Effect of Moringa Leaf Powder Addition on the Nutritional Composition and Sensory Evaluation of Plantain Flour Stiff Dough (Amala)

Ilelaboye Nasir Olaniyi
Department of Science Laboratory Technology, The Federal Polytechnic Ilaro
Corresponding Author: Ilelaboye Nasir Olaniyi

Abstract: In recent years, research efforts in the developing countries have focused on the improvement of nutritional quality of food products due to mass malnutrition. The dietary management of diabetes recommends the use of stiff plantain dough (amala), a starchy staple food in some parts of Africa including Nigeria. This research study investigated the effect of the addition of moringa leaf powder on the proximate composition and mineral content of plantain flours and their corresponding stiff dough (amala). The sensory evaluation of the amala was determined. The stiff plantain doughs were produced using different levels of plantain flour substituted with moringa leaf powder ranging from 0 – 15% at the interval of 2.5%. The result revealed that addition of moringa improves the proximate composition (Moisture, Fat, Ash, Crude fiber, Protein, Carbohydrate) of moringa fortified plantain flours and their corresponding stiff doughs. The inclusion of moringa caused the reduction in Na, K and P contents and increased the quantities of Ca, Mg, Fe and P in the flours and amala. The result of sensory evaluation for the fortified ‘amala’ revealed that 2.5 % to 5 % moringa leaf powder supplementation for plantain flour were equally rated, and are sufficient to improve the proximate and mineral composition of plantain flour amala without having significant effect on the sensory properties

Keywords: Nutritional Composition, Sensory Evaluation Stiff Dough (Amala), Plantain Flour, Moringa Leaf Powder

Date of Submission: 29-11-2018 Date of acceptance: 12-12-2018

I. Introduction

Plantain (Musa paradisiaca) and banana belong to the family of Musaceae with the genus Musa, and is plant producing fruits that are invaluable source of carbohydrate and energy at maturity for millions of people in many parts of Africa, Asia and South America [1, 2]. Plantain plant consists of long, overlapping leafstalks and bears a stem which is 1.22 to 6.10 m high [3] and produces bunches with fewer but bigger fingers than the banana. Plantains represent the world’s second largest fruit crop with an annual production of 144 million metric tons and closely follows rice, wheat, and maize, as the fourth most important global food commodity [4]. Nigeria with a yearly output of about 3.09 million metric tons ranks fifth after Cameroon, Ghana, Uganda, and Colombia in the world mostly obtained from the southern states.

Plantain, a major economic source of energy food in many regions throughout the world, helps in weight control, suitable for diabetic patient due to its low glycemic index [5, 6]. The fruit is extremely rich in Iron, potassium, and vitamin A [7], and mostly eaten raw, fried, boiled, roasted as a staple food. In other instances, unripe plantains can be processed into flour, used traditionally for preparing a stiff dough (Amala) by reconstituting the flour in boiling water until a dark smooth paste is formed [8]. Amala is a regular staple food in the South Western part of Nigeria, and some part of Ghana and Cameroon where it is called Kokonte and ‘foufou’ respectively [9, 10]. Plantain food products are mainly carbohydrate food and unable to meet the protein requirements of consumers, especially among rural dwellers.

Consequently several authors worked on the possibility of enriching the nutritional value of the products by inclusion of legumes and other Protein-rich plant foods, such as Bambara groundnut protein concentrate [11], Moringa oleifera leaf powder [12], extruded soybeans [13]. Considering the relationship between food, health, and nutrition, Moringa oleifera is a promising plant which could aid better intake of some essential nutrients and beneficial phytochemicals in the human diet. Moringa oleifera, belong to Moringaceae family, native to India and northern Africa, is a "cure-all" remedy for thousands of years. It is a drought tolerant, medium-sized, evergreen tree that prefers warm, frost-free climates, and recently naturalised in many locations in the tropics and gaining wide acceptance, mostly in the northern part of Nigeria. Moringa is a beneficial tree, as almost every part of the tree can serve as food, and the leaves from the moringa plant, a powerhouse of nutrient, can be consumed fresh, cooked or processed to powder [14]. Good health is a function of eating
healthy food. Therefore research efforts are recently geared toward the improvement of the nutritional quality of food products in many developing countries to fight malnutrition. This research study investigated the effect of the addition of moringa leaf powder on the nutrient composition, functional and pasting properties of the fortified plantain flours, and how it affects the nutrient and sensory evaluation of their corresponding stiff dough (amala).

