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Abstract: 
This study investigates Bitcoin price prediction using deep learning models and hybrid approaches, integrating 

Shannon entropy to quantify market unpredictability. Predicting cryptocurrency prices is challenging due to their 

high volatility and complex dynamics driven by macroeconomic, regulatory, and speculative factors. We compare 

the performance of standalone deep learning models, including Long Short-Term Memory (LSTM), Gated 

Recurrent Units (GRU), and Bidirectional LSTM, with a hybrid GRU-ARIMA model that combines machine 

learning and statistical residual correction techniques. Data from 2015 to 2024 are used for model training and 

evaluation. Model accuracy is assessed using Mean Squared Error (MSE) and Mean Absolute Error (MAE), while 

Shannon entropy is computed to measure the information content in actual prices and predictions. Results show 

that hybrid models outperform standalone architectures in terms of predictive accuracy, highlighting the benefits 

of residual analysis for capturing complex price dynamics. Entropy analysis reveals a correlation between higher 

entropy and model performance, providing insights into market efficiency and forecastability. This research 

contributes to the growing body of literature on cryptocurrency forecasting by emphasizing the role of hybrid 

models and entropy-based information measures. Future research directions include exploring alternative 

hybridization strategies and extending entropy measures for enhanced market analysis. 

Keywords: Bitcoin Prices, deep learning, hybrid model, LSTMs, GRUs,BI-LSTM,neural networks, Shannon 
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I. Introduction: 
The rapid evolution of financial technologies and the rise of cryptocurrencies have transformed the 

landscape of modern finance. Bitcoin, as the pioneering and most prominent cryptocurrency, has become a focal 

point for researchers and practitioners due to its extreme price volatility and speculative trading behavior. Unlike 

traditional financial assets, Bitcoin prices are influenced by a unique set of factors, including technological 

innovations, regulatory developments, macroeconomic trends, and social media sentiment. These characteristics 

make accurate forecasting of Bitcoin prices a formidable yet vital challenge for portfolio management, risk 

assessment, and trading strategies. 

Traditional time series models, such as Autoregressive Integrated Moving Average (ARIMA), have been 

widely applied to financial data; however, their linear nature limits their ability to capture the complex, nonlinear 

dependencies inherent in cryptocurrency markets. In contrast, deep learning models, including Long Short-Term 

Memory (LSTM) networks and Gated Recurrent Units (GRU), have demonstrated superior performance in 

capturing long-term temporal dependencies in highly volatile time series data. Recent advances have also explored 

hybrid approaches, combining deep learning and statistical models, to improve prediction accuracy by modeling 

both nonlinear patterns and residual error structures. 

In this study, we compare the predictive performance of standalone deep learning models (LSTM, GRU, 

Bidirectional LSTM) and a hybrid GRU-ARIMA model. Additionally, we incorporate Shannon entropy, an 

information-theoretic measure, to evaluate the uncertainty and information content within the predicted prices. By 

quantifying the entropy of actual prices and model outputs, we gain insights into market efficiency and the 
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reliability of various forecasting methods. This research aims to enhance the understanding of Bitcoin price 

dynamics and contribute to the development of more effective predictive frameworks for cryptocurrency markets. 

 

II. Literature Review and Theoretical Background 

2.1 Cryptocurrency Market Dynamics 

The cryptocurrency market, led by Bitcoin, is a disruptive force in modern finance, redefining traditional 

paradigms of investment and currency exchange. Bitcoin, the first decentralized digital currency introduced in 

2009 by the pseudonymous Satoshi Nakamoto, serves as both a medium of exchange and a store of value. Its 

decentralized nature eliminates the need for intermediaries like banks, making it appealing in an era of digital 

transformation and financial democratization. A defining feature of cryptocurrencies is their high volatility. 

Bitcoin’s price, for example, has exhibited rapid and extreme fluctuations, driven by a unique set of factors distinct 

from conventional financial markets. These include: 

Cryptocurrency prices exhibit significant volatility, influenced by a range of factors that distinguish them 

from traditional equities or commodities. One key driver is technological development, where innovations and 

protocol upgrades impact market confidence and adoption. For instance, Bitcoin’s implementation of the 

Lightning Network enhanced scalability by enabling faster, cheaper transactions, directly affecting its valuation. 

Similarly, network forks, such as the creation of Bitcoin Cash, introduce uncertainty and shift investor allocations 

between competing chains. Another crucial factor is the regulatory environment, as cryptocurrencies are highly 

sensitive to policy changes. Announcements from major economies like the United States or the European Union 

regarding regulations, taxation, or potential bans can trigger significant price swings. While regulatory clarity 

encourages institutional investment, restrictive measures often lead to market sell-offs. Additionally, 

macroeconomic conditions play a role in cryptocurrency price fluctuations. In periods of high inflation or 

geopolitical instability, cryptocurrencies often serve as alternative assets akin to digital gold. However, their 

correlation with traditional risk-on assets, especially during financial crises, complicates their role as a safe haven. 

