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Abstract: This study investigates stock trading volume volatility and its relationship to stock prices. The paper 

utilizes AR(1)-GARCH(1,1) models to forecast the volatility of the Standard & Poor's 500 ^GSPC stock prices, 

based on the trends found in evaluating the trade volume volatility over the past two decades. Using such 

information, it is possible to forecast the stock prices by developing a Markov-switching model. The 

examination of the relationship between these two features produces results that can further our knowledge in 

estimating the stock market and the overall American economy. 
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I. Introduction 
The ability to predict asset prices is one of the most important results of financial economics research. 

Early research focused on the attempt to predict future prices based on historical prices alone. Now a crucial part 

of modern financial economics is the modeling of future prices of equities, bonds, or other derivative securities. 

One factor that can be considered in the prediction of prices is trade volume. Volume measures the quantity of 

shares that were traded during a given time. For instance, on the New York Stock Exchange (NYSE), the 

average daily volume for Standard and Poor's 500 (^GSPC) was 602,024,456 shares. 

^GSPC is ticker symbol for United States stock market index Standard & Poor's 500, more commonly 

known as S&P 500. It is based off the market capitalizations of 500 of the United States' largest companies 

registered in NYSE and NASDAQ. The index serves as telling data for the overall state of the country's stock 

market, thus an important indicator for companies and stock investors. Hence, the goal of this paper is to 

characterize the volume effects of ^GSPC relative returns. Based on investigations of the volume effect, we can 

also provide valuable and applicable analysis for investors who are interested in ^GSPC stock. 

Daily volume on a stock can fluctuate any day depending on many factors such as the amount of new 

information about the stock that is available, whether options contracts are to expire soon, whether if trading day 

is a full or half day, etc. The element that correlates the most to stock value is the new information provided. 

This information can be given by a press release or a regular earnings announcement provided by the company. 

It can also be by thirdparty communication such as a court ruling or release by a regulatory agency pertaining to 

the company.  For example, GSPC has an average trading volume of 2 billion shares per day. During the month 

of September in 2008, as result of the stock market crash, the Lehman Brothers' collapsed and the news led to 

trading of 10 billion shares that day, about five times theaverage, and a drop in price of 8\%. The abnormally 

large volume was due to differences in the investor's view of the stock value after taking into account the new 

information. Analysis of trade volume and the corresponding price changes associated to these informational 

releases has been of popular discussions because of the inferences that can be learned from these abnormal 

trading volumes. 

The relationship between trade volume and stock prices are complicated and when understood 

properly, can lead to many discoveries in the theory of portfolio. The analysis of trade volume and its 

relationship with stock prices and changes in price is a topic that has been researched for the past forty years. Its 

rootsare generally credited to the work of Osborne. In his influential work, he modeled price changes with 

respect to a diffusion process that had variance dependent on the number of trades on that particular issue. With 

this, he began his research that looked into the possible relationship between returns and the trade volume. 

Before this topic is discussed and analyzed, we must try to increase research in this area and hopefully answer 

the question:  How can we use trade volume patterns to improve the prediction of stock price? 

In this paper, we propose a new Markov switching model, using known data of volume change for the 

underlying asset. A number of researchers have recently become interested in modeling economic and financial 

time series with respect to occasional, discrete shifts in parameters. When the Markov-switching regression 

framework of Goldfeld and Quandt (1973) and Cosslett and Lee (1985) is applied to a time-series 

autoregression, it results in a model that allows for nonlinear dynamics and sudden changes in the variability of 

a series, yet it is still very tractable for rational expectations econometrics. This approach has provided some 

new insight in stock price forecasting. 
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  First, we preview the AR-GARCH model used in the log return process. With thisknowledge, we 

proceed to discuss how to use trade volume as a predictive measure of future price changes, and also how trade 

volume can allow us to create a Markov switching model. We can then show the theoretical models that support 

empirical results, on a GSPC index. Finally, we can analyze sample price and volume data around the most 

recent quarter of earnings announcements. 

