of matrix Afare    
 

-13.0594; -13.0758;-1.0340 + 3.4077i ;-1.0340 - 3.4077i; -1.4791 + 2.5810i; -1.4791 - 2.5810i;-1.3520          ; 

-0.7439    ;-0.6887  

 

The negative real part of all the Eigen values of „Af‟ proves that the system is stable. 

 

Using PI controller the response of change in frequency and change in tie line power aregiven as 

 

 
Fig.(3)  : Response of frequency and tie line power interchange for 1% load variation 

 

V. Conclusion 
In this study, the optimal LQR controller is used to develop and secure the system performance when 

changes occur in the power system parameters. Using this optimal controller we can determine the stability of 

the system. With this high quality and performance controller, no modification is made in the controller 

structure against to change in parameters and loads. This demonstrates us that optimal LQR controller is more 

robust against to changes occur in the system than the other traditional controllers. 
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Appendix:  

Tp1 = Tp2 = 20 sec; Kp1= Kp2 = 120; Tt1 = Tt2 = 0.4 sec; Tg1 = Tg2 = 0.08 

R1 = R2 = 2.4 Hz/p.u MW; 2πT0 = 0.4442; B1 = B2 = 0.425 

 

References 
[1]. Naimul Hasan “Design and Analysis of Pole-Placement Controller for Interconnected Power Systems”  International Journal of 

Emerging Technology and Advanced Engineering  (ISSN 2250-2459, Volume 2, Issue 8, August 2012) 

[2]. Adnan Kakilli, YukselOguz,  HuseyinCalik “The Modelling Of Electric Power Systems On The State Space and Controlling of 

Optimal LQR Load Frequency” JOURNAL OF ELECTRICAL & ELECTRONICS ENGINEERING. YEAR : 2009; VOLUME: 9; 

NUMBER:2 

[3]. SachinKhajuriaJaspreet Kaur “Load Frequency Control of Interconnected Hydro-Thermal Power System Using Fuzzy and 

Conventional PI Controller” International Journal of Advanced Research in Computer Engineering & 

Technology(IJARCET)Volume 1, Issue 8, October 2012 

[4]. AtulIkhe, Anant Kulkarni “Load frequency control for interconnected power system using different controllers” Published online 

August 10, 2013 (http://www.sciencepublishinggroup.com/j/acis) 

[5]. Dr.B.U.Musa,KalliB.M.,KalliShettima “ Modeling and Simulation of Lfc and Aver with Pid Controller”.International Journal of 

Engineering Science InventionISSN (Online): 2319 – 6734, ISSN (Print): 2319 – 6726.www.ijesi.org Volume 2 Issue 7 ǁ July. 2013 

ǁ PP.54-57 

[6]. www.mathswork.com 

[7]. Math works, “modelling of Matlab/SIMULINK” 

 

 

 

 

 

 

 

 

 

 
 

 

  

http://www.sciencepublishinggroup.com/j/acis
http://www.mathswork.com/