II. Material And Methods

Sample procurement
Mature Unripe plantain fruits used for this study were collected from a local market at SayederoYewa South Ogun State, Nigeria, and fresh Moringa leaf powder was obtained from Rokarich International Company, Akure Ondo State, Nigeria. Preparation of Plantain Flour

Preparation of plantain flour
Using the modified of Ibeanuet al. method as described by Ilelaboye and Ogunsina [15], 20 kg of green plantain fingers washed, sun-dried for 30 min, and then hand peeled, sliced to a thickness of about 5 mm, and stored in water to avoid browning before drying. The sliced pulp, dried in a hot air oven for 6 hr at a temperature of 80 °C was milled with a hammer mill (Bentall Superb, Model 200 L 09), sieved through a 75 μm mesh sieve and kept in airtight plastic containers at room temperature for further use.

Preparation of various flour blends
The plantain flour and moringa flour were mixed according to the proportion in Table 1, and homogenised using a Cross-Flow blender for 30 min, and stored separately in tightly covered plastic containers for later use [15].

Table 1: Composite Mixture of Plantain - Moringa leaf flour

<table>
<thead>
<tr>
<th>FLOUR</th>
<th>P</th>
<th>PM1</th>
<th>PM2</th>
<th>PM3</th>
<th>PM4</th>
<th>PM5</th>
<th>PM6</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLANTAIN (%)</td>
<td>100</td>
<td>97.5</td>
<td>95</td>
<td>92.5</td>
<td>90</td>
<td>87.5</td>
<td>85</td>
</tr>
<tr>
<td>MORINGA (%)</td>
<td>0</td>
<td>2.5</td>
<td>5</td>
<td>7.5</td>
<td>10</td>
<td>12.5</td>
<td>15</td>
</tr>
</tbody>
</table>

Preparation of Amala
50 g of the composite flour poured into 200 mL boiling water with continuous stirring to obtain a smooth, thick mixture that was allowed to simmer for about 5 min, stirred, and wrapped with thin labelled polythene wraps.

Chemical analysis
The proximate composition of the composite flours analysed using the procedure of Association of Official Analytical Chemist [16], and the energy value calculated using Atwater factors. Flame photometry method was used to analyse the potassium and sodium content of the samples [17]. Phosphorus was determined by Vanadomolybdatecolourimetric method.[18] Calcium, magnesium, and iron were determined spectrophotometrically by using Buck 200 atomic absorption spectrophotometer (Buck Scientific, Norwalk United Kingdom (UK)) [19].

Sensory evaluation
Sensory evaluation of the amala samples prepared from the plantain-moringa flours was performed 4 hr. after production using the 9 points Hedonic scale quality analysis [20]. 20 untrained panellists drawn from students and staff of the Federal Polytechnic, Ilaro Ogun State Nigeria, evaluated the coded amala samples for colour, aroma, taste, mouldability consistency and overall acceptability using the 9-point hedonic scale, where one (1) corresponds to like extremely, and nine (8) corresponds to dislike extremely.