Any empirical analysis of trading activity in the market must start with a measure of volume. There are 

many books on trading activity in financial markets and measures of volume have been proposed and analyzed. 

Some studies of aggregate trading activity use the total number of shares traded as a measure of volume (see 

Epps and Epps (1976), Gallant, Rossi, and Tauchen (1992), Hiemstra and Jones (1994), and Ying (1966)). 

 

II. Time Series and Data 
In this study, we examine the daily ^GSPC stock price activity over a 26-year period, from 1990 to 2016. The 

collection of ^GSPC daily adjusted closing price was from Yahoo Finance. 

 

2.1 Log Return Process  

The adjusted closing price is an accurate indication of the stock's performance. The rate of return can be found 

by comparing a stock's historical adjusted closing price to its current price. 

Furthermore, log return is used to examine log price differences for daily returns of the stock. 

Let pt denote the adjusted closing price of a stock on day t, then the daily percentage change on the day is 

defined by:  

     𝑟𝑡 = 100 log
𝑝𝑡

𝑝𝑡−1
       (1) 

From the negative and positive returns, we can examine the possibility of large losses and large gains. 

 

 
Fig. 1: Time plots of ^GSCP stock from 1950-01-03 to 2016-06-17. The upper panel is for adjusted closing 

price, and the lower panel is for positive daily log returns. 

 

From the plot, we observe that daily returns of the stock clearly depict volatility clustering. That is, 

periods of large returns are clustered and distinct from periods of small returns, which are also clustered.If we 

measure such volatility in terms of variance, then it is natural to think that variance changes with time, thus 

reflecting the clusters of large and small returns. 

Fig.1 shows the time plots of adjusted closing price and daily log returns of GSPC stock from January 

4, 1950 to July, 2016.The left plot shows that ^GSPC stock price has skyrocketed over 40 times since 1990.The 

right plot shows ^GSPC daily log return time series. 

We also observe that there are more pronounced peaks than one would expect from Gaussian data. 

Table 1 summarizes the basic statistical characteristics of the whole ^GSPC stock negative daily log return 

series. Note that the expected ^GSPC log returns during the test period is 0.0002684437. The skewness and 

kurtosis measures are highly significant, and those indicate substantial departures from normality. 

 
Mean Range Std dev Skewness Kurtosis Observations 

-0.09 (-28.69, 73.12) 3.05 2.55 70.82 5035 

Table 1: Summary statistics of  the GSPC daily log returns  July 3, 1995 - July 2, 2015 

 

Since the possibility of time-varying variance and non-normal behavior are noticed, we provide a formal test to 

check the normality of the return process. 

 

2.1.1 Test For Normality 

In studying the financial time series, one common assumption is that the process follows normal 

distribution. However, it is barely true in the real stock return series. Our study shows that the ^GSPC stock 

returns are not normally distributed. 
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We begin by forming a QQ-plot of the ^GSPC daily log returns sample set against the normal 

distribution, in order to confirm that an assumption of normality is unrealistic, and that the innovation process 

has fat tails or is leptokurtic -- see Fig 2. 

 
Fig. 2: Quantile-quantile plot of ^GSPC negative log returns from 1950-01-03 to 2016-06-17 against the normal 

distribution. 

 

To confirm our observation, we also use the Jarque-Bera test for normality.  The Jarque-Bera Test tells 

us the higher value represents the non-normality of the rate of returns. From the last line in the chart, the critical 

value is very large, so the distributions of the rates of returns are not normal distribution. 

 

The Jarque-Bera test results: 

Test Results:  

PARAMETER: Sample Size: 6709  

STATISTIC: LM: 20766.935, ALM: 20817.635 

P VALUE: Asymptotic: < 2.2e-16  

 

We also test the empirical distribution of the daily returns (y-axis) against the t distribution using Q-Q 

plot. From Fig. 2, one can see clearly that the t distribution is a much better fit and the empirical distribution of 

the daily returns has lighter tails than the t distribution. 

