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Abstract 
This paper explores the framework of portfolio optimization from the perspective of mathematical programming 

techniques. It provides analysis of portfolio optimization techniques, classified into three categories: classical, 

advanced, and emerging methods. Classical portfolio optimization techniques - such as Mean-Variance 

Optimization (MVO), Linear Programming (LP), and Quadratic Programming (QP), form the foundation of 

portfolio theory and continue to be widely used because of their simplicity and interpretability. Advanced 

techniques, including Stochastic Programming (SP) and Mixed-Integer Programming (MIP) address complex 

challenges such as uncertainty and discrete constraints.  Emerging techniques, such as Machine Learning (ML), 

Quantum Computing and Metaheuristic algorithms represent the cutting edge of portfolio optimization by 

offering innovative solutions. By bridging the past, present, and future of portfolio optimization, this review will 

help scholars and practitioners in navigating the dynamic area of mathematical programming in finance. 
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I. Introduction 
In the ever-evolving landscape of financial decision-making, portfolio optimization serves as a critical 

tool to balance risk with return. The process of building a portfolio can be likened to selecting items at a buffet. 

At a buffet, diners face an array of options and must choose a combination of dishes that satisfy their preferences, 

dietary needs, and appetite within their constraints. Similarly, investors construct portfolios by selecting assets 

from a diverse menu, balancing return expectations, risk tolerance, and budgetary or regulatory constraints. 

Investors need to pick from a variety of assets, such as equities, gold, mutual funds, bonds, real estate, cash, and 

cash equivalents, each offering different levels of risk and return, with the ultimate goal of crafting a “plate” that 

satisfies their financial appetite. 

Mathematical programming has become a cornerstone for solving portfolio optimization problems, 

offering a structured way to model and solve complex decision-making scenarios. Mathematical programming 

involves formulating optimization problems with mathematical equations and inequalities to find the best solution 

that satisfies certain constraints. In general, there are three main components to optimization problems. The first 

is the objective function that needs to be maximized or minimized. It defines what you want to optimize, such 

as maximizing profit, minimizing cost, or maximizing utility. The second component is a group of decision 

variables, whose values can be changed in order to optimize the objective function. A collection of constraints, 

or limitations on the possible values of the variables, constitutes the third component of an optimization 

problem. They are typically represented as inequalities or equalities involving the decision variables. 

Mathematical programming has played a pivotal role in the evolution of portfolio optimization, 

providing the theoretical and computational tools needed to solve complex optimization problems.  Harry 

Markowitz in 1952[31] was the first to use mathematical programming for portfolio selection. He developed Mean-

Variance Optimization (MVO) model- a quadratic programming model known as Modern Portfolio Theory 

(MPT). It is a classic method which aims to find the optimal balance between expected return and risk. Common 

formulation of the Markowitz model is given below: 

Let us assume that  𝑟𝑝 be the expected return of the portfolio, 𝑟𝑖 be the expected return of asset i, 𝑟𝑡𝑎𝑟𝑔𝑒𝑡  

be the target expected return of the portfolio, 𝑤𝑖 be the weight of asset i in the portfolio (proportion of total 

investment allocation to asset i), 𝜎𝑝 be the standard deviation (risk) of the portfolio and MaxRisk limits the 

portfolio's risk by specifying a maximum allowable standard deviation. 
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Maximize  𝑟𝑝 = ∑ 𝑤𝑖
𝑛
𝑖=1 ∙ 𝑟𝑖 

Subject to: 

Weight Constraint: ∑ 𝑤𝑖
𝑛
𝑖=1 = 1 

Target Expected Return Constraint: ∑ 𝑤𝑖
𝑛
𝑖=1 ∙ 𝑟𝑖 ≥ 𝑟𝑡𝑎𝑟𝑔𝑒𝑡 

Risk Constraint: 𝜎𝑝 ≤ MaxRisk 

Non-negativity Constraint: 𝑤𝑖 ≥ 0 for all 𝑖 
Since the inception of Markowitz's mean-variance framework in 1952[31], portfolio optimization has 

evolved to address increasingly complex and realistic scenarios.  Mathematical programming techniques provide 

a rigorous framework for modeling diverse objectives and constraints, ranging from simple linear relationships 

to highly nonlinear and stochastic systems. Classical techniques, such as MVO and Linear Programming (LP), 

form the foundation of portfolio theory and are widely used for their simplicity and interpretability. However, 

these methods often struggle with real-world complexities, such as parameter sensitivity, non-normal return 

distributions, and dynamic market conditions. Advanced techniques, including Stochastic Programming (SP), 

Robust Optimization, and Mixed-Integer Programming (MIP) address these challenges by incorporating 

uncertainty, multi-stage decision-making, and complex constraints, and the latest wave of innovation in portfolio 

optimization is driven by  emerging techniques such as Machine Learning (ML), Quantum Computing, and 

Metaheuristic Algorithms. 

The main objective of this review paper is to survey a wide spectrum of mathematical programming 

approaches employed in the pursuit of optimal portfolio design and classified into three categories: classical, 

advanced, and emerging. By analysing these techniques, this paper aims to highlight their methodologies and key 

contributions, while also identifying research gaps and future directions. This review is therefore especially 

relevant at a time when the field is transforming due to the combination of machine learning and mathematical 

programming, the emergence of quantum computing, and the growing significance of hybrid algorithms in 

finance. 

This review is organized as follows: First, we discuss classical techniques, focusing on their foundational 

principles and practical applications. Next, we explore advanced techniques, which extend classical methods to 

handle more complex and realistic scenarios. Finally, we present emerging techniques, which leverage recent 

advancements in computational power and algorithmic innovation. Throughout the paper, we emphasize the 

interplay between these categories and the potential for hybrid models that integrate multiple approaches. 

 

II. Review Of Literature 
Classical Techniques: 

Markowitz (1952)[31] laid the foundation for portfolio optimization, a mathematical approach for 

constructing investment portfolios. He defined risk as the variance (or standard deviation) of portfolio returns and 

presented the mean-variance (MV) optimization model. He formalized the process of choosing a portfolio that 

either minimizes risk for a given expected return or maximizes expected return for a given amount of risk 

(variance of returns). His model produced an efficient frontier that represents the best risk-return combinations 

for portfolios. He mathematically demonstrated the benefits of diversification with the concept that holding two 

or more assets are less risky than holding one asset. 

Martin (1955)[32] analyzed work of Markowitz with empirical data of securities for managing an 

investment portfolio. He proposed the use of linear programming (LP) for portfolio selection, contrasting with 

Markowitz's quadratic programming (QP) approach. By using LP, he aimed to simplify computational 

requirements while maintaining practical applicability and illustrated how optimization could guide portfolio 

selection decisions. 

Sharpe (1963)[51] addressed the computational complexity of Markowitz’s QP approach to portfolio 

optimization. He introduced the Single-Index Model to simplify Markowitz’s Mean-Variance Portfolio Theory. 