Statistical analysis
All analyses carried out in triplicate, with statistical significance established using one-way analysis of variance (ANOVA), Mean comparison and separation done using Duncan Multiple range (DMR) test at p≤ 0.05, described by the SPSS 16.0 statistical package. [21]

III. Results And Discussion

Proximate compositions of the flours
According to the proximate composition table (Table 2), of moringa and the fortified flours, the addition of moringa to plantain caused significantly (P < .05) decrease in moisture content of plantain flours, ranging from sample P (10.22±.03 %) to sample PM6 (9.99±.02 %). Also, the moisture of prepared stiff dough (amala) shows the same trend (Table 3), and the per cent moisture of all the flours reported in this study is below 15% which is the recommended maximum limit for flours, suggesting longer shelf-life for the blends [22].
Effect of Moringa Leaf Powder Addition on the Nutritional Composition and Sensory Evaluation of...

Table 2: The Proximate composition (%) and Energy (Kcal/100g) values of the moringa fortified plantain flours

<table>
<thead>
<tr>
<th>Sample</th>
<th>moisture</th>
<th>protein</th>
<th>fat</th>
<th>fibre</th>
<th>ash</th>
<th>carbohydrate</th>
<th>energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>8.50±.04</td>
<td>27.14±.03</td>
<td>2.85±.03</td>
<td>9.44±.01</td>
<td>10.39±.04</td>
<td>41.68±.03</td>
<td>300.93±5.14</td>
</tr>
<tr>
<td>P</td>
<td>10.22±.03</td>
<td>3.68±.03</td>
<td>1.37±.04</td>
<td>2.45±.03</td>
<td>2.88±.07</td>
<td>79.42±.04</td>
<td>344.15±6.19</td>
</tr>
<tr>
<td>PM1</td>
<td>10.20±.01</td>
<td>3.95±.06</td>
<td>1.42±.02</td>
<td>3.07±.07</td>
<td>78.74±.07</td>
<td>343.95±4.10</td>
<td></td>
</tr>
<tr>
<td>PM2</td>
<td>10.15±.00</td>
<td>4.21±.04</td>
<td>1.55±.04</td>
<td>2.83±.07</td>
<td>3.25±.05</td>
<td>342.83±5.45</td>
<td></td>
</tr>
<tr>
<td>PM3</td>
<td>10.10±.02</td>
<td>4.65±.02</td>
<td>1.65±.02</td>
<td>3.38±.02</td>
<td>77.26±.07</td>
<td>342.06±7.12</td>
<td></td>
</tr>
<tr>
<td>PM4</td>
<td>10.04±.03</td>
<td>5.25±.04</td>
<td>1.73±.04</td>
<td>3.63±.07</td>
<td>76.21±.14</td>
<td>341.83±4.76</td>
<td></td>
</tr>
<tr>
<td>PM5</td>
<td>10.02±.00</td>
<td>5.83±.04</td>
<td>1.85±.02</td>
<td>3.77±.00</td>
<td>75.19±.14</td>
<td>340.89±6.43</td>
<td></td>
</tr>
<tr>
<td>PM6</td>
<td>9.99±.02</td>
<td>6.68±.07</td>
<td>1.93±.04</td>
<td>3.99±.04</td>
<td>73.91±.14</td>
<td>339.74±3.94</td>
<td></td>
</tr>
</tbody>
</table>

*Values are Mean± SD of triplicate determinations, and Mean values in the same column with different superscripts are significantly different at P < .05.

**Sample key = P [100 Plantain: 0 Moringa leaf powder]; PM1 [97.5 Plantain: 2.5 Moringa leaf powder]; PM2 [95 Plantain: 5 Moringa leaf powder]; PM3 [92.5 Plantain: 7.5 Moringa leaf powder]; PM4 [90 Plantain: 10 Moringa leaf powder]; PM5 [87.5 Plantain: 12.5 Moringa leaf powder]; PM6 [85 Plantain: 15 Moringa leaf powder];

Table 3: The Proximate composition (%) and Energy (Kcal/100g) values of Amala prepared from fortified plantain flours