For example, Bitcoin’s performance during the COVID-19 pandemic demonstrated both its speculative nature and 

its emerging function as a hedge against monetary debasement. Lastly, market sentiment and speculative behavior 

heavily influence cryptocurrency prices. News sentiment, social media trends, and statements from influential 

figures, such as Elon Musk’s tweets, can trigger rapid price swings. Furthermore, automated trading strategies and 

high-frequency trading amplify this volatility, making the cryptocurrency market highly reactive to external 

stimuli. 

Given these multifaceted dynamics, predicting cryptocurrency prices poses unique challenges. Unlike 

traditional financial models based on fundamental or technical analysis, cryptocurrencies require tools that can 

capture both deterministic and stochastic behaviors. Advanced machine learning models, such as Long Short-

Term Memory (LSTM) and Gated Recurrent Unit (GRU) networks, have shown promise in handling time-series 

data with complex temporal dependencies. Additionally, information-theoretic measures like Shannon entropy 

provide a robust framework for quantifying market uncertainty and the randomness of price changes. Higher 

entropy values indicate greater unpredictability, a characteristic often associated with the cryptocurrency market. 

Understanding these dynamics through rigorous empirical analysis not only enhances forecasting accuracy but 

also informs portfolio management strategies, hedging approaches, and regulatory frameworks. As 

cryptocurrencies continue to evolve, integrating multifractal analysis and deep learning techniques will be crucial 

for comprehensive market modeling. 

 

2.2 Time Series Forecasting in Financial Markets 

Forecasting financial time series, particularly price movements, is a complex endeavor that involves 

identifying historical patterns and deciphering underlying structural dependencies. Traditional models, such as 

Autoregressive Integrated Moving Average (ARIMA), have been widely employed due to their strong theoretical 

foundations and ease of interpretation. ARIMA models combine autoregression and moving average components, 

along with differencing to ensure stationarity, making them effective for linear patterns and short-term 

dependencies. However, these models assume a linear relationship among variables, a limitation that reduces their 

effectiveness in highly dynamic and nonlinear environments, such as cryptocurrency markets. 

 

Limitations of Traditional Models 

Cryptocurrency price data exhibit characteristics such as heavy tails, volatility clustering, and long 

memory — features that are poorly captured by linear models. The ARIMA framework cannot adapt to changing 

market regimes or complex feedback loops driven by investor behavior, regulatory news, and technological 

innovations. Additionally, traditional models struggle with the erratic, non-stationary nature of cryptocurrency 

prices, where sudden jumps or crashes are commonplace. Other statistical approaches, including GARCH and 

EGARCH, attempt to model volatility by accounting for heteroskedasticity. These models are more flexible in 
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capturing time-varying variance but still rely on assumptions of stationarity and linearity, which limit their 

robustness in rapidly evolving markets. 

 

2.3 The Emergence of Nonlinear and Machine Learning Models 

Given the intricate behavior of financial markets, particularly in cryptocurrencies, there has been a 

significant shift toward machine learning techniques capable of capturing nonlinearities and complex temporal 

dependencies. Recurrent Neural Networks (RNNs), including Long Short-Term Memory (LSTM) and Gated 

Recurrent Units (GRU), are designed to handle sequential data by retaining long-term dependencies. Unlike 

ARIMA, these models do not require manual differencing or lag selection, as they learn patterns directly from the 

data. 

LSTM networks are specifically designed to address the vanishing gradient problem that affects 

traditional RNNs. By utilizing memory cells and gating mechanisms, they effectively retain relevant information 

over extended sequences, making them particularly suitable for detecting temporal patterns and forecasting price 

movements in highly volatile markets. A more streamlined alternative, GRU networks offer a simplified 

architecture with fewer parameters while maintaining comparable performance. This reduction in complexity 

makes GRUs computationally efficient and well-suited for real-time applications. 

 

Information-Theoretic Approaches and Entropy Measures 

In addition to neural networks, entropy-based methods, such as Shannon entropy, offer powerful tools for 

understanding market uncertainty. Entropy quantifies the randomness and unpredictability of a time series. Higher 

entropy values are associated with greater complexity, reflecting the chaotic nature of financial markets like 

cryptocurrencies. Combining entropy measures with advanced machine learning models provides a hybrid 

approach that captures both the stochasticity and structure of price dynamics 

 

2.4 Deep Learning for Time Series Prediction  

In recent years, deep learning has revolutionized time series forecasting by addressing the limitations of traditional 

models, particularly in capturing nonlinearities and complex temporal patterns. Unlike conventional statistical 

methods, deep learning models automatically learn features from data without the need for explicit assumptions 

about its structure. Recurrent Neural Networks (RNNs) and their advanced variants, Long Short-Term Memory 

(LSTM) and Gated Recurrent Units (GRU), have emerged as powerful tools for sequential data modeling. 