He assessed his model on randomly selected securities from the New York Stock Exchange, analyzing their 

performance from 1940 to 1951. This paper laid the foundation for Sharpe’s later development of the Capital 

Asset Pricing Model (CAPM) and remains influential in theory of portfolios. 

Sharpe (1967)[50] suggested that the portfolio selection problem can be formulated as parametric LP 

problem. He utilized linear approximation to the quadratic formula for portfolio’s risk and represented simple 

technique for evaluation of expected performance of portfolios. 

Pogue (1970)[46] extended the foundational Markowitz model to consider investor's expectations on 

brokerage charges, price effects from large volume transactions, short-sale options, liability alternatives, and 

taxation considerations. He integrated variable transaction costs into the portfolio selection model using QP 

approach. 

Lee et al. (1973)[29] focused on optimizing portfolio selection for mutual funds using a goal programming 

(GP) model. This model integrated the effectiveness of Markowitz's full covariance model and the simplified 
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features of Sharpe's LP approach. They discussed the importance of the geometric mean of annual dividend yields 

and the variance of returns in assessing the risk associated with securities. 

Konno et al. (1991)[27] presented the Mean-Absolute Deviation (MAD) model as an alternative to the 

classical MV approach developed by Harry Markowitz. They addressed computational and practical challenges 

of the MV framework, making it useful in real-world applications. They applied the MAD model to optimize 

portfolios on the Tokyo stock market, demonstrating its effectiveness and computational advantages. 

Young (1998)[60] designed a model to address situations where investors are concerned about extreme 

downside risk rather than volatility. This model introduced a minimax approach to portfolio selection, offering 

an alternative to the traditional mean-variance framework by focusing on minimizing the worst-case return 

scenario. The proposed model's reliance on LP makes it computationally efficient and practical for large-scale 

applications. 

Dias (2001)[17] focused on applying QP to modern portfolio selection, optimizing the trade-off between 

risk and return. He applied Wolfe’s algorithm for efficient frontier derivation and analyzed the performance of 

24 portfolios generated by implementation of the algorithm, 12 in a bull market and the other 12 in a bear market. 

Papahristodoulou et al. (2004)[45] explored the application of LP techniques to portfolio optimization. 

Using data from 67 securities over a 48-month time period, they developed two models: (i) maximin and (ii) 

minimization of mean absolute deviation. These models were then compared with the standard QP formulation. 

Chang (2005)[11] presented a modified goal programming (GP) approach to address portfolio 

optimization using the MAD model. Incorporating practical limitations like budgetary restrictions and minimum 

investment thresholds, the modified GP framework made it possible to balance competing goals like maximizing 

returns and limiting risk. 

Sun (2010)[56] focused on combining mean-variance optimization with LP to optimize stock portfolios 

in the Indonesia stock market, emphasizing risk-return trade-offs. He used Sharpe, Treynor and Jensen 

measurement to evaluate stock portfolio performance. He also utilized his set of portfolio to predict future return. 

Tamiz et al. (2013)[57] focused on using a goal programming (GP) approach for selection of international 

mutual funds. They implemented GP with a variety of extended parameters and analyzed the historical 

performance data of twenty mutual funds from various worldwide areas. In order to acquire the international 

mutual fund portfolio they desired, they employed three different GP variations. 

Siew et al. (2014)[52] worked on the portfolio composition and performance using GP approach in 

enhanced index tracking and compared it to the market index. Their approach considered multiple goals, including 

minimizing tracking error, controlling transaction costs, and achieving a return that outperforms the benchmark 

index. 

Erdas (2020)[21]  explored the use of LP in portfolio optimization by incorporating constraints like budget 

limits, sectoral diversity, and risk tolerance. He discussed MAD model theoretically and applied his model to 

Borsa Istanbul 30 Index, demonstrating its effectiveness in constructing optimal portfolios under real-world 

constraints. 

Nath et al. (2020)[40] presented a multi-objective linear programming (MOLP) approach to portfolio 

optimization in the share market. They proposed two methods in the paper namely fuzzy method using 

Zimmermann technique and Min-max goal programming technique. They provided a real-world example using 

data from the Bombay Stock Exchange (BSE) to demonstrate the suggested procedures. 

Oladejo (2020)[44] used Optimization techniques to find the best investment in a selected portfolio that 

yields highest returns with less inputs He conducted his research using secondary data provided by a certain 

company. The single-objective model maximized the return on the $15,000,000.00 that was available to invest in 

cash crops, mortgage securities, treasury bills, construction loans, certificates of deposit, fixed deposits, and crude 

oil. 

Ling et al. (2023)[30] explored portfolio selection strategies in the context of Bursa Malaysia (the 

Malaysian stock exchange) using QP. They aimed to optimize portfolio selection by balancing risk and return, 

with a focus on practical applications for investors in the Malaysian market. 

To summarize the key studies and techniques discussed in the literature, Table 1 gives an overview of 

the classical approaches to portfolio optimization, including the techniques used, key contributions, datasets, and 

performance metrics. 

 

Table 1: Summary of classical portfolio optimization techniques 

Paper 

Reference 

Technique Key Contribution Dataset Used Performance 

Metrics 

Markowitz 

(1952)[31] 

MVO Concept of risk- return trade-off in portfolio 

optimization by MVO model with QP as 

computation tool. 

N/A Expected return, 

variance (risk), and 

efficient frontier 

Martin 

(1955)[32] 

QP,LP Explored LP approaches to solve portfolio 

selection problems. 

Simulated data Risk return analysis 
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Advanced Techniques: 

Bertsimas et al. (1999)[7] presented a milestone in portfolio optimization by introducing Mixed-Integer 

Programming (MIP) techniques into real-world portfolio construction. They collaborated with Grantham, Mayo, 

Sharpe 

(1963)[51] 

QP Simplified Mean -Variance Portfolio Theory 

by introducing Single-Index Model. 

NY Stock 

Exchange 

historical data 

Systematic risk and  

computational 

efficiency 

Sharpe 

(1967)[50] 

LP Formulated parametric LP problem by 

utilizing linear approximation to the quadratic 

formula for portfolio’s risk. 

Secondary data 

(From another 

research paper) 

Computational 

efficiency 

Pogue 

(1970)[46] 

QP Extended Markowitz model to consider 

investor's expectations on brokerage charges, 

price effects from large volume transactions, 

short-sale options, liability alternatives, and 

taxation considerations. 

Financial market 

data 

Portfolio efficiency 

Lee et al. 

(1973)[29] 

GP Optimal portfolio selection for mutual funds 

using GP model with integration of Sharpe's 

linear programming approach. 

Mutual funds 

data from 61 

companies 

Risk-adjusted 

returns of portfolio, 

and computational 

efficiency 

Konno et al. 

(1991)[27] 

MAD Reduced the computational complexity by 

introducing the Mean-Absolute Deviation 

model as another option to the mean-variance 

model. 