<table>
<thead>
<tr>
<th>Sample</th>
<th>moisture</th>
<th>protein</th>
<th>fat</th>
<th>fibre</th>
<th>ash</th>
<th>carbohydrate</th>
<th>energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>70.63±.07</td>
<td>3.95±.06</td>
<td>1.48±.06</td>
<td>3.02±04</td>
<td>3.16±.03</td>
<td>17.76±.07</td>
<td>99.88±2.84</td>
</tr>
<tr>
<td>PM1</td>
<td>70.44±.14</td>
<td>4.55±.04</td>
<td>1.68±.03</td>
<td>3.68±.07</td>
<td>3.39±.07</td>
<td>16.25±.11</td>
<td>100.83±3.14</td>
</tr>
<tr>
<td>PM2</td>
<td>69.49±.30</td>
<td>5.61±.07</td>
<td>1.73±.04</td>
<td>3.96±.07</td>
<td>3.47±.05</td>
<td>15.75±.32</td>
<td>101.01±.94</td>
</tr>
<tr>
<td>PM3</td>
<td>68.63±.07</td>
<td>6.91±.07</td>
<td>1.82±15</td>
<td>4.24±.07</td>
<td>3.73±.13</td>
<td>14.68±.18</td>
<td>102.69±2.54</td>
</tr>
<tr>
<td>PM4</td>
<td>67.86±.10</td>
<td>8.09±.08</td>
<td>1.87±.04</td>
<td>4.45±.04</td>
<td>3.96±.07</td>
<td>13.77±.21</td>
<td>104.28±3.14</td>
</tr>
<tr>
<td>PM5</td>
<td>66.33±.71</td>
<td>9.61±.08</td>
<td>1.97±.07</td>
<td>4.64±.07</td>
<td>4.11±.05</td>
<td>13.16±.16</td>
<td>108.83±2.19</td>
</tr>
<tr>
<td>PM6</td>
<td>65.63±.21</td>
<td>11.38±.11</td>
<td>2.06±.07</td>
<td>4.89±14</td>
<td>4.43±.09</td>
<td>11.92±.28</td>
<td>111.72±2.44</td>
</tr>
</tbody>
</table>

*Values are Mean± SD of triplicate determinations, and Mean values in the same column with different superscripts are significantly different at P < .05.

**Sample key = P [100 Plantain: 0 Moringa leaf powder]; PM1 [97.5 Plantain: 2.5 Moringa leaf powder]; PM2 [95 Plantain: 5 Moringa leaf powder]; PM3 [92.5 Plantain: 7.5 Moringa leaf powder]; PM4 [90 Plantain: 10 Moringa leaf powder]; PM5 [87.5 Plantain: 12.5 Moringa leaf powder]; PM6 [85 Plantain: 15 Moringa leaf powder];

As shown in Table 2, moringa leaf powder possesses higher content of protein, fat, fibre, and ash, but a lower per cent of moisture, carbohydrate, and energy than plantain flour. This observation is similar to the reports of Jongrungruangchok et al., [23] for Moringa oleifera leaves, and Akabor et al., [5]; Zaiqkaa et al., [24] and Karim et al., [12] for plantain flour. Protein values of the fortified flours as depicted in Table 2, differs significantly (P < .05.), and ranges from 3.98±.03 % to 7.68±.07 %. The rise in per cent protein of these flours with an increase in the level of moringa substitution in the blends could be attributed to the additive effect of moringa leaf powder protein [27.14±.03 %] on the plantain flours. The levels of protein in 100 % plantain observed in this study showed that the fruit is low in protein and cannot meet adult protein diet need, which for a healthy adult is about 0.75g per kg per day [25]. Amala from the fortified flours exhibits the same incremental trend in per cent protein (Table 3) as their corresponding flours. However, the protein content of the amala products increased significantly compared to their respective flour blends, implying that cooking the flour blends had a positive effect on the protein contents of the final product. The observation agrees with the findings of Adepoju [26], on the effects of processing on white.