 

Recurrent Neural Networks (RNNs) 

RNNs are designed for sequence-based tasks by using loops within the network to retain information from 

previous time steps. However, standard RNNs suffer from the vanishing gradient problem, which hampers their 

ability to capture long-term dependencies. This limitation has driven the development of more robust 

architectures. 

 

Long Short-Term Memory (LSTM) Networks 

LSTM networks are a specialized form of RNNs explicitly built to overcome the vanishing gradient issue. They 

employ memory cells and three types of gates (input, forget, and output) to regulate the flow of information. The 

input gate decides what new information to store, the forget gate determines which data to discard, and the output 

gate controls how much of the stored information influences the next layer. These gating mechanisms enable 

LSTMs to maintain relevant context over long sequences, making them highly effective for financial time series 

predictions, where price movements are influenced by long-term trends and sudden shocks alike.LSTMs have 

been successfully applied in various financial contexts, including stock price prediction, volatility forecasting, and 

market sentiment analysis. Their strength lies in capturing intricate relationships in noisy and volatile data, such 

as Bitcoin and other cryptocurrency prices. 

 

Gated Recurrent Units (GRUs) 

GRUs are a simplified variant of LSTM networks, designed to improve computational efficiency without 

significantly compromising performance. GRUs utilize two gates:  

 

the reset gate and the update gate, which serve similar purposes as the input and forget gates in LSTMs but with 

a streamlined structure. The reset gate determines how much of the past information to forget, while the update 

gate controls how much of the new information to pass to the next time step. Compared to LSTMs, GRUs have 

fewer parameters, making them faster to train and suitable for scenarios requiring real-time prediction. Research 

indicates that GRUs often achieve comparable results to LSTMs on many forecasting tasks while reducing 

computational costs, which is particularly advantageous for high-frequency financial data. 
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2.5 Shannon Entropy for Market Uncertainty 

Shannon entropy, originally developed in information theory by Claude Shannon in 1948, serves as a fundamental 

measure of uncertainty and information content within a system. In the context of financial markets, Shannon 

entropy is used to assess the unpredictability and randomness of price movements. Higher entropy values 

correspond to greater uncertainty and reduced predictability, while lower entropy signifies more structured and 

predictable behavior. This concept provides valuable insights into market efficiency and risk assessment. 

 

Theoretical Foundation of Shannon Entropy 

 

Shannon entropy 𝐻 is defined for a probability distribution   P =  {𝑝𝑖}   as: 

 

                                                                  𝑯 (𝑷) =  − ∑ 𝒑𝒊𝒍𝒐𝒈(𝒑𝒊)
𝒏
𝒊=𝟏  

where 𝒑𝒊 represents the probability of a particular state or outcome, and 𝒏 is the number of possible states. In 

financial time series, these probabilities are typically derived from the distribution of price returns or other relevant 

variables. 

 

 

Application to Cryptocurrency Markets 

 

Cryptocurrencies, with their high volatility and susceptibility to rapid price swings, are an ideal case for entropy 

analysis. Shannon entropy allows researchers to quantify how much randomness or deterministic structure is 

present in the returns of Bitcoin and other digital assets. High entropy in these markets reflects speculative 

behavior, news-driven price changes, and the absence of strong directional trends. Conversely, periods of low 

entropy may indicate dominant market forces or significant price patterns that can be exploited for trading 

strategies. 

 

Insights into Market Efficiency and Risk 

By measuring entropy over time, investors and analysts can gain insights into changing market conditions and 

potential risk. A rising entropy value may signal increased market instability or heightened reaction to external 

shocks, while declining entropy could indicate more orderly price movements. Entropy analysis complements 

other risk metrics by providing a non-parametric, distribution-free method for evaluating price dynamics, making 

it a powerful tool for assessing financial complexity. 

 

III. Empirical Study 
3.1 Data Description  

The study utilizes historical Bitcoin price data from January 2015 to January 2024, sourced from Yahoo Finance. 

The dataset consists of daily closing prices, capturing Bitcoin’s dynamic market behavior. Data preprocessing 

steps include handling missing values and scaling the data using MinMaxScaler to normalize the values between 

0 and 1 for effective model training. The entire data analysis and modeling process was conducted using Python 

version 4.0.11, ensuring compatibility with the latest libraries and tools for time series forecasting and signal 

processing. 

 

3.2. Problem statement: 

Bitcoin’s high volatility presents a significant challenge for accurate price prediction and effective risk 

management. The rapid and unpredictable fluctuations in its value stem from a variety of factors, including market 

speculation, regulatory news, and macroeconomic events. Such volatility complicates the task of developing 

reliable forecasting models for investors and analysts. The primary objective of this study is to conduct a 

comparative analysis of four predictive models LSTM, GRU, Bidirectional LSTM (BI-LSTM), and a Hybrid 

GRU-ARIMA model to evaluate their effectiveness in forecasting Bitcoin prices. These models are chosen for 

their diverse approaches, ranging from pure deep learning architectures to hybrid techniques that integrate 

statistical modeling. The second objective is to quantify the informational content and complexity of Bitcoin’s 

price dynamics using Shannon entropy, a statistical measure that captures the degree of uncertainty and 

randomness within the time series.  