TSE historical 

data 

MAD risk and  

computational 

efficiency 

Young 

(1998)[60] 

LP Proposed a minimax portfolio selection rule 

to minimize maximum loss, solved using LP. 

Historical data Minimax loss, 

portfolio 

performance under 

worst-case scenarios 

Dias 

(2001)[17] 

QP Applied QP to modern portfolio selection, 

focusing on optimizing risk-return trade-offs. 

Brazilian stock 

market historical 

data 

Risk Adjusted 

Performance of 

portfolio, Sharpe 

ratio and Treynor 

ratio 

Papahristod

oulou et al. 

(2004)[45] 

LP Formulated two LP models (i) maximin, and 

(ii) minimization of mean absolute deviation 

for portfolio optimization. 

Stockholm 

Stock Exchange 

historical data 

MAD risk and  

computational 

efficiency 

Chang 

(2005)[11] 

GP Proposed a modified GP approach for the 

MAD portfolio optimization model. 

Secondary data 

(From another 

research paper) 

Computational 

efficiency 

Sun 

(2010)[56] 

MVO and 

LP 

Focused on selecting stocks into a portfolio 

using mean variance method combining with 

LP (solver). 

Indonesia stock 

market historical 

data 

Sharpe, Treynor and 

Jensen Measurement 

Tamiz et al. 

(2013)[57] 

GP Developed a GP model for selecting 

international mutual fund portfolios. 

International 

mutual fund data 

Portfolio risk, 

return, 

diversification 

efficiency 

Siew et 

al.(2014)[52] 

GP Applied GP to enhanced index tracking, 

optimizing portfolio performance relative to a 

benchmark index. 

Malaysia stock 

market  

historical data 

Tracking error, 

portfolio return, 

benchmark deviation 

Erdas 

(2020)[21] 

LP Developed a portfolio optimization model 

using LP under specific constraints, such as 

budget limits and sectoral diversification. 

Borsa Istanbul 

30 Index 

historical stocks 

data 

Portfolio return and 

MAD risk 

Nath et 

al.(2020)[40] 

GP Applied multi-objective LP by fuzzy method 

using Zimmermann technique and Min-max 

GP to optimize portfolio selection. 

Bombay 

Stock Exchange  

historical data 

Portfolio semi-

absolute deviation 

risk, return and 

efficiency 

Oladejo 

(2020)[44] 

LP Explored how LP techniques can be used to 

optimize a firm's portfolio selection. 

 

Firm-specific 

financial data 

Portfolio risk, 

return, 

computational 

efficiency 

Ling et al. 

(2023)[30] 

QP Explored portfolio selection strategies using 

QP, emphasizing risk minimization and 

return maximization. 

Bursa Malaysia  

Stock Exchange 

historical data 

Portfolio risk, return 

and tracking error 

Note: MVO: Mean-Variance Optimization; QP: Quadratic Programming; LP: Linear Programming; GP: Goal 

Programming; MAD: Mean Absolute Deviation 
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Van Otterloo and Company (GMO), a prominent asset management firm to apply MIP methods to portfolios 

consisting of several sub portfolios and constructed 11 quantitatively managed portfolios representing over $8 

billion in assets. 

Ogryczak (2000)[41] introduced a multiple criteria linear programming (MCLP) model that allows 

investors to consider various objectives simultaneously, such as maximizing returns while minimizing risk, within 

a linear programming structure. 

Konno et al. (2005)[26] formulated portfolio optimization problem as non-concave maximization problem 

under linear constraints using absolute deviation as a measure of risk. They used historical data of Tokyo stock 

exchange (TSE) for their study. They provided valuable insights into the application of global optimization and 

integer programming techniques in portfolio optimization under non-convex transaction costs. 

Benati et al. (2007)[6] introduced a novel mixed-integer linear programming (MILP) approach to solve 

portfolio optimization problems. They incorporated the Value-at-Risk (VaR) as a risk measure. 

Ibrahim et al. (2008)[25] proposed both single stage and two stage stochastic programming (SP) models 

for portfolio selection problems. They focused on minimizing the maximum downside deviation from the 

expected return. The models are applied to the optimal selection of stocks listed in Bursa Malaysia and the return 

of the optimal portfolio is compared between the two stochastic models. 

Bertsimas et al. (2009)[8] presented a novel algorithm for solving cardinality-constrained quadratic 

optimization (CCQO) problems and addressed the computational challenges posed by the inclusion of discrete 

constraints. They compared their algorithms against CPLEX’s quadratic mixed-integer solver and concluded that 

the proposed algorithms have computational advantages over a general mixed-integer solver. 

Sawik (2010)[49] studied selected multi-objective methods for multi-period portfolio optimization 

problem. He used data set from Warsaw Stock Exchange for his study. Multi-objective MIP methods were used 

to find tradeoffs between risk, return, and the number of securities in the portfolio. 

Xidonas et al. (2010)[59] developed a multi-objective MIP model for equity portfolio construction and 

selection. Their model aimed to generate Pareto optimal portfolios using an innovative version of the ε-constraint 

method and proposed methodology is tested through an application in the Athens Stock Exchange. 

Cesarone et al. (2011)[10] studied performance of the portfolios obtained by Limited Asset Markowitz 

(LAM), Limited Asset Mean Absolute Deviation (LAMAD) and Limited Asset Conditional Value-at-Risk 

(LACVaR) models. They compared linear and quadratic optimization models for portfolio selection, providing 

their practical applicability and performance. They also analyzed the CVaR and MAD models with cardinality 

constraints and solved as mixed integer linear programming (MILP) models using CPLEX solver. 

Moon et al. (2011)[38] presented a robust model for portfolio optimization focusing on the mean absolute 

deviation approach. They constructed a simple robust mean absolute deviation (RMAD) model which led to a 

linear program and reduced computational complexity of existing optimization methods. They tested the robust 

strategies on real market data and discussed performance of model based on financial elasticity, standard 

deviation, and market condition such as growth, steady state, and decline in trend. 

Stoyan et al. (2011)[55] developed Stochastic-Goal Mixed-Integer Programming (SGMIP) approach for 

an integrated stock and bond portfolio problem. Their approach addressed uncertainties in asset returns and 

incorporated real-world constraints, such as transaction costs and minimum transaction lots. 

Masmoudi et al. (2012)[33] presented a recourse goal programming approach to a multiple objective 

stochastic programming portfolio selection model. Their model utilized historical data of securities listed in the 

S&P100 index to determine the optimal investment proportions which resulted in a portfolio with a beta value of 

1.68, heavily weighted towards banking, investment, and industrial companies. 

Sawik (2012)[48] provided a focused exploration of bi-criteria portfolio optimization using mathematical 

programming, integrating percentile-based and symmetric risk measures. He proposed scenario-based portfolio 

optimization problems under uncertainty and formulated as a bi-objective linear, mixed integer or quadratic 

program and solved using commercially available software (AMPL/CPLEX) for mathematical programming. 