The addition of moringa powder to plantain flour caused a significant increase in the fat content of the fortified flours as the level of moringa powder increases ranging from PM1 (1.42±.02 %) to PM6 (1.93±.04 %). This low-fat content of these flour suggests they prolong the shelf life of food products because fat can promote rancidity in food leading to the development of unpleasant and odorous compounds [27]. However processing the fortified plantain blends to amala further increased the fat content of the products confirming the claims of Oste, [28] and Adepoju [26], that Processing enhances the nutrient availability of food. The increase in percent fat of the fortified flours may be credited to the high fat content of Moringa leaf [29, 30], hence improving the

DOI: 10.9790/2402-1212013036 www.iosrjournals.org 32 | Page
Effect of Moringa Leaf Powder Addition on the Nutritional Composition and Sensory Evaluation of Amala

Palatability of amala containing Moringa leaf because dietary fats function to increase food palatability by absorbing and retaining flavours [31].

Crude fibre represents the content of the non-digestible components of food, such as lignin, cellulose, and hemicelluloses. As shown in Table 2 the crude fibre content increased significantly (P < .05.) with an increase in substitution level due to the high fibre content of Moringa leaf powder (9.44 ± 0.01%). Cooking the fortified flour to obtain amala further increase the fibre content of the flour blends (Table 3), and this confirms that Processing enhances the nutrient availability in food products. [28, 32]. This observation indicates that the enriched ‘amala’ will digest easily hence contribute to the prevention of colon cancer because a diet high in crude fibre facilitates bowel movement. [33].

Ash is the inorganic residue after removing the water, and organic matter by burning a food sample. The ash content of moringa leaf powder is significantly higher (4.25 times) than plantain flour ash content. Hence its inclusion in the flour blends significantly increased the per cent ash of fortified flours with an increase in the level of addition of the moringa leaf powder. Processing the flour blends into amala caused an increase in ash content of the fortified flours ranging from 100% plantain (3.16 ± 0.03 %) to 25 % Moringa leaf powder fortified plantain (4.43 ± 0.09 %). This observed increase in ash content agrees with the report of Karim et al. [8] on Ama’ produced from yam flour fortified with 2.5, 5.0 and 7.5 % moringa oliferea leaves powder.

The carbohydrate content of moringa leaf powder (41.68 ± 0.03 %) as shown in Table 2 is very low compared to the carbohydrate content of sole plantain flour (79.44 ± %), therefore inclusion of moringa in plantain brought about significant (P < .05.) reduction in carbohydrate value of the fortified flours with rising in addition of moringa. Processing the flour blends to amala further reduced the per cent carbohydrate of plantain flour, and this study finding is similar to that of Ilelaboye and Ogunsina [15] who observed a reduction in carbohydrate content (75.65 ± 1.53 to 64.33 ± 5.32 %) of okara fortified plantain-sorghum flour with the addition of okara flour.

The energy values of the fortified flours, as shown, ranged between 344.15 ± 6.19 kcal and 339.74 ± 3.94 kcal, and did not vary significantly (P < .05.). The addition of moringa leaf powder to plantain flour caused a decline in the energy level of the blends.

Mineral composition

The mineral content of sole plantain flour, moringa leaf powder and fortified plantain flours as given in Table 4, revealed that 100% plantain flour possessed higher per cent of sodium (Na), potassium (K), and phosphorous (P), while moringa leaf powder has higher calcium (Ca), magnesium (Mg) and iron (Fe), and the minerals varied significantly (P < 0.05) at different degrees in the enriched flour blends. Calcium ions preserve the skeleton firmness and participate in most metabolic processes. The vertebrate skeleton is maintained by a form of calcium phosphate and is embedded in collagen fibrils [34]. The calcium content of the 100 % plantain flour was 234.06 ± 28.41 mg/100g, while that of the moringa fortified flours increased significantly (P < .05.) from 277.66 ± 18.44 mg/100g in PM1 to 478.49 ± 32.90 mg/100g in PM6 as the level of moringa leaf powder increase in the blends. Cooking the flours to amala brought reduction to their calcium content. However, consumption of about 100 g enriched amala will provide an estimated 18.20% to 31.94 % of the recommended daily allowance (RDA) for adult calcium (1100 mg/day) requirements [35].