Fig. 3: Quantile-quantile plot of returns from against the t distribution. 

 

2.1.2 Test For Normality 

In finance literature, testing for zero autocorrelations has been used as a tool to verify the efficiency of 

the market hypothesis.  Since applying extreme value theory on a data set suggests that the time series are highly 

uncorrelated with a common cumulative distribution function, we need to check the correlations of the ^GSPC 

returns.We begin by considering the autocorrelation function of a time series {𝑟𝑡}. The correlation between 

𝑟𝑡and its past values 𝑟𝑡−1. is called the lag-𝑙.  autocorrelation of 𝑟𝑡and is commonly denoted by 𝜌𝑙 . Under the 

weakly stationary assumption, we assume 𝜌𝑙  is a function of 𝑙 only, i.e.: 
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    𝜌𝑙 =
𝐶𝑜𝑣 𝑟𝑡 ,𝑟𝑡−1 

 𝑉𝑎𝑟  𝑟𝑡 𝑉𝑎𝑟  𝑟𝑡−1 
=  

𝐶𝑜𝑣 𝑟𝑡 ,𝑟𝑡−1 

𝑉𝑎𝑟 (𝑟1) 
=

𝛾𝑙

𝛾0
                                         (2) 

 

where the property 𝑉𝑎𝑟 𝑟𝑡 =  𝑉𝑎𝑟 𝑟1 = 𝛾0for a weakly stationary series is used. 

For a given sample of returns {𝑟𝑡}𝑡=1
𝑇 , let  𝑟 =

∑𝑡=1
𝑇 𝑟𝑡

𝑇
is the sample mean. The lag-𝑙 sample autocorrelation of 

{𝑟𝑡}can be represented as: 

 

    𝜌𝑡 =  
(∑𝑡=𝑙+1

𝑇 (𝑟𝑡−𝑟 )(𝑟𝑡−1−𝑟 ))/(𝑇−𝑙−1) 

∑𝑡=1
𝑇  𝑟𝑡−𝑟  

2

𝑇−1

, 0 ≤ 𝑙 ≤ 𝑇 − 1                          (3) 

If a time series is not autocorrelated, then estimates of  𝜌 𝑙will not be significantly different from 0. 

Fig.4 shows the sample autocorrelation coefficient 𝜌 𝑙plotted against different lags 𝑙 (measured in days), 

along with the 95% confidence band around zero for ^GSPC negative daily log returns, for the period July 3, 

1995 to July 2, 2015. The dashed lines represent the upper and lower 95% confidence bands ±
1.96

 𝑇
, where the 

time length for our GSPC returns is 𝑇 = 5036 days.Fig. 4 shows a small autocorrelation in ^GSPC daily log 

price changes. Even in the cases where the autocorrelations are outside the confidence bands, the autocorrelation 

coefficients are quite small, less than 5%. 

 
Fig. 4: Sample autocorrelation coefficients up to 42 lags for ^GSPC returns from 1950-01-03 to 2016-06-17. 

 

The Autocorrelation Coefficients (ACF) and Partial Autocorrelation Coefficients (PACF) are 

extremely useful as they help us to identify the correct specification for an ARMA model that describes the 

stochastic process. Particularly, if the process is random noise, all autocorrelation and partial autocorrelation 

coefficients equal zero. If the process is an AR(p), the PACF will equal zero for all lags 𝑘 > 𝑝, while if the 

process is a MA(q) the ACF will equal zero for all lags 𝑘 > 𝑞. 