Ghahtarani et al. (2013)[23] presented Goal Programming(GP) approach for the portfolio selection and 

addressed the uncertainty of the parameters by robust optimization approach. They considered 20 stocks from the 

Tehran stock exchange for empirical study of the robust optimization of GP in the portfolio selection problem. 

Lam et al. (2017)[28] proposed a two-stage MIP model to improve the existing single-stage MIP model 

for tracking benchmark Index in Malaysia. They determined and compared the optimal portfolio performance of 

both models in terms of portfolio mean return, tracking error, excess return and information ratio. Their result 

concluded that the proposed model is able to outperform the existing index tracking model in tracking the 

benchmark index. 

Babat et al. (2018)[3] addressed the computational challenges associated with optimizing portfolios based 

on Value-at-Risk (VaR), a widely used risk measure in finance. They formulated VaR portfolio optimization 

problem as MILP problem, enabling the application of integer programming techniques to find near-optimal 

solutions efficiently. 
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Aksarayli et al. (2018)[1] introduced a polynomial goal programming (PGP) model for portfolio 

optimization. Entropy and higher moments of the returns on assets (skewness and kurtosis) were included to 

accomplish a more comprehensive risk-return trade-off. They tested practicability of the suggested model on two 

real data sets, and the findings showed that the PGP model is particularly well-suited for portfolio models with 

higher moments. 

Lam et al. (2020)[19] focused on using a two-stage MIP model to optimize portfolio selection aimed at 

tracking a benchmark index. They contributed to the literature on index tracking and portfolio optimization by 

combining tracking error minimization with constraints like transaction costs and cardinality. 

Ohanuba et al. (2020)[43] focused on effective financial management through decision planning for 

investing in a competitive portfolio of stocks. They utilized a table-like method to address stock allocation 

problems in dynamic programming (DP). They concentrated on three primary concerns with the S&P 500 index: 

style risk, sector risk, and single stock concentration. The financial problem was solved using a table-like 

approach, which yielded optimal results that were comparable to traditional Modern Portfolio Theory but with 

simpler computations. 

Fernández et al. (2021)[22] proposed the mean squared variance (MSV) portfolio as an alternative to 

traditional mean-variance (MV) strategy. They developed MILP formulation for MSV portfolio optimization and 

tested it empirically on eight portfolio time series problems. They also compared performance results of the MSV 

strategy with those of the standard MV strategy. 

Sadri et al. (2022)[47] presented a comprehensive approach for choosing a capital portfolio under 

uncertain conditions. Their proposed model had three objectives: minimizing risk, maximizing liquidity, and 

maximizing returns. They extracted data from Tehran Stock Exchange and then used goal programming technique 

to construct a robust optimization model. 

To summarize the key studies and techniques discussed in the literature, Table 2 gives an overview of 

the advanced techniques to portfolio optimization, including the techniques used, key contributions, datasets, and 

performance metrics. 

 

Table 2: Summary of advanced portfolio optimization techniques 

Paper 

Reference 

Technique Key Contribution Dataset Used Performance 

Metrics 

Bertsimas et 

al. (1999)[7] 

MIP Constructed portfolio, incorporating 

constraints like transaction costs and 

liquidity. They implemented MIP model in 

FORTRAN using MIP solver. 

Grantham, 

Mayo, Van 

Otterloo firm 

data 

Portfolio 

performance, 

computational 

efficiency 

Ogryczak 

(2000)[41] 

MCLP Developed MCLP model to select portfolio 

with multiple objectives like risk and return. 

Warsaw stock 

market data 

Portfolio 

efficiency, risk-

return trade-off 

Konno et al. 

(2005)[26] 

Global 

Optimization 

and MIP 

Global optimization and integer 

programming were compared to optimize 

the portfolio under non-convex transaction 

costs. 

TSE historical 

data 

Portfolio risk, 

transaction cost 

efficiency 

Benati et al. 

(2007)[6] 

MILP Formulated the optimal mean/ VaR portfolio 

problem using MILP, balancing risk and 

return. 

Milan stock 

market data 

VaR, portfolio 

efficiency 

Ibrahim et 

al. (2008)[25] 

SP Proposed both single stage and two stage SP 

models for portfolio selection problems 

using maximum downside deviation 

measure, focusing on minimizing downside 

risk. 

Bursa Malaysia 

Stock 

Exchange 

Historical data 

Downside risk, 

portfolio 

performance 

Bertsimas et 

al. (2009)[8] 

CCQO Developed an algorithm of CCQO for 

portfolio selection with limited assets. 

Simulated data Portfolio 

performance, 

computational 

efficiency 

Sawik 

(2010)[49] 

MIP Multi-objective MIP was used for multi-

period portfolio optimization to find 

tradeoffs between total number of securities, 

return, and risk. 

Warsaw Stock 

Exchange 

historical data 

VaR, portfolio 

efficiency 

Xidonas et 

al. (2010)[59] 

MIP Proposed a MIP approach for construction 

and selection of equity portfolio. The 

GAMS/CPLEX solver is used to solve a 

multi-objective problem with the augmented 

ε-constraint method. 

Athens Stock 

Exchange 

historical data 

MAD risk, 

Relative Price 

Earnings Ratio, 

portfolio return 
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Cesarone et 

al. (2011)[10] 

LP ,QP Compared linear and quadratic optimization 

models on data sets involving real-world 

capital market indices for portfolio selection 

models. 

Yahoo finance 

historical data 

MAD risk,  CVaR 

and computational 

efficiency 

Moon et al. 

(2011)[38] 

Robust MAD 

Model 

Proposed simple robust portfolio 

optimization model using mean absolute 

deviation techniques within a linear program 

framework. 

NYSE, 

NADAQ, 

AMEX stocks 

historical data 

MAD risk, 

portfolio risk, 

robustness 

Stoyan et al.  

(2011)[55] 

SGMIP Developed SGMIP approach for integrated 

bond and stock portfolio optimization. 

TSX historical 

data and 

Canadian 

bonds 

Portfolio risk, 

return, goal 

achievement and 

computational 

efficiency 

Masmoudi 

et al. 

(2012)[33] 

Recourse 

GP 

Presented a recourse GP approach to a 

multiple objective SP portfolio selection 

model. They solved their recourse goal 

program using the LINGO solver. 

S&P100 

securities 

historical data 

Goal achievement, 

portfolio efficiency 

Sawik 

(2012)[48] 

LP, QP, MIP Evaluated three distinct bi-criteria models 

for optimizing portfolios that combined 

symmetric and percentile-based risk 

measures. 

Historical data Risk measures, 

portfolio efficiency 

and computational 

efficiency 

Ghahtarani 

et al. 

(2013)[23] 

Robust GP Applied robust GP for multi-objective 

portfolio selection, addressing uncertainty 

and multiple objectives. 