Table 4: The mineral composition of the moringa fortified plantain flours (mg/100g)

<table>
<thead>
<tr>
<th>Sample</th>
<th>Ca</th>
<th>Mg</th>
<th>P</th>
<th>K</th>
<th>Na</th>
<th>Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>1978.12±59.73</td>
<td>357.12±7.43</td>
<td>135.87±4.73</td>
<td>1486.12±97.3</td>
<td>167.79±9.73</td>
<td>34.75±2.81</td>
</tr>
<tr>
<td>P</td>
<td>234.06±28.41</td>
<td>199.06±8.54</td>
<td>219.06±6.41</td>
<td>3856.06±84.1</td>
<td>239.06±8.41</td>
<td>12.56±1.34</td>
</tr>
<tr>
<td>PM1</td>
<td>277.66±18.44</td>
<td>203.01±6.44</td>
<td>216.98±7.44</td>
<td>3976.81±84.4</td>
<td>237.28±8.44</td>
<td>13.11±1.37</td>
</tr>
<tr>
<td>PM2</td>
<td>321.26±18.47</td>
<td>206.96±4.77</td>
<td>214.90±4.48</td>
<td>3737.56±84.9</td>
<td>235.49±4.47</td>
<td>13.67±1.41</td>
</tr>
<tr>
<td>PM3</td>
<td>366.86±18.51</td>
<td>210.91±5.71</td>
<td>212.82±5.51</td>
<td>3678.31±85.1</td>
<td>233.72±8.51</td>
<td>14.22±1.44</td>
</tr>
<tr>
<td>PM4</td>
<td>401.57±18.29</td>
<td>214.86±7.54</td>
<td>213.97±3.97</td>
<td>3710.19±92.3</td>
<td>237.41±8.44</td>
<td>13.96±2.63</td>
</tr>
<tr>
<td>PM5</td>
<td>435.07±32.62</td>
<td>218.82±8.58</td>
<td>211.89±4.00</td>
<td>3650.95±94.3</td>
<td>235.63±8.47</td>
<td>14.52±2.67</td>
</tr>
<tr>
<td>PM6</td>
<td>478.49±32.90</td>
<td>222.77±6.18</td>
<td>209.81±4.03</td>
<td>3591.70±90.2</td>
<td>233.85±8.51</td>
<td>15.07±2.70</td>
</tr>
</tbody>
</table>

*Values are Mean± SD of triplicate determinations, and Mean values in the same column with different superscripts are significantly different at P < .05.
**Sample key = P [100 Plantain: 0 Moringa leaf powder]; PM1 [97.5 Plantain: 2.5 Moringa leaf powder]; PM2 [95 Plantain: 5 Moringa leaf powder]; PM3 [92.5 Plantain: 7.5 Moringa leaf powder]; PM4 [90 Plantain: 10 Moringa leaf powder]; PM5 [87.5 Plantain: 12.5 Moringa leaf powder]; PM6 [85 Plantain: 15 Moringa leaf powder].

DOI: 10.9790/2402-1212013036 www.iosrjournals.org 33 | Page
Effect of Moringa Leaf Powder Addition on the Nutritional Composition and Sensory Evaluation of...
Effect of Moringa Leaf Powder Addition on the Nutritional Composition and Sensory Evaluation of...

<table>
<thead>
<tr>
<th>Sample Code</th>
<th>Nutritional Composition</th>
<th>Sensory Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM3</td>
<td>3.90±1.66^a</td>
<td>4.30±1.57^a</td>
</tr>
<tr>
<td>PM4</td>
<td>4.10±2.51^a</td>
<td>4.90±1.97^a</td>
</tr>
<tr>
<td>PM5</td>
<td>4.40±2.07^a</td>
<td>5.00±1.89^a</td>
</tr>
<tr>
<td>PM6</td>
<td>5.33±2.23^a</td>
<td>6.00±1.83^a</td>
</tr>
</tbody>
</table>

*Values are Mean± SD of triplicate determinations, and Mean values in the same column with different superscripts are significantly different at p < 0.05.