There are extensive literature that conclude that high stock volume is closely related to volatile returns;  

see for example Gallant, Rossi, and Tauchen [1992], Harris [1987]; Jain and Joh [1988]; Jones, Kaul, and 

Lipson [1991]; and the survey in Karpoff [1987]. Numerous papers have noted that volume tends to be higher 

when stock prices are increasing, rather than when prices are falling. However, our plot \ref{fig.volume} clearly 

contradiction to these results. For example, from 2010 to 2015, the stock price has a significant decreasing trend, 

however the trading volume tends to be higher and with more peaks in this period. Indeed weak prices on higher 

relative volume is an indicator on underlying activities such as stock news, analyst downgrade, insider trading, 

or the fact that hedge funds and stock traders are piling out of the stock ahead of a catalyst. 
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Fig. 5: Daily volume of ^GSPC. 

 

Next table is Box-Ljung test, which helps us check whether the rate of returns has the ARCH effect or 

not, the null hypothesis is the rate of returns doesn’t have ARCH effect, while the alternative hypothesis is 

opposite. See Forsberg and Bollerslev (2002). Box-Ljung test results: 

X-squared = 15.558,df = 1, p-value = 8.001e-05 

 

2.2 The Volume Process 

As Beaver noted, volume is a useful tool in determining how much variation exists with the 

announcement of new information. Anything that causes investors to react can be described as information, 

whether or not it truly has any fundamental impact on the underlying value of the company. Sometimes, 

information on one company can even effect the price and volume of another unrelated company due to the 

mere similarity of their ticker symbol. 

Here we denote  𝑣𝑡 as the process of the volume for ^GSPC. Fig. 6 shows the volume process. Since 

we will use the information about increasing/decreasing of volume in our Markov Switching model we must 

also plot the change-of-volume process 𝑐𝑡 : = 𝑣𝑡 − 𝑣 𝑡−1 , see graph. 

 
Fig. 6: Change of volume process 

 

Many individuals in finance believe that volume is heavy when the market is going up, and light when 

it is going down. Karpoff discussed this idea in some detail, citing past works by Epps [10,11] which showed 

that for both the stock and bond markets, the ratio of volume to absolute price change was larger for trades on 

upticks than on downticks. This trend is also seen when evaluating daily intervals. 

To investigate the relationship between the stock price and the change of volume, we compute the 

correlation of these two time series. More precisely, we use a Monte-Carlo significance test, which is described 

as following: 

1) use ccf() to compute the cross-correlation between {𝑝𝑡} and {𝑐𝑡}. 

2) repeat the following steps, say, 1000 times. 

2a) randomly reorder the values of one of the time series, say {𝑟𝑡}. Call the randomly reordered series{𝑟𝑡
′} 

2b) use ccf() to compute the cross-correlation between {𝑟𝑡} and {𝑣𝑡}. Store that cross-correlation. 

3) the 1000 cross-correlation estimates computed in step 2 are all estimating cross-correlation 0, conditional 

on the data. A two-tailed test then is: if the cross-correlation computed in step 1 is outside the (0.025, 0.975) 
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quantiles of the empirical distribution of the cross-correlations computed in step 2, then, reject the null 

hypothesis that x and y are uncorrelated, with size 0.05. 

 

Our test results show that the absolute price and volume correlation existed for both equity and futures 

markets across all time intervals, although the correlation was weak occasionally. The weakness in correlation, 

however, can be attributed to the fact that short selling is often more difficult than buying a stock. This 

asymmetry causes lower volume in accordance with price reductions. 

 

III. Methodology 
3.1 AR-GARCH Model 

Let {𝑟𝑡} the the log return process, and {𝑣𝑡} the associated volume process. 

Let ℑ𝑡 = 𝜎  𝑟𝑠 , , 𝑣𝑠 𝑠 ≤ 𝑡  be the 𝜎-algebra generated by all historical information (based on the log returns as 

well as the volume) up to time 𝑡. Consequently, we obtain a filtration {ℑ𝑡 , 𝑡 ≤ 𝑇} generated by  the log return 

process {𝑟𝑡}, and the volume {𝑣𝑡}. 