This dual approach provides both a performance evaluation of modern prediction frameworks and a deeper 

understanding of the underlying informational structure of Bitcoin’s price movements, offering valuable insights 

for improving forecasting accuracy and developing strategies to manage market risk. 

3.3. Preprocessing data: 

The data preprocessing stage is crucial for preparing time series data for modeling and analysis. Initially, data 

cleaning involves removing any missing or invalid values to ensure consistency and reliability. In this study, we 
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transform the original Bitcoin price data into log returns, calculated as the natural logarithm of successive price 

ratios. This step captures relative changes in price, making the series stationary and suitable for predictive 

modeling. Following this, input-output sequences are created for each deep learning model (LSTM, GRU, 

Bidirectional LSTM, and Hybrid GRU-ARIMA) by defining a fixed window of historical returns as input to 

predict future values. This sequence generation captures temporal dependencies essential for forecasting. Each 

model is then built with specific configurations:  

the LSTM and GRU use recurrent units to learn sequential patterns, the Bidirectional LSTM processes data in 

forward and backward directions for enhanced feature extraction, and the Hybrid GRU-ARIMA combines GRU's 

deep learning capabilities with ARIMA's statistical modeling of residuals. This comprehensive preprocessing 

framework lays the foundation for robust time series predictions and entropy-based information quantification. 

 

3.4. Processing data: 

In the data processing and evaluation phase, various metrics are employed to assess the predictive 

performance of each model. Key error metrics include Mean Squared Error (MSE) and Mean Absolute Error 

(MAE). MSE penalizes larger prediction errors more heavily by squaring the residuals before averaging, making 

it sensitive to outliers, while MAE provides a more balanced assessment by averaging the absolute differences 

between predicted and actual values. Both metrics are critical for understanding different aspects of model 

accuracy. 

 Additionally, accuracy metrics specific to time series forecasting, such as directional accuracy, may be 

used to evaluate how well the model predicts the direction of price movements. To ensure robust performance 

evaluation, we apply Time Series Cross-Validation, a method designed for sequential data. Unlike traditional 

cross-validation that assumes data independence, this technique splits the dataset into multiple overlapping 

training and testing sets, maintaining temporal order. Each split incrementally increases the training size while 

testing on the subsequent data points, capturing the evolving patterns of financial time series. This systematic 

evaluation provides a comprehensive understanding of model behavior, avoiding overfitting and enhancing 

generalization. Combining these evaluation strategies ensures a holistic assessment of prediction accuracy and 

information content quantification. 

 

3.5. Model Implementation  

In the Model Implementation stage, we implemented several predictive models for Bitcoin price 

forecasting using Python and the Keras library to prepare the data for training and testing. We utilized Python with 

the Keras library, a high-level neural network API designed for building and training deep learning models. Keras, 

written in Python, provides a user-friendly interface and is capable of running on top of powerful backend engines 

such as TensorFlow, CNTK, or Theano. Time Series Cross-Validation was utilized to ensure robust model 

evaluation across different time periods. We focused on minimizing prediction errors by calculating the Mean 

Squared Error (MSE) as the primary loss function, which penalizes larger errors more significantly. Additionally, 

we quantified information content using Shannon entropy to assess market predictability. Higher entropy values 

suggest greater uncertainty, indicating a more unpredictable market, while lower values imply more structured 

patterns that can be exploited for forecasting. For model selection, the LSTM and GRU architectures were chosen 

due to their recurrent connections, allowing them to effectively capture sequential dependencies in time series 

data. The Bidirectional LSTM (BI-LSTM) extends the standard LSTM by processing sequences in both forward 

and backward directions, enhancing predictive accuracy by considering future and past information. The hybrid 

GRU-ARMA model combines the non-linear pattern recognition strength of GRU with ARMA’s linear statistical 

framework for residual correction, targeting both complex dependencies and short-term trends. Together, these 

models form a comprehensive framework for addressing Bitcoin’s high volatility and non-linear price movements, 

with Shannon entropy and cross-validation improving reliability and insight into market behavior. 

