Vitamin D dependent Rickets type II and Dental anomalies. – A case report

A B Bindu ¹, Kannan vadakkepurayil ²
¹(PG student, Dept of Pedodonics & Preventive Dentistry, Govt Dental College, Kozhikode, India)
²(Professor & Head, Dept of Pedodontics & Preventive Dentistry, Govt Dental College, Kozhikode, India)

Abstract: Vitamin D-dependent type two rickets (VDDRII) is a rare autosomal recessive disorder caused by mutation in the vitamin D receptor gene, leading to end-organ resistance to 1,25(OH)₂ vitamin D3. VDDR type II causes rachitic changes and alopecia not responsive to vitamin D treatment. Here we present a 7 years old girl with Vitamin D dependent Rickets type II, with dental anomalies.

Keywords: Vitamin D-dependent type two rickets (VDDRII), dental anomalies, alopecia

I. Introduction

Vitamin D-dependent type two rickets (VDDRII) is a rare autosomal recessive disorder caused by mutation in the vitamin D receptor gene, leading to end-organ resistance to 1,25(OH)₂ vitamin D3. VDDR type II causes rachitic changes and alopecia not responsive to vitamin D treatment.

II. Case Report

A 7 years old girl with Vitamin D dependent Rickets type II, was referred to Department of Pedodontics and Preventive Dentistry, Govt Dental college, Kozhikode from Paediatrics department, Medical college, Kozhikode, Kerala, India, for dental consultation.

The child was apparently normal till 1 year of age later started noticing multiple bony deformities in the form of frontal bossing, chest hollowing and leg pain. Hair shaved off at 1 year didn’t grow back.

Fig-1 Extra oral features

Her ante natal history reveals mother’s diet adequate with Calcium supplement. Natal history reveals that mother had Lower segment caesarean section (LCS) during the delivery of the child. Baby had Neonatal hyperbilirubinemia, birth weight 2 kg, she was feeding well and weight gain was adequate. Family history reveals no history of alopecia.

On extra oral examination (Fig – 1) she had alopecia, eyebrows absent, eyelashes present, flat nasal bridge, frontal, occipital and parietal bossing, prominent metopic suture and visible veins. Other features include anterior bowing of tibia (Fig- 2), flat foot, left forearm valgun deformity, lower chest hollowing, Harrison’s sulcus positive, distended abdomen (Fig-3) and no wrist widening was seen.
Vitamin D dependent Rickets type II and Dental anomalies.

Fig - 2 Anterior bowing of Tibia

Fig - 3 Lower chest hollowing, Harrison’s sulcus, Distended abdomen

On intra oral examination the child had enamel hypoplasia on 55, 65, 75 and 85, (Fig- 4,5,6,7) caries on 36 and 46, early exfoliation of primary teeth (from 2 ½ years of age), partial hypodontia (OPG reveals absence of tooth bud of 35) (Fig – 8)

Fig- 4 Enamel hypoplasia 55. Fig -5 Enamel hypoplasia 65

Fig - 6 Fig – 7
Enamel hypoplasia 75 and 85
Vitamin D dependent Rickets type II and Dental anomalies.

VDDRII is a rare disorder caused by target organ resistance to 1,25(OH)2 vitamin D, the biologically active form of vitamin D. Vitamin D is essential for bone growth, mineralization, and absorption of calcium and phosphate, which is deficient in rickets. Vitamin D is obtained by dietary intestinal absorption and through the skin and is available as vitamin D2 and vitamin D3. Initially, in the liver, vitamin D is hydroxylated to 25-hydroxyvitamin D3 (25-OHD3). Later, 25-OHD3 bound to the vitamin-binding protein is transported to the kidney, where it undergoes hydroxylation to form the hormonally active metabolite, 1,25-dihydroxyvitamin D3 (1,25-OH2D3). The tissue receptors for vitamin D metabolites are localized in various organs, including kidney, intestine, pancreas, parathyroid gland, muscle, pituitary, skin, and bones and 1,25-OH2D3 binds specifically to a receptor in the nuclei to stimulate calcium transport and also controls the expression of target genes mediated through the nuclear VDR. Mutations of the VDR gene lead to VDDR type II.

Mutations of the VDR gene also suppress specific genes during the hair cycle, resulting in their alteration, leading to alopecia. VDDR type II is usually resistant to normal doses of vitamin D treatment; hence high doses of 1,25-dihydroxyvitamin D are recommended.

Vitamin D dependent Rickets type II can be differentiated from type I in that type I is due to deficiency of the renal 25-hydroxyvitamin D (25(OH)D) 1-alpha-hydroxylase. Muscle weakness and rickets are the main clinical findings. A normal physiologic dose of 1 alpha-hydroxyvitamin D3 and 1,25-dihydroxyvitamin D3 is sufficient to treat rickets in this disorder. VDDR II consists of a spectrum of intracellular vitamin D receptor (VDR) defects characterized by the early onset of severe rickets and associated alopecia. High doses of vitamin D analogs and calcium supplementation is required for the treatment; however, the response to treatment is sometimes variable.

Two decades ago prevalence of VDDR was 30%. But now a days only 0.8% reported. In 2018, Divya Vupperla et al reported a case of VDDR II at Telungana with features of alopecia, absence of body hair and hair on eyelids and features of rickets like bowed legs, wrist widening, frontal bossing, rachitic rosary and oral features like enamel hypoplasia of anteriors and exposure of pulp. In 2016, Prithi R Inamder et al reported a case at Karnataka with alopecia, absence of hair on eyebrows, features of rickets like curving of forearm, bowing of legs, abnormal chest shape, large head, gross motor development delay, wide open anterior fontanelle, frontoparietal bossing, ricket rosary, Harrison’s sulcus, wrist widening & double malleoli.
Diagnostic hall mark - Increased serum 1,25 dihydroxy vit D 3 due to mutation of vit D receptor gene leading to hypocalcemia, hypophosphactemia, reduced 25 dihydroxy vitD, increased alkaline phosphactase result in VDDR type II

In this child, she had complete alopecia, absence of eyebrows & body hair with features of rickets like frontoparietoccipital bossing, rigidity of metopic suture anterior bowing of tibia, flat foot, no wrist widening, genu vegum of left forearm, Harrison’s sulcus positive, visible veins & oral features of enamel hypoplasia, early exfoliation of primary teeth & hypodontia.

Biochemical parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,25 dihydroxy vit D3</td>
<td>507 pmol/l</td>
</tr>
<tr>
<td>25 dihydroxy vit D</td>
<td>8.86 ng/l</td>
</tr>
<tr>
<td>Serum Calcium</td>
<td>5.1 mg/dl</td>
</tr>
<tr>
<td>Serum phosphorus</td>
<td>4.46 mg%</td>
</tr>
<tr>
<td>Serum alkaline phosphatase</td>
<td>1703 IU/l</td>
</tr>
<tr>
<td></td>
<td>Reference</td>
</tr>
<tr>
<td></td>
<td>62.4 - 99.8 nmol/l</td>
</tr>
<tr>
<td></td>
<td>20 - 100</td>
</tr>
<tr>
<td></td>
<td>8.5 - 10.2</td>
</tr>
<tr>
<td></td>
<td>3 - 4.5</td>
</tr>
<tr>
<td></td>
<td>20 - 40</td>
</tr>
</tbody>
</table>

IV. Conclusion

VDDR type II is a rare autosomal recessive disorder with rickets & alopecia due to end organ resistant to 1,25 dihydroxy vit D. Since vit D plays a crucial role in development of teeth, the disease present various tooth anomalies.

References