We denote the conditional mean of the log return as: 

    𝜇𝑡 = Ε(𝑟𝑡 |ℑ𝑡−1)                   (4) 

And the conditional variance is denoted as: 

   𝜎𝑡
2 = 𝑉𝑎𝑟(𝑟𝑡 |ℑ𝑡−1) = Ε  𝑟𝑡 − 𝑢𝑡 

2 (ℑ𝑡−1 
2|ℑ𝑡−1)    (5) 

 

The random variable 𝜎𝑡  is also called the volatility of 𝑟𝑡 .  Moreover, one can see that 𝜎𝑡
2 is a predictable 

process. The fact that large absolute returns tend to be followed by large absolute returns (whatever the sign of 

the price variations) is hardly compatible with the assumption of constant conditional variance. This 

phenomenon is called conditional heteroscedasticity, i.e. 𝜎𝑡
2is not a constant. Note that 𝜎𝑡

2 is measurable with 

respect to ℑ𝑡−1, so it can be represented as a function of {(𝑟𝑠 , 𝑣𝑠) 𝑠 <  𝑡}. 
To account for the very specific natureof financial series (price variations or log-returns, interest rates, 

etc.), one usually denote: 

    𝑟𝑡 − 𝑢𝑡 = 𝜎𝑡𝜀𝑡        (6) 

where 𝜀𝑡  is a white noise process with zero mean,  unit variance and they are uncorrelated. 

Different classes of models can be distinguished depending on the specification adopted for 𝜎𝑡 , such 

asthe Conditionally heteroscedastic (GARCH)processes and the Exponential GARCH model. 

In this paper, AR-1 model is used to simulate the conditional mean. Moreprecisely, the AR-1 model is 

defined by: 

     𝜇𝑡 = 𝜙0 +  𝜙1 𝑟 𝑡−1        (7) 

where 𝜙0 and 𝜙1 are two constants. 

To estimate the conditional variance, we use the GARCH(1,1) model. Bollerslev proposed the 

Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model where 𝛼, 𝛽, 𝛾 are constants.   Here 

𝜀𝑡  is the weak random noise, with zero mean, unit variance and they are uncorrelated. 

The GARCH (generalized autoregressive conditionally heteroscedastic) model is by far the most 

commonly used model in financial time series analysis. It models volatility clustering by using values of the past 

observations squared and variances to model variance at time t. 

For the GARCH class model, it is rather difficult to give the order of model. Indeed some studies have 

found that the predictive effect of higher order model is not necessarily better than the low order model, see 

Hansen and Hansen, P. R., Lunde, A.(2005)  and Bollerslev, T., Chou, R.Y., Kroner, K.F (1992). Because of the 

above considerations and the computational complications, we use  the GARCH(1,1) and the EGARCH(1,1) 

model in this paper. Additionally, the distribution of error 𝜀𝑡must be assumed with volatility models. In the 

second part of the paper, we analyze the empirical distribution of the daily returns by taking 𝜀𝑡 to be  the normal 

distribution and the t distribution, respectively. 

 

IV. Markov-Swtiching 
In 1959, Osborne hypothesized that securities prices could be modeled as a log-normal distribution 

with the variance term dependent on the trading volume. Seven years later, in 1966, Ying produced a paper [6] 

which applied a series of statistical tests to a six-year daily series of price and volume. Ying normalized the 

trading volume by the number of shares outstanding to avoid any biases from issues with larger number of 

outstanding shares. His main conclusions were: 

(i) A small volume is usually accompanied by a decrease in price; (ii) A large volume is usually accompanied by 

an increase in price; (iii) A large increase in volume is usually accompanied by a large price change; (iv) A large 

volume is usually followed by a rise in price; (v) If the volume has decreased (increased) five straight trading 

days, the price will tend to fall (rise) over the next four trading days. 
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Using trade volume log return data from January 1st, 1990 to July 7th, 2016, split the data into two 

groups based on whether the majority of points in every group of 10 points are greater than or equal to 0 or less 

than 0. 