 

3.5.1.GRU Model:  

 The Gated Recurrent Unit (GRU) model is a variant of recurrent neural networks (RNNs) designed to address 

vanishing gradient problems, making it suitable for sequential data like time series. Unlike traditional RNNs, 

GRUs use gates to control the flow of information, enabling better capture of long-term dependencies.  
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                                   Fig1: the structure of The Gated Recurrent Unit model (GRU) cell  

 

Process of the GRU Model:  

 

 The gated recurrent unit (GRU) model processes time series data sequentially, maintaining a hidden state ℎ𝑡   that  

encapsulates past information. Given an input sequence 𝑋 =  {𝑥1, 𝑥2, … } where each 𝑥𝑖  ∈ ℝ𝑛,the GRU cell 

operates at each time step by employing two primary gates: the rest gate 𝑟𝑡 and the update gate 𝓏𝑡. The rest gate, 

defined as 𝑟𝑡 = 𝜎(𝒲𝑟  [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑟 ), determines how much past information should be forgotten. Here, 𝜎 is the 

sigmoid activation function, and 𝒲𝑟  and 𝑏𝑟  are the perspective weight and bias parameters. Simultaneously, the 

update gate 𝓏𝑡 =   𝜎(𝒲𝑧 [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑧 ) controls the extent to which past information is retained in the hidden 

state. The candidate hidden state ℎ�̃� = tanh(𝑊ℎ[𝑟𝑡⨀ℎ𝑡−1, 𝑥𝑡] + 𝑏ℎ), where ⨀ denotes element-wise 

multiplication. The final hidden state and the candidate state, given by ℎ𝑡 = (1 − 𝑧𝑡)⨀ ℎ𝑡−1 + 𝑧𝑡 ⨀ℎ̃𝑡 . For 

prediction tasks, the last hidden state ℎ𝑇 is passed through a fully connected (dense) layer to generate the output  

𝑦𝑡 . The GRU model is parameterized by weight matrices 𝒲𝑟  ,𝒲𝑧 ,𝒲ℎ, bias terms 𝑏𝑟 , 𝑏𝑧 , 𝑏ℎ , and hyperparameters 

such as the number of hidden units, which influence model complexity, as well as the learning rate, which regulates 

the speed of parameter updates. Mean squared error (MSE) is commonly employed as the loss function in 

regression tasks to optimize the model’s performance. 

 

3.5.2.   LSTM Model: 

  

 A standard LSTM network with forget, input, and output gates is implemented to model the long-term 

dependencies in the Bitcoin price sequence. The LSTM network’s ability to mitigate the vanishing gradient 

problem makes it suitable for capturing complex temporal patterns.  
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                                         Fig2: the structure of a long short-term memory (LSTM) cell  

 

Process of the LSTM Model:  

 

The long short-term memory (LSTM) model processes sequential data by maintaining both a hidden state ℎ𝑡 and 

a cell state 𝐶𝑡, which collectively capture long-term dependencies in the time series. Given an input sequence 𝑋 =
 {𝑥1, 𝑥2, … , 𝑥𝑡}, where each 𝑥𝑖  ∈  ℝ𝑛 , the LSTM operates through a series of gates to regulate information flow. 

The forget gate, defined as 𝑓𝑡 =  𝜎 (𝑊𝑓[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓 ), determines how much information from the previous 

cell state should retained. Here 𝜎  represents the sigmoid activation, while 𝑊𝑓 and 𝑏𝑓  are the respective weight 

and bias terms. Simultaneously, the input gate, 𝑖𝑡 =  𝜎( 𝑊𝑖[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖 ), controls the amount of new 

information stored in the cell state. The candidate memory content is computed using the tanh activation function: 

�̃�𝑡 =  𝑡𝑎𝑛ℎ(𝑊𝑐  [ℎ𝑡−1, 𝑥𝑡] +  𝑏𝑐  ). The cell state is then updated as a combination of the old memory and the new 

content, formulated as  𝐶𝑡 = 𝑓𝑡 ⨀𝐶𝑡−1 + 𝑖𝑡  ⨀�̃�𝑡, where  ⨀ represents element-wise multiplication. The output 

gate, 𝑂𝑡 =  𝜎 (𝑊0 [ℎ𝑡−1, 𝑥𝑡] + 𝑏0), determines how much of the updated cell state should be used to generate the 

new hidden state, given by ℎ𝑡 = 𝑂𝑡⨀ tanh(𝐶𝑡).  For regression tasks, the final hidden state ℎ𝑇 is passed through 

a dense layer to produce the output 𝑦𝑡 = 𝑊𝑦ℎ𝑡 + 𝑏𝑦. The LSTM model is parameterized by weight matrices 

𝑊𝑓 ,𝑊𝑖 ,𝑊𝑜 ,𝑊𝑐 , bias terms 𝑏𝑓 , 𝑏𝑖 , 𝑏𝑜, 𝑏𝑐 , and hyperparameters such as the number of hidden units, which determine 

model complexity. Additionally, the learning rate regulates how much quickly the model updates its weights, and 

mean squared error (MSE ) is commonly used as the loss function for price prediction tasks. 

3.5.3. Bidirectional LSTM (BI-LSTM) Model: The Bi-LSTM processes price sequences bidirectionally, 

leveraging both past and future contextual information for better predictive performance. 