Tehran stock 

exchange 

historical data 

Portfolio return,  

systematic risk and 

goal achievement 

Lam et al. 

(2017)[28] 

MIP Developed a two-stage MIP model for 

enhanced index tracking in portfolio 

optimization. 

Malaysia stock 

market 

historical data 

Tracking error,  

Information ratio, 

and     portfolio 

efficiency 

Babat et al. 

(2018)[3] 

MILP Proposed integer programming techniques 

for computing near-optimal Value-at-Risk 

portfolios. 

USA Financial 

market data 

VaR, portfolio 

performance 

Aksarayli et 

al. (2018)[1] 

PGP Introduced PGP model to optimize portfolio 

based on entropy and higher moments. 

USA Portfolio 

data, ISE 

historical data 

Portfolio risk, 

return, and entropy 

measures 

Lam et al. 

(2020)[19] 

MIP Applied a two-stage MIP model, where the 

first optimization step involved minimizing 

the tracking error and the second stage 

involved maximizing the portfolio mean 

return. 

Malaysia stock 

market 

historical data 

Tracking error, 

portfolio efficiency 

Ohanuba et 

al. (2020)[43] 

DP Explored financial optimization using DP 

via the tabular method. 

Simulated data Portfolio 

performance, 

computational 

efficiency 

Fernández 

et al. 

(2021)[22] 

MILP Proposed MILP formulation for the mean 

squared variance portfolio optimization 

problem. 

Historical 

stock market 

data 

Mean return, 

Sharpe ratio 

Sadri et al. 

(2022)[47] 

RMOMM Developed a robust multi- objective 

mathematical model for optimizing stock 

portfolios. 

Tehran Stock 

Exchange 

historical data 

Portfolio return, 

CVaR and 

robustness 

Note: MIP: Mix Integer Programming; MCLP: Multiple Criteria Linear Programming; MILP: Mix Integer Linear 

Programming; SP: Stochastic Programming; CCQO: Cardinality –Constrained Quadratic Optimization; LP: Linear 

Programming; QP: Quadratic Programming; SGMIP: Stochastic-Goal Mixed Integer Programming; GP: Goal 

Programming; PGP: Polynomial Goal Programming; DP: Dynamic Programming; RMOMM: Robust Multi- Objective 

Mathematical Model; VaR: Value at Risk; CVaR: Conditional Value at Risk; MAD: Mean Absolute Deviation 

 

Emerging Techniques: 

Oh et al. (2005)[42] proposed the index fund management scheme that used genetic algorithm (GA) to 

support portfolio optimization process. The Korea Stock Price Index (KOSPI) 200 was subjected to the proposed 

GA scheme between January 1999 and December 2001. Their results indicated that the GA procedure offers 

significant advantages over the traditional portfolio mechanism. 

Soleimani et al. (2009)[54] emphasized the role of heuristic algorithms in solving complex and 

combinatorial problems efficiently. They introduced a new portfolio selection model based on Markowitz’s 

framework with significant constraints: cardinality constraints, minimum transaction lots, and a novel constraint 
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regarding market (sector) capitalization. The complexity of the problem is indicated by its classification as mixed-

integer nonlinear programming (NP-Hard), and a genetic algorithm (GA) was suggested as a solution technique. 

Deng et al. (2010)[16] presented an extension of Ant Colony Optimization (ACO) to the Markowitz mean-

variance portfolio model comprising bounding and cardinality constraints. When they compared ACO to particle 

swarm optimization (PSO) on Cardinality Constrained Markowitz mean-variance Portfolio Optimization 

(CCMPO) problems, they found that ACO is significantly more reliable and efficient, particularly for low-risk 

investments. 

Mousavi et al. (2014)[39] emphasized the application of genetic programming model designed for 

dynamic portfolio trading system. Genetic programming is introduced as an extension of Genetic Algorithm (GA) 

and used to capture dynamics of stock market prices through time. A multi-tree genetic programming forest was 

created in order to derive various trading principles from historical data. Their proposed model significantly 

outperformed conventional static and dynamic portfolio trading models in terms of portfolio return and risk-

adjusted return in both emerging and mature markets. 

Mittal et al. (2014)[36] proposed a multi-objective model of portfolio rebalancing problem considering 

return, risk and liquidity as key financial criterion. They developed a real-coded genetic algorithm (RGGA) to 

solve the portfolio rebalancing problem and built an optimal portfolio. They proposed model using data of 

National Stock Exchange (NSE), Mumbai and also considered nonlinear transaction costs. 

Mishra et al. (2016)[35] introduced a novel prediction-based mean-variance (PBMV) model as an 

alternative to the traditional Markowitz MV model, aimed at addressing the constrained portfolio optimization 

problem. Low complexity heuristic functional link artificial neural network (HFLANN) model is used to predict 

the expected future returns in their proposed model. Multi-objective evolutionary algorithms (MOEAs) are then 

used to optimize the portfolio. 

Dubinskas et al. (2017)[20] assessed the fitness of GA approach in optimizing the investment portfolio. 

After choosing four Lithuanian companies that were listed on the official list of the OMX Baltics Stock Exchange, 

they constructed the optimum investment portfolio utilizing MatLab software and a GA-based methodology. 

Their results suggested that the risk-return ratio of the genetic algorithm-based portfolio was superior to that of 

the portfolio optimized using stochastic and deterministic programming techniques. 

Hidayat et al. (2018)[24] proposed a hybrid optimization method that combined LP models with GA for 

solving portfolio optimization problems. They explored the synergy between deterministic optimization 

techniques (LP) and heuristic methods (GA), aiming to overcome challenges such as the non-linearity and 

complexity of real-world portfolio optimization problems while maintaining computational feasibility. 

Meghwani et al. (2018)[34] presented a tri-objective model for portfolio optimization with the objectives 

being  risk, return and transaction cost. The suggested model incorporated a number of real-world constraints, 

such as cardinality, self-financing, quantity, pre-assignment, and cost-related constraints. They focused on 

employing multi-objective evolutionary algorithms (MOEAs) to handle equality constraints, such as the self-

financing requirement and the constraints formed by the inclusion of transaction cost models. They proposed 

novel repair method supported by a theoretical proof to address a broader range of separable transaction cost 

models. 

Díaz et al. (2019)[18] proposed a hybrid model that integrated transaction costs, stock weight, market 

capitalization, and sector diversity for solving the multi period index tracking problem. Their hybrid methodology 

used mixed-integer nonlinear programming (MINLP) to calculate the weights of the index tracking portfolio and 

the GA for selecting stocks. Their results showed that hybrid model can provide an index fund whose return rate 

is similar to the market index with significantly lower risk. 

Cui et al. (2020)[15] introduced a two-stage stochastic portfolio optimization model that included a variety 

of practical trading constraints. They adopted Conditional Value at Risk (CVaR) as the risk metric in their model. 