From the log-volume process, a window of length 5 were chosen, which divide the total data into 1000 

windows. We now define a new time series {𝑠𝑡}, which takes value of 1 or -1 on each time window. More 

precisely, for each window 𝐿 ∈  {1,⋯ , 1000}, for 𝑘 = 1,⋯ ,5, we take 𝑠 5𝐿+𝑘 = −1, if the volume 𝑐𝑡 ≤

0 𝑓𝑜𝑟𝑡 ∈ {5𝐿 + 1,⋯ , 5𝐿 + 5}; and 𝑠 5𝐿+𝑘 = 1 if there exists 𝑘 ∈  {1,⋯ , 5}, such that 𝑐 5𝐿+𝑘 > 0. We thus 

define the binary process {𝑟𝑡 , 𝑠𝑡}. Note that the sign of 𝑠𝑡  also divides the associated time index into two sets 𝒜+ 

and 𝒜−. We define {𝑟𝑡
+} and {𝑟𝑡

−}, respectively, with 𝑛 ∈ 𝒜+and 𝑚 ∈ 𝒜−. 

Now we use the two data sets {𝑟𝑛
+, n ∈ 𝒜+}and {𝑟𝑚

−, m ∈ 𝒜−} to fit the AR-GARCH(1,1) model. And 

we get the two sets of coefficients: 

 
Data 𝜑0 𝜑1 𝛼 𝛽 𝛾 

{𝑟𝑛
+} 𝜑0

+ 𝜑1
+ 𝛼+ 𝛽+ 𝛾+ 

{𝑟𝑛
−} 𝜑0

− 𝜑1
− 𝛼− 𝛽− 𝛾− 

Table 2: AR(1)-GARCH(1,1) 

 

Now we use a dummy variable 𝛿, which takes value 0, if 𝑠𝑡 = 1; and takes value 1 if 𝑠𝑡 = −1. Now the AR(1)-

GARCH(1,1) model can be written as: 

     𝜇 𝑡 = 𝜑0 + 𝜑1𝑟 𝑡−1        (8) 

where 𝜑0 =  1 − 𝛿 𝜑0
+ + 𝛿𝜑0

−, 𝜑1 =  1 − 𝛿 \𝑣𝑎𝑟𝑝ℎ𝑖1
+ + 𝛿𝜑1

−, with 𝛿 = 0 or 𝛿 = 1. 

Moreover, we have: 

     

𝑟 𝑡 = 𝜇𝑡 + 𝜂𝑡
𝜂 𝑡 = 𝜎 𝑡 𝜖𝑡

 𝜎 𝑡  
2

= 𝛼 + 𝛽 𝜂 𝑡−1  
2

} + 𝛾{𝜎 𝑡−1 
2 }

     (9) 

 

where 𝛼 =  1 − 𝛿 𝛼+ + 𝛿𝛼−,  𝛽 =  1 − 𝛿 𝛽+ + 𝛿𝛽−, and 𝛾 =  1 − 𝛿 𝛾+ + 𝛿𝛾−. 

Now that we have obtain a Markov switching model, by defining the following transition probability 

(or equivalently the Markov matrix): 

    𝑃 𝛿𝑡 = 𝑗 𝛿 𝑡−1 = 𝑖 = 𝑝 𝑖,𝑗      (10) 

for 𝑖, 𝑗 ∈ {0,1}.This implies that we also have 𝑝 𝑖,0 + 𝑝 𝑖,1 = 1. 