                              
                    Fig3: the structure of Bidirectional long short-term memory model  
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 Process of the BI-LSTM Model 

The bidirectional long shorty-term memory (BiLSTM) model enhances sequence learning by processing the input 

data in both forward and backward directions, capturing dependencies from past and future contexts. Given an 

input sequence 𝑋 =  {𝑥1, 𝑥2, … , 𝑥𝑡}, the standard LSTM first process the data sequentially in a forward pass, 

updating its hidden and cell states as ℎ̃𝑡 = 𝐿𝑆𝑇𝑀𝑓  (𝑥𝑡 , ℎ⃗ 𝑡−1, 𝐶 𝑡−1), where ℎ⃗ 𝑡  and  𝐶 𝑡 represent the hidden and cell 

states in the forward direction. Simultaneously, the model executes a backward pass, processing the input in 

reverse order as ℎ⃗ 𝑡 = 𝐿𝑆𝑇𝑀𝑏  (𝑥𝑡 , ℎ⃗ 𝑡+1, 𝐶 𝑡+1).  At each time step, the hidden states from both directions are 

concatenated to form a comprehensive representation: ℎ𝑡 =  [ℎ⃗ 𝑡  ∥  ℎ⃖⃗𝑡] where  ∥ denotes concatenation. The final 

output is computed through a dense layer, given by 𝑦𝑡 = 𝑊𝑦ℎ𝑡 + 𝑏𝑦   where 𝑊𝑦   and 𝑏𝑦 where  𝑊𝑦 And 𝑏𝑦 are 

the weight and bias parameters of the output layer. The BiLSTM model relies on key parameters, including weight 

matrices W and biases b for each gate in both forward and backward directions, the number of hidden units 

controlling temporal dependencies, sequence length defining the number of processed time steps, and 

hyperparameters such as learning rate and optimizer settings that influence model training. For regression tasks, 

the mean squared error (MSE) loss function is typically employed to optimize predictions. 

                    

3.5.4.  Hybrid GRU-ARIMA Model:  

The Hybrid GRU-ARIMA model combines the strengths of deep learning and traditional time series models to 

enhance forecasting performance. The GRU (Gated Recurrent Unit) captures non-linear patterns, while the 

ARIMA (AutoRegressive Integrated Moving Average) model handles the residual patterns left by the GRU. This 

hybridization is particularly useful for financial time series, where both long-term dependencies and short-term 

stochastic patterns are present. 

Process of the Hybrid GRU-ARIMA Model:  

The Hybrid GRU-ARIMA model leverages the strengths of both deep learning and traditional time series methods 

to enhance forecasting accuracy. The process begins by feeding historical sequence data into the GRU model, 

which captures complex temporal dependencies and generates predictions �̂�𝐺𝑅𝑈,𝑡 for the target variables. However, 

since the GRU model may not fully capture all patterns, residuals are computed as the difference between actual 

values and GRU predictions: 𝜖𝑡 = 𝑦𝑡 − �̂�𝐺𝑅𝑈,𝑡  . these residuals, containing linear dependencies and short-term 

autocorrelations, are then modelled using an ARIMA process, which estimates future residuals 𝜖�̂�+𝑘 . the final 

hybrid forecast is obtained by combining the GRU predictions with the ARIMA-predicted residuals: 

                                          �̂�𝐻𝑦𝑏𝑟𝑖𝑑,𝑡+𝑘 = �̂�𝐺𝑅𝑈,𝑡+𝑘 +  𝜖�̂�+𝑘 

The GRU model relies on key equations, where the rest gate is defined as 𝑟𝑡 =  𝜎 (𝑊𝑟[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑟 ),controlling 

how much past information is forgotten, the update gate 𝑧𝑡 =  𝜎 (𝑊𝑧[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑧 ), determines the proportion 

of the previous hidden state to retrain. The candidate activation is computed as  ℎ�̃� = tanh(𝑊ℎ[𝑟𝑡⨀ℎ𝑡−1, 𝑥𝑡] +
𝑏ℎ), and the final hidden state update follows: 

                                                 ℎ𝑡 = (1 − 𝑧𝑡)⨀ℎ𝑡−1 + 𝑧𝑡 ⨀ℎ̃𝑡  

The ARIMA component follows a three-step process: (1) the autoregressive (AR) part models the relationship 

between past values and the present, given by  𝑦𝑡 = 𝜙1 𝑦𝑡−1 + 𝜙2 𝑦𝑡−2 + ⋯+ 𝜙𝑝 𝑦𝑡−𝑝 + 𝑒𝑡  , (2)  the integration 

(I) part applies differencing to ensure stationarity, expressed as 𝑦′𝑡 = 𝑦𝑡 − 𝑦𝑡−1, and (3) the moving average (MA) 

part models the relationship between forecast errors and the current value : 

𝑦𝑡 =   𝜇 +  𝜃1 𝑒𝑡−1 + 𝜃2 𝑒𝑡−2 + ⋯+ 𝜃𝑞 𝑒𝑡−𝑞 + 𝑒𝑡 

The hybrid model’s performance depends on tuning its parameters. The GRU model requires selecting the number 

of units, learning rate, optimizer (typically Adam or RMSprop), and sequence length. The ARIMA model depends 

on three hyperparameters: 𝑝 (autoregressive order), 𝑑 (degree of differencing), and 𝑞  (moving average order). By 

integrating these two methodologies, the hybrid model aims to enhance forecasting accuracy by capturing both 

nonlinear dependencies and traditional time series patterns. 