They formulated a hybrid combinatorial method combining a hybrid algorithm with LP solver. They also 

presented how their hybrid approach effectively solves complex portfolio optimization problems by comparing 

the computational results of three distinct metaheuristic algorithms. 

Chen et al. (2021)[13] developed a hybrid model based on machine learning (ML) for stock prediction 

and MV model for portfolio selection as part of their portfolio construction strategy. They proposed a hybrid 

model which predicts stock prices by merging an improved firefly algorithm (IFA) with eXtreme Gradient 

Boosting (XGBoost).  Stocks with better potential returns are then selected to use the MV model. Their hybrid 

approach addressed the limitations of traditional MVO by improving predictive accuracy and enhancing portfolio 

performance. 

Chen et al. (2021)[14] focused on using the interdependencies between variables in Evolutionary 

Algorithms (EAs) to solve Mixed-Integer Non-Linear Programming (MINLP) problems in the context of 

optimizing a multi-objective constrained portfolio. They proposed a Compressed Coding Scheme (CCS), which 

makes use of the dependence among the variables by compressing the two dependent variables into a single 
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variable. They performed comparison studies for constrained portfolio optimization and tested new algorithms on 

20 benchmark scenarios with varying asset numbers. 

Banerjee et al. (2022)[5] obtained an optimal portfolio selection of Indian Equity Mutual Funds by 

maximizing  return and minimizing risk using GA. They constructed portfolios based on the BSE 100 benchmark, 

optimizing fund weightage for enhanced investment decision-making. 

Chaweewanchon et al. (2022)[12] applied convolutional neural network (CNN) with bidirectional long 

short-term memory (BiLSTM) as a prediction method for stock pre-selection and the Markowitz mean-variance 

model for optimal portfolio construction. They used two portfolio models, the mean-variance model and the 

equal-weight portfolio (1/N) model for demonstration with historical data from Stock Exchange of Thailand 50 

Index. Their results concluded that pre-selection of stocks can improve Markowitz mean-variance model 

performance. 

Ban et al. (2023)[4] investigated the prediction of financial assets with high volatility, such as Bitcoin and 

gold prices using Long Short-Term Memory (LSTM) models. Then they employed a dynamic programming 

model combined with the greedy algorithm to optimize daily trading strategies, resulting in a substantial increase 

in total assets over a five-year period. 

Buonaiuto et al. (2023)[9] applied Portfolio Optimization by Variational Quantum Eigensolver (VQE) on 

real quantum computers. They translated the formulation of the general quadratic problem into a Quadratic 

Unconstrained Binary Optimization, which was mapped to a Hamiltonian. The optimal portfolio was represented 

by the minimum eigenvalue of this optimization, which was estimated by VQE. They highlighted potential of 

quantum computing for computational speed and efficiency in portfolio optimization. 

Singh et al. (2023)[53] proposed a hybrid deep learning model incorporating Convolutional Neural 

Networks (CNN) and LSTM networks for selection of stocks and optimal portfolio formation using Markowitz 

MV model. They used metrics like the Sharpe ratio and cumulative return to validate their model’s effectiveness 

in generating risk-adjusted returns. They also established statistical significance of the model using non-

parametric tests and demonstrated the practical application of their model. 

Vaziri et al. (2023)[58] presented a comprehensive and time-varying methodology for stock price 

forecasting and optimal portfolio formation. They used multi-objective mathematical programming (MOMP) 

combined with a bidirectional long short-term memory model and particle swarm optimization (PSO-BiLSTM) 

to forecast stock prices and to construct an optimal portfolio. They created more realistic portfolios by integrating 

deep learning with investment constraints and optimization under budget constraints. 

Zarezade et al. (2024)[61] focused on optimization of cryptocurrency portfolio, addressing the high 

volatility and risks associated with the cryptocurrency market. They proposed a new mathematical formulation 

of Conditional Drawdown at Risk (CdaR) to enhance portfolio construction within high-risk financial 

environments. They transformed the model into a deterministic multi-objective approach by integrating chance-

constrained programming (CCP) to handle market uncertainties. 

Asgari et al. (2025)[2] introduced a self-adjusting algorithm for optimization of stock portfolio, 

leveraging both technical analysis and fundamental index analysis. They used Sharpe ratio index for comparison 

of portfolio and enhanced portfolio profitability and risk management by incorporating price-to-earnings ratio 

with technical analysis constraints. They validated that the suggested algorithm performed better than traditional 

models and provided robustness in a variety of market conditions. 

To summarize the key studies and techniques discussed in the literature, Table 3 gives an overview of 

the emerging approaches for portfolio optimization, including the techniques used, key contributions, datasets, 

and performance metrics. 

 

Table 3: Summary of emerging portfolio optimization techniques 

Paper 

Reference 

Technique Key Contribution Dataset Used Performance 

Metrics 

Oh 

et al. (2005)[42] 

GA Genetic algorithms have been used to assist 

index fund management with portfolio 

optimization. 

Korea stock 

price index 

(KOSPI) 200 

historical data 

Tracking error 

volatility and 

Portfolio efficiency 

Soleimani 

et al. (2009)[44] 

GA Developed a GA-based approach for 

Markowitz portfolio selection with 

constraints like cardinality, minimum 

transaction lots, and market capitalization. 

Simulated data Portfolio risk, return, 

constraint 

satisfaction and 

computational 

efficiency 

Deng  et al. 

(2010)[16] 

ACO Used ACO to solve Markowitz MV model 

including cardinality and bounding 

constraints. 

Stock market 

index historical 

data 

Portfolio risk, return, 

computational 

efficiency 
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Mousavi et al. 

(2014)[39] 

Genetic 

programmi

ng 

Suggested a dynamic portfolio trading 

system using multi-tree genetic 

programming. 

Iranian and 

Canadian stock 

exchange 

historical data 

Conditional 

Sharpe ratio, 

Portfolio 

performance and 

adaptability 

Mittal et al. 

(2014)[36] 

MOPRM Developed MOPRM incorporating 

transaction costs with incremental 

discounts. 

NSE India 

historical data 

Portfolio risk, return, 

relative error and 

transaction cost 

efficiency 

Mishra et al. 

(2016)[35] 

MOEA Introduced a prediction-based MV model 

using multi-objective evolutionary 

algorithms to select a constrained portfolio. 

OR-library data 

and stock 

market index 

historical data 

Portfolio 

performance, 

computational 

efficiency 

Dubinskas et 

al. (2017)[20] 

GA Applied a genetic algorithm-based 

approach for optimization of portfolio. 

OMX Baltics 

Stock Exchange 

historical data 

Risk and return ratio, 

portfolio efficiency 

Hidayat et al. 

(2018)[24] 

GA with 

LP 

Addressed the use of LP models based on 

genetic algorithms for investment portfolio 

optimization. 