Note that the expected length the system is going to stay in state 𝑗 can be calculated from the transition 

probabilities. Let 𝐷𝑗  denote the number of periods the system is in state 𝑗.Application of the chain rule and the 

Markovproperty yield for the probability to stay 𝑘periods in state 𝑗 is: 

     𝑃(𝐷𝑗 = 𝑘) =  𝑝 𝑗𝑗  
 𝑘−1 (1 − 𝑝 𝑗𝑗  )    (11) 

which implies for the expected duration ofthat state is: 

     𝔼 𝐷𝑗  = ∑ 𝑘𝑃 𝐷𝑗 = 𝑘 ∞
𝑘=0 =

1

1−𝑝 𝑗𝑗  
   (12) 

Thus in our paper, we take: 

     𝑝 00 = 1 −
1

𝒜+ , 𝑝 11 = 1 −
1

𝒜−   (13) 

where |𝒜±| denotes the number of states in 𝒜±. 

 

 
Fig. 7: Group One Data Projected Confidence Interval 
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Fig. 8: Group Two Data Projected Confidence Interval 

 

Using the probability distributions of these two groups, randomly sample between the two using the 

probabilities to forecast price data. After finding epsilon for the two groups, we can analyze the data. 

Find the AR(1) model and GARCH(1,1) model with the data. With that, epsilon can be found. 

 

 
Fig. 9: AR(1) of log return 

 
Fig. 10: GARCH(1,1) of log return 
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Fig. 11: Epsilon 

 
Fig. 12: ACF of Epsilon For Group One Data 

 
Fig. 13: QQ-Norm of Epsilon 

 

V. Model Fitting and VaR Estimation for GSPC 
In this paper, Markov-Switching GARCH models is used to estimate and forecast the different rates of 

returns under the different error distributions. We then compare the results and choose the appropriate model to 

forecast the conditional variance. 

 

5.1 Selection of ARMA (p, q) model 

First step is selection of suitable ARMA (p, q) model for GSPC daily return. By observing the 

autocorrelation and partial autocorrelation, the rough p and q can be acquired. After comparing the value of AIC 

and BIC, the more accurate p and q will be picked up. Finally, we take p=1, q=0. From the following function: 

     𝑟𝑡  = 𝜑0𝑢𝑡 + 𝜑1𝑟 𝑡−1      (14) 

Our results on the log volume data 𝑐𝑡  implies that we will split it into two sets with index 𝒜±, such that 

|𝒜+| = 2815,  𝒜− = 2225. 
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The estimated parameters are 𝜑0
+ = 0.002820801,𝜑0

− = −0.07980724; and ,𝜑0
− = −0.003067779, 

𝜑0
− = −0.1008321. 

 

5.2 Result of the Two GARCH Models for GSPC 

Compare MA (1)-GARCH (1, 1) mode under different error terms distributions: normal and student t. All of the 

estimated parameters have been shown in the Table: 
Data 𝜑0 𝜑1 𝛼 𝛽 𝛾 

{𝑟𝑛
+} 0.002820801 -0.07980724 5.386722e-07 5.332175 0.9417135 

{𝑟𝑛
−} -0.003067779 -0.1008321 2.205628e-06 0.09660167 0.8929065 

Table 3: AR(1)-GARCH(1,1) 

 

Based on the assumption of 5% significance level, for GARCH (1, 1) model, when the error term is 

normal distribution, all of the estimated parameters are significant, while the error term is student-t distribution, 

the estimated is not significant. 

 

5.3 Markov-Switching Model 

More precisely, since |𝒜+| = 2815, so 𝑝 00 = 0.9996446;  𝒜− = 2225, so 𝑝 11 = 0.9995504. This implies 

that the Markov matrix is: 

 
𝑝00 𝑝01

𝑝10 𝑝11
 =  

0.9996446 0.0003554
0.0004496 0.9995504

  

Coefficients for {𝑟𝑛
+} and {𝑟𝑛

−} are used to generate simulated stock price log return data with the Markov-

switching model. The first data is standard deviation of the observed stock price log return, then the later data 

points are added on based on calculations by two GARCH(1,1) equations with the corresponding coefficients. 

The equations are chosen each time with the four conditional probabilities 𝑝00 , 𝑝01 , 𝑝10 , 𝑝11 . 