 

IV. Results and discussion: 
Accurately forecasting Bitcoin prices remains a challenging task due to the cryptocurrency's inherent 

non-linear behavior and high volatility. To address these complexities, this study evaluates the predictive 

performance of several advanced models, including Long Short-Term Memory (LSTM), Gated Recurrent Unit 

(GRU), Bidirectional LSTM (BI-LSTM), and a hybrid GRU-ARMA model.  

Each model was designed to capture key patterns in the data by training on sequences of log returns, 

thereby stabilizing the highly volatile Bitcoin price series. The performance of these models was assessed using 

Mean Squared Error (MSE) as the primary evaluation metric and Time Series Cross-Validation to ensure robust 

results across different time horizons. 
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fig 4: training and validation MSE loss for LSTM model  fig 5: training and validation MSE loss for LSTM model 

 

 
             Fig 6: bitcoin price prediction with LSTM                             Fig 7: Bitcoin price prediction with GRU 

 

Our results illustrate the training and validation MSE loss for each model and highlight their performance in 

capturing Bitcoin's highly volatile price movements.  

 

 
                                                  Fig 8: Time Series Cross-validation MSE for LSTM Model 

 

The LSTM model, with a Cross-Validation MSE of 0.00313, demonstrated its ability to effectively 

model sequential dependencies, making it particularly suited for capturing long-term trends in Bitcoin prices. The 

relatively stable and convergent training and validation loss curves indicated that the model learned well without 

significant overfitting. For example, during a prediction window between July 2023 and October 2023, where 

actual price fluctuations ranged between $28,000 and $35,000, the LSTM model's predictions deviated by a 
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maximum of $800, showcasing good alignment with real trends. However, during highly volatile periods, such as 

mid-2022, the LSTM lagged slightly, underestimating extreme price swings. 

 

 
                                                   Fig 9: Time Series Cross-validation for GRU Model  

 

Meanwhile, The GRU model achieved a Cross-Validation MSE of 0.00294, reflecting its ability to 

balance simplicity and predictive accuracy. The training and validation loss curves over 50 epochs showed rapid 

error reduction at the beginning and stabilization at a lower level, indicating effective learning and minimal 

overfitting. While the GRU model captured general trends efficiently, it struggled slightly during abrupt short-

term price changes. For instance, between July 2022 and October 2022, when prices dropped from $24,000 to 

$18,000, prediction errors peaked at around $1,200, highlighting its limitations in highly volatile segments. 

Nonetheless, its simpler architecture and faster training times make GRU a computationally efficient alternative 

when minor reductions in accuracy are acceptable 

 

 
Fig 10 : Training and validation MSE for Bidirectional LSTM model               Fig 11: Training and validation 

MSE loss for GRU-ARMA model      

    

     
      Fig 12: Bitcoin price prediction using Bidirectional -LSTM               Fig 13: Bitcoin price prediction using 

GRU-ARMA hybrid model     
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The outcome highlighted that, The Bidirectional LSTM (BI-LSTM), leveraging both forward and 

backward processing of time series data, demonstrated enhanced generalization with a Cross-Validation MSE of 

0.00325. The training and validation MSE loss curves showed rapid error reduction with minimal divergence, 

suggesting an effective balance between underfitting and overfitting. The BI-LSTM excelled in tracking trends 

during periods of sharp price reversals. For example, between April 2023 and July 2023, where prices rose from 

$25,000 to $30,000, the BI-LSTM closely tracked actual prices with deviations consistently below $400. During 

late 2022, the BI-LSTM also provided smoother predictions, minimizing noise that was more prominent in the 

GRU and LSTM models. 

 
Fig 14 : bitcoin price prediction using hybrid GRU-ARMA model 

 

The hybrid GRU-ARMA model, which combines GRU's capability to extract non-linear patterns with ARMA's 

statistical strengths for short-term dependencies, emerged as the best performer with a Cross-Validation MSE of 

0.00309. This hybrid approach was particularly effective during periods of high volatility. For instance, in early 

2023, when prices fluctuated between $19,000 and $22,000, the hybrid model consistently achieved prediction 

errors below $300, showcasing its robustness in dynamic markets. Moreover, during stable periods such as early 

2024, the hybrid model's predictions aligned closely with actual prices, with deviations of less than $150, affirming 

its ability to model short-term dependencies effectively. 