**Sample key = P [[100 Plantain: 0 Moringa leaf powder]; PM1 [[97.5 Plantain : 2.5 Moringa leaf powder]; PM2 [[95 Plantain : 5 Moringa leaf powder]; PM3 [[92.5 Plantain : 7.5 Moringa leaf powder]; PM4 [[90 Plantain : 10 Moringa flour; PM5 [[87.5 Plantain : 12.5 Moringa leaf powder]; PM6 [[85 Plantain : 15 Moringa leaf powder].

An increase in the level of substitution of Moringa leaf powder for plantain flour affected the rating of all the sensory characteristics studied (Table 6). Generally, the control sample (‘amala’ from 100% plantain flour), had the best rating for all the parameters. There were no significant differences (P < .05) between the amala from sample P, PM1 and PM2 blend regarding colour and mouldability, and slightly differs from PM1 and PM2 amala regarding aroma, taste and overall acceptability. The consistency of the control amala sample P (Table 8) varied significantly (P < .05.) from the consistency of other amala samples except for sample PM1. Amala from flour blends PM3, PM4, PM5 and PM6 were less preferred to amala from sample P as regards colour, aroma, taste mouldability, consistency and overall acceptability. The PM6 blend colour was the darkest due to the dark green colour of the leaf powder which is a reflection of the chlorophyll content of the leaf. The observed increase in colouration of the amala products with an increase in the level of supplementation of Moringa leaf powder conforms with previous reports on fortification of yam flour and plantain flour using moringa oleifera leaves powder [8, 12]. The result of overall acceptability for the fortified ‘amala’ revealed that samples PM1 and PM2 were equally rated and slightly different from the control which had the best rating. In all, 2.5% to 5% Moringa leaf powder supplementation for plantain flour is sufficient to improve the proximate and mineral composition of plantain flour amala without having a significant effect on the sensory properties.

IV. Conclusion

This investigation has revealed that the substitution of plantain flour with moringa leaf powder progressively increased the nutrient content of the flours, and the prepared stiff dough (amala) as the level of supplementation increased. The blends should have a long shelf life due to their low moisture and fat content, and moringa fortified plantain flour has the potential to combat protein-energy malnutrition and micronutrient deficiencies in developing countries. Though the 15% substituted plantain flour had the best nutritional quality, but the result of sensory evaluation for the fortified ‘amala’ revealed that 2.5% to 5% supplementation were organoleptically acceptable and are sufficient to improve the nutritional composition of plantain flour amala without having a significant effect on the sensory properties.

References

DOI: 10.9790/2402-1212013036 www.irosrjournals.org 35 | Page
Effect of Moringa Leaf Powder Addition on the Nutritional Composition and Sensory Evaluation of Stiff Dough (Amala)

Adopoju, O.T. 2012 Effects of processing methods on nutrient retention and contribution of white yam (Dioscorearotundata) products to nutritional intake of Nigerians African Journal of Food Science Vol. 6(6), pp. 163-167

Uchebgu NN, and Isiwu CN, Nutritional Composition of Crackers Produced from Blend of prouted Pigeon Pea (Cajanuscajan), Unripe Plantain (Musa paradisiacea) and Brewers Spent Grain Flour and Blood Glucose Level of Diabetic Rats Fed the Biscuit International Journal of Biological, imolecular, Agricultural, Food and Biotechnological Engineering 2016:10(1).

Brink, EJ, Breedveld BC and Peters JAC, Recommendations for vitamins, minerals and trace elements Fact sheet, 2014 Netherlands Nutrition Centre www.voedingscentrum.nl

DOI: 10.9790/2402-1212013036 www.iosrjournals.org 36 | Page