Indonesia 

capital market 

stocks data 

Portfolio efficiency, 

computational time 

Meghwani et 

al. (2018)[34] 

MOHA Developed MOHA to optimize and 

rebalance a practical portfolio, considering 

transaction costs. 

Historical data 

from Fama  and 

French Data 

Library 

Portfolio risk, return, 

transaction cost 

efficiency 

Díaz et al. 

(2019)[18] 

GA with 

MINLP 

Proposed a hybrid model combining GA 

and MINLP for index fund optimization. 

S&P 500 

historical data 

Portfolio 

performance, Sharpe 

ratio and 

computational 

efficiency 

Cui et al. 

(2020)[15] 

Hybrid 

algorithm 

and LP 

Developed a two-stage stochastic portfolio 

optimization model with uncertain asset 

values using hybrid combinatorial 

approach. 

Historical data 

from OR-

Library 

Portfolio risk, return, 

computational 

efficiency 

Chen et al. 

(2021)[13] 

ML with 

MV model 

Integrated ML based stock price prediction 

with mean-variance model for optimization 

of portfolio. 

Shanghai Stock 

Exchange 

historical data 

Portfolio return –risk 

ratio, prediction 

accuracy 

Chen et al. 

(2021)[14] 

MOEA Used evolutionary algorithms for multi-

objective constrained portfolio 

optimization, utilizing the dependence 

between variables. 

 

OR-Library data 

and historical 

stock data from 

Yahoo Finance 

Inverted 

Generational 

Distance (IGD), 

Inverted 

Hypervolume (IH), 

constraint 

satisfaction 

Banerjee et al. 

(2022)[5] 

GA Applied GA for optimal portfolio selection 

of equity mutual funds, focusing on the 

Indian market. 

Indian equity 

mutual fund 

historical data 

Portfolio risk, return 

and efficiency 

Chaweewanch

on et al. 

(2022)[12] 

ML with 

MV model 

Combined ML for predictive stock 

selection with Markowitz MV portfolio 

optimization. 

SET50 historical 

data 

Sharpe ratio, mean 

return and risk, 

prediction accuracy 

Ban et al. 

(2023)[4] 

LSTM and 

DP 

Optimized venture portfolios using LSTM 

for prediction and DP for decision-making. 

Historical data 

of Gold from 

London Market 

and Bitcoin 

from NASDAQ 

Portfolio risk, return 

and prediction 

accuracy 

Buonaiuto et 

al. (2023)[9] 

QC Explored portfolio optimization using 

quantum computing by Variational 

Quantum Eigensolver. 

Yahoo finance 

data 

Portfolio efficiency, 

computational speed 

Singh et al. 

(2023)[53] 

Hybrid 

CNN-

LSTM 

with MV 

model 

Proposed a hybrid deep learning model 

incorporating CNN and LSTM networks 

for stock selection and MV model for 

portfolio optimization. 

NSE India 

historical data 

Accuracy, Sharpe 

ratio, Cumulative 

and Risk-adjusted 

return 

Vaziri et al. 

(2023)[58] 

PSO-

BiLSTM 

with 

MOMP 

Proposed a time-varying stock portfolio 

selection model combining PSO-BiLSTM 

and MOMP under budget constraints. 

Historical data 

from TSE and 

OTC Iran 

Portfolio profit to 

risk ratio, 

computational 

efficiency 
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Zarezade et al. 

(2024)[61] 

CCP Applied CCP for crypto currency portfolio 

optimization using CDaR. 

Crypto-currency 

data 

Portfolio risk, return 

and CDaR 

Asgari et al. 

(2025)[2] 

Self-

Adjusting 

Algorithm 

Proposed a self-adjusting algorithm based 

on GA for stock portfolio optimization, 

considering technical and fundamental 

index analysis. 

Tehran stock 

market historical 

data 

Sharpe ratio index, 

Mean of ideal 

deviation, Portfolio 

return and 

adaptability 

Note: GA: Genetic Algorithm; ACO: Ant Colony Optimization; MOPRM: Multi-Objective Portfolio Rebalancing Model; 

MOEA: Multi-Objective Evolutionary Algorithms; LP: Linear Programming; MOHA: Multi-Objective Heuristic 

Algorithms; MINLP: Mixed-Integer Non Linear Programming; ML: Machine Learning; MV Model: Mean-Variance 

Model; LSTM: Long Short-Term Memory; DP: Dynamic Programming; QC: Quantum Computing; CNN: Convolutional 

Neural Networks; PSO-BiLSTM model: Particle Swarm Optimization- Bidirectional Long Short-Term Memory model; 

MOMP: Multi-Objective Mathematical Programming; CCP: Chance-Constrained Programming; CDaR: Conditional 

Drawdown at Risk 

 

To systematically trace the development of portfolio optimization methodologies, Table 4 categorizes 

significant research contributions along a timeline, divided into three primary domains: classical, advanced, and 

emerging techniques. 

 

Table 4: Timeline of Portfolio Optimization Techniques 

Timeline Classical Techniques Advanced Techniques Emerging Techniques 

1951-1955 Markowitz (1952)[31] [MVO] 

Martin (1955)[32] [QP,LP] 

- - 

1956-1960 - - - 

1961-1965 Sharpe (1963)[51] [QP] - - 

1966-1970 Sharpe (1967)[50] [LP] 

Pogue (1970)[46] [QP] 

- - 

1971-1975 Lee et al. (1973)[29] [GP] - - 

1976-1980 - - - 

1981-1985 - - - 

1986-1990 - - - 

1991-1995 Konno et al. (1991)[27] [MAD] - - 

1996-2000 Young (1998)[60] [LP] Bertsimas et al. (1999)[7] [MIP] 

Ogryczak (2000)[41] [MCLP] 

- 

2001-2005 Dias (2001)[17] [QP] 

Papahristodoulou et al. 

(2004)[45] [LP] 

Chang (2005)[11] [GP] 

Konno et al. (2005)[26] [Global 

Optimization and MIP] 

Oh et al. (2005)[42] [GA] 

2006-2010 Sun (2010)[56] 

[MVO, LP] 

Benati et al. (2007)[6] [MILP] 

Ibrahim et al. (2008)[25] [SP] 

Bertsimas et al. (2009)[8] [CCQO] 

Sawik (2010)[49] [MIP] 

Xidonas et al. (2010)[59] [MIP] 

Soleimani et al. (2009)[44] [GA] 

Deng  et al. (2010)[16] [ACO] 

2011-2015 Tamiz et al. (2013)[57] [GP] 

Siew et al.(2014)[52] [GP] 

Cesarone et al. (2011)[10] [LP ,QP] 

Moon et al. (2011)[38] [Robust 

MAD Model] 

Stoyan et al.  (2011)[55] [SGMIP] 

Masmoudi et al. (2012)[33] 

[Recourse GP] 

Sawik (2012)[48] [LP, QP, MIP] 

Ghahtarani et al. (2013)[23] 