Across all models, challenges persisted during extreme market movements, such as the 2022 crash. The GRU 

exhibited the largest prediction deviations, while the hybrid GRU-ARMA model excelled by capturing sudden 

drops with an average deviation of less than $500 

 

 
                Fig 15: Bi-Directional LSTM Time Series Cross-validation Loss       Fig 16: Hybrid GRU-ARMA Time 

Cross-Validation Loss 

Cross-Validation MSE Loss: 0.00325                    Cross-Validation MSE Loss: 0.00309 
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These findings highlight the strengths and limitations of each approach: LSTM and BI-LSTM excelled at 

capturing long-term dependencies but lagged slightly during short-term shocks, GRU balanced simplicity and 

accuracy but struggled with abrupt changes, and the hybrid GRU-ARMA model achieved the best overall 

performance by balancing non-linear and linear dynamics. These results affirm the potential of integrating deep 

learning with statistical techniques for cryptocurrency forecasting, offering a robust framework for tackling the 

challenges of non-linear and volatile financial data. 

 
                             Fig 17:  training and validation loss curves for different models  

 

The cross-validation process ensures that model performance is robust and generalizable by evaluating 

predictions across multiple data splits rather than relying on a single training set, thereby mitigating the risk of 

overfitting. In addition to assessing predictive accuracy, this study applied Shannon entropy to analyze the 

informational efficiency and predictability of Bitcoin markets. Shannon entropy measures uncertainty and 

randomness in a time series, offering critical insights into market structure. High entropy indicates greater 

randomness and reduced predictability, while lower entropy reflects more structured patterns conducive to 

forecasting. 

Our analysis revealed that during periods of heightened market volatility, Bitcoin exhibited higher entropy, 

signifying increased randomness and decreased predictability. Conversely, lower entropy was observed in more 

stable market phases, highlighting structured price dynamics. By integrating Shannon entropy with predictive 

models, this study provides a comprehensive framework for understanding Bitcoin market behavior and 

forecasting performance under varying conditions. 

Entropy results for the actual Bitcoin prices and model predictions reflect the complexity of financial time 

series. The entropy of the actual prices was 2.664, indicating significant unpredictability consistent with Bitcoin’s 

volatile nature. The GRU model achieved an entropy of 2.720, capturing some data structure but retaining 

considerable randomness. Similarly, the LSTM model produced slightly higher entropy at 2.721, suggesting that 

while it identifies patterns, it may introduce additional noise. The nearly identical entropy values for GRU and 

LSTM reflect comparable predictive performance, with GRU offering a computationally simpler alternative. 

The hybrid GRU-ARIMA model demonstrated entropy of 2.781, higher than GRU alone but lower than 

actual prices, indicating improved residual structure capture through ARIMA’s statistical properties combined 

with GRU’s non-linear learning. Although the hybrid approach offers marginal enhancements, the close entropy 

values across all models emphasize the persistent challenge of predicting cryptocurrency prices due to inherent 

market randomness. These findings underscore the value of combining statistical and machine learning models 

for adaptive forecasting. Additionally, incorporating sentiment-based models that analyze social media data for 

predictive insights can further enhance predictive accuracy. Sentiment models, which capture the influence of 

market sentiment on price movements, complement traditional time-series models by integrating external signals 

that drive market behavior. By leveraging these multi-model frameworks, this study demonstrates the potential of 
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hybrid approaches in addressing the dynamic and complex nature of cryptocurrency markets, highlighting the 

importance of integrating diverse data sources for more robust and accurate forecasting. 

 

V. Conclusion 
In conclusion, this study analyzed the predictability of Bitcoin price movements using advanced predictive 

models and Shannon entropy to assess market efficiency and randomness. The results highlight the dynamic and 

volatile nature of cryptocurrency markets, where high Shannon entropy values reflect significant unpredictability 

and randomness in price behavior. While the GRU, LSTM, Bi-directional LSTM and hybrid GRU-ARIMA 

models demonstrated varying levels of performance, the marginal improvements in entropy values emphasize the 

inherent difficulty of forecasting financial time series with traditional modeling approaches alone. The hybrid 

model provided modest enhancements by combining deep learning and statistical methods, underscoring the value 

of integrating diverse methodologies to capture both long-term dependencies and short-term noise. However, the 

persistent high entropy values reveal the limits of these models in fully addressing market randomness. 

To further improve predictive accuracy and respond to the challenge of market unpredictability, future 

work should explore the incorporation of sentiment analysis models. Sentiment models, such as VADER (Valence 

Aware Dictionary and sEntiment Reasoner), offer a powerful tool for analyzing social media content, which 

has a significant influence on cryptocurrency price movements. By integrating sentiment scores into predictive 

frameworks, future research can capture real-time market sentiment as an additional explanatory variable, 

potentially reducing entropy and enhancing forecast precision. This sentiment-based approach, combined with 

advanced time-series modeling, offers a promising path toward developing more robust and adaptive forecasting 

systems capable of responding to the rapidly evolving dynamics of cryptocurrency markets. 
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