 

5.4 ARCH-LM Test 

Engle's (1982) Autoregressive Conditional Heteroscedasticity-Lagrange Multiplier (ARCH-LM) test is the 

undisputed standard test to detect ARCH. 

 

ARCH-LM test is used to check the model results and select the lag equals to 2, 5 and 10 in the following table. 

see Engle (2001). 
Data GARH – normal GARCH – student t MS - normal MS – student t 

Lag 2 0.6104 0.4479 6.545e-13 0.008884 

Lag 5 0.8668 0.7177 < 2.2e-16 < 2.2e-16 

Lag 10 0.9736 0.8517 < 2.2e-16 < 2.2e-16 

Table 4: The p-value for ARCH-LM test of GARCH and Markov-Switching (MS) models 

 

VI. Out-of-sample Forecasts 
In order to acquire the appropriate model to forecast the conditional variance, this paper use out-of-

sample to calculate the root mean square error (RMSE), and the detail can be got from Forsberg and Bollerslev’s 

paper (2002). 

Root Mean Square Error (RMSE) measures the difference between the true values and estimated 

values, and accumulates all these difference together as a standard for the predictive ability of a model. The 

criterion is the smaller value of the RMSE, the better the predicting ability of the model. This article uses this 

method to determine which model has the best forecasting performance.(http://en.wikipedia.org/wiki/Root-

mean-square_deviation): 

     𝑅𝑀𝑆𝐸 =  
1

𝑇
∑ 𝑟𝑡

2 − 𝜎𝑡
2𝑇

𝑡=1     (15) 

where 𝑟𝑡  is observed values and 𝜎𝑡  is the predicted value of conditional variance at time t, T is the number of 

forecasts. 

Here, use GSPC as an example to explain the process in details. The GSPC stock return includes 5039 

observations, 20 years, and reserve the last 5 years as out-of-sample, including 1672 observations. 

Put in-sample data into a window, so the length of window is fixed which equals to 5039. First, pick up 

the observations from 1 to 5039 into this fixed window and use MS-GARCH models to estimate and forecast. In 

this way, I get the first prediction conditional variance. This process is called as one-step-ahead forecast. 

Second, repeat the first step except pick up the observations from 2 to 5040 in the fixed window, and get the 

second prediction conditional variance. Next, repeat the first step except pick up the observations from 3 to 5041 

in the fixed window, and get the third prediction conditional variance. Repeat this step 1672 times. We call such 

a process as multi-step-ahead forecast. Finally, use the 1672 prediction conditional variance to calculate the 

RMSE by the formula (6). 
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GARCH (1,1) – Normal 0.01380118 

GARCH (1,1) – Student t 0.01373756 

MS – GARCH(1,1) – Normal 0.009939033 

MS – GARCH (1,1) – Student t 0.00993895 

Table 5: The result of RMSE 

 

Other tests that can be added are mean error (ME), mean absolute error (MAE), and the smoothed mean 

absolute percentage error (SMAPE). 

 
Criteria GARH – normal GARCH – student t MS - normal MS – student t 

ME 0.00891-324 0.00882757 -0.0003878219 -0.0003879767 

MAE 0.01031166 0.0100516 0.00694761 0.006947021 

SMAPE 10.69132 10.58459 1.000999 1.001291 

Table 6: Forecast evaluation criteria 

 

VII. Conclusion 
The S&P 500 Index is a basket of 500 stocks that are considered to be widely held. 

It's weighted by the market value, and its performance is thought to be representative of the stock market as a 

whole. 

This paper use different volatility models to analyze and forecast the conditional variance. It 

simultaneously chooses the normal distribution and the student-t distribution as the error terms distribution. 

Table 5 illustrates which model has the smallest RMSE for different applications. Our main finding is that MS-

GARCH(1,1)-student t is the best appropriate one to forecast the conditional variance for GSPC. 

Overall, our findings have implications for investors, financial institutions, and futures exchanges. 
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