[Robust GP] 

Mousavi et al. (2014)[39] 

[Genetic programming] 

Mittal et al. (2014)[36] 

[MOPRM] 

2016-2020 Erdas (2020)[21] [LP] 

Nath et al.(2020)[40] [GP] 

Oladejo (2020)[44] [LP] 

Lam et al. (2017)[28] [MIP] 

Babat et al. (2018)[3] [MILP] 

Aksarayli et al. (2018)[1] [PGP] 

Lam et al. (2020)[19] [MIP] 

Ohanuba et al. (2020)[43] [DP] 

Mishra et al. (2016)[35] 

[MOEA] 

Dubinskas et al. (2017)[20] [GA] 

Hidayat et al. (2018)[24] 

[GA with LP] 

Meghwani et al. (2018)[34] 

[MOHA] 

Díaz et al. (2019)[18] [GA with 

MINLP] 

Cui et al. (2020)[15] [Hybrid 

algorithm and LP] 
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2021-2025 Ling et al. (2023)[30] [QP] Fernández et al. (2021)[22] [MILP] 

Sadri et al. (2022)[47] [RMOMM] 

Chen et al. (2021)[13] [ML with 

MV model] 

Chen et al. (2021)[14] [MOEA] 

Banerjee et al. (2022)[5] [GA] 

Chaweewanchon et al. 

(2022)[12] [ML with MV model] 

Ban et al. (2023)[4] [LSTM and 

DP] 

Buonaiuto et al. (2023)[9] [QC] 

Singh et al. (2023)[53] [Hybrid 

CNN-LSTM with MV model] 

Vaziri et al. (2023)[58] 

[PSO-BiLSTM with MOMP] 

Zarezade et al. (2024)[61] [CCP] 

Asgari et al. (2025)[2] [Self-

Adjusting Algorithm] 

 

III. Research Gap 
Despite significant advancements in portfolio optimization using mathematical programming, several 

research gaps remain unaddressed. First, while classical quadratic programming methods like Markowitz 

(1952)[31] dominate theoretical frameworks but struggle to handle modern constraints and real-world regulatory 

limitations. The classical studies of Markowitz (1952)[31], Martin (1955)[32], Sharpe (1967)[50], Lee et al. (1973)[29], 

Konno et al. (1991)[27], and Young (1998)[60] rely on static frameworks, neglecting dynamic market conditions, 

investor behavior, and multi-period optimization. These models lack robustness to estimation errors, and ignore 

transaction costs which are prevalent in real-world financial data. 

To tackle the limitations of static frameworks and estimation errors, Bertsimas et al. (1999)[7] and 

Bertsimas et al. (2009)[8] offered robust solutions for large-scale and complex portfolios by leveraging MIP and 

cardinality-constrained optimization. Advanced techniques of Konno et al. (2005)[26], Sawik (2010)[49], Sawik 

(2012)[48], Ohanuba et al. (2020)[43], and Sadri et al. (2022)[47] addressed gaps related to realistic market conditions, 

computational inefficiencies, and also integrated percentile and symmetric risk measures with alternative risk 

metrics. While these techniques improve portfolio optimization, they still face computational challenges for 

extremely large-scale portfolios or high-frequency trading environments. 

Emerging techniques such as machine learning, quantum computing, hybrid combinatorial methods, 

genetic algorithms, and multi-objective heuristics etc. address these limitations by enabling dynamic adaptation, 

improving scalability and real-time strategies that respond to changing market dynamics and investor behavior. 

However, these emerging methods also face challenges, including high computational costs, hardware limitations, 

sensitivity to data quality, and a lack of interpretability in complex models. 

Hidayat et al. (2018)[24] presented a novel integration of GA with LP for portfolio optimization but the 

computational efficiency of their hybrid model is not benchmarked against any modern alternatives which leaves 

scalability questions unresolved. Meghwani et al. (2018)[34] used heuristic algorithms that may not guarantee 

optimal solutions and can be sensitive to parameter tuning. Chen et al. (2021)[13] integrated machine learning 

models with portfolio optimization but these models may overfit to historical data, which would lead to poor out-

of-sample performance. Buonaiuto et al. (2023)[9] experimented on real quantum devices, which are still in early 

stages and may not yet outperform classical methods for large-scale problems. Vaziri et al. (2023)[58] combined 

PSO, BiLSTM, and multi-objective programming which may be overly complex, making it difficult to interpret 

or implement. While these emerging techniques offer significant advancements, their limitations highlight the 

need for continued innovation to achieve robust, efficient, and interpretable portfolio optimization solutions. 

As most of the existing research is based on static market conditions, multi-market portfolio 

optimization remains underexplored. Also current research predominantly examines single-asset-class 

optimization (e.g., stock portfolios using factor models or bond portfolios using duration matching), while multi-

asset-class hybrid portfolios are little known. There is a lack of comprehensive studies that explore the application 

of hybrid asset class data in portfolio optimization models. But as new asset classes are emerging like – crypto, 

and tokenized securities, integration of hybrid portfolio asset classes will develop more robust and adaptive 

optimization strategies.  While stochastic and robust optimization methods attempt to address uncertainty, they 

are rarely tested in live trading environments, limiting their practical applicability. To bridge the gap, future 

research must develop adaptive and locally constrained models using techniques like regime-switching stochastic 

programming and hybrid AI-OR (Artificial Intelligence-Operations Research) methods. An actionable roadmap 

can include collaborating with asset managers to conduct live testing, and enabling near real-time optimization 

that accounts for real-world market frictions such as transaction costs and taxes. 
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IV. Conclusion And Scope For Future Research 
Portfolio optimization has come a long way since the introduction of Mean-Variance Optimization 

(MVO) in 1952. Over the decades, the field has evolved significantly, driven by advancements in mathematical 

programming, computational power, and data-driven approaches. This review paper has provided a 

comprehensive and structured overview of portfolio optimization techniques, classified into three 

categories: classical, advanced, and emerging. From classical techniques to advanced and emerging techniques 

mathematical programming has enabled researchers and practitioners to address a broad range of portfolio 

optimization challenges. Each technique has its strengths and limitations, and the choice of method often depends 

on the specific problem context, such as the presence of constraints, the need for computational efficiency, or the 

handling of uncertainty. Overall, mathematical programming continues to be an important tool for investors, 

empowering them to make informed decisions in dynamic and volatile markets. 

The future of portfolio optimization lies in the integration of classical, advanced, and emerging 

techniques with algorithmic innovation and more adaptive, resilient, and inclusive portfolio optimization 

strategies. Hybrid models, which combine different approaches, can potentially be the future as well, by achieving 

improved performance based on the synergy of classical, new-age, and different approaches. As portfolio 

optimization models become more complex, there is a growing need for transparency and interpretability and 

therefore we require continued innovation and interdisciplinary collaboration from mathematics, computer 

science, and finance. 
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