Optimization of mechanical milling process to obtain MgO modified with γ-Al₂O₃ and improve its CO₂ adsorption capacity

J. Bonifacio-Martínez¹*, F. Granados-Correa¹, J.L. Iturbe-García¹, F. Ureña-Nuñez¹

¹Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca S/N, La Marquesa, Ocoyoacac, C.P. 52750, México.

*Corresponding author: Bonifacio-Martínez

Abstract: Mesoporous MgO modified with γ-Al₂O₃ samples were prepared via mechanical milling and evaluated for CO₂ capture under different temperature (30-200°C) and pressure (2-20 bar) adsorption conditions. The effects of methanol as a process control agent and the effects of millingtime over microstructure, textural and CO₂ adsorption properties of the samples were also evaluated. MgO modified with γ-Al₂O₃ obtained for 4h with methanol exhibited a maximum CO₂ adsorption capacity of 20.06 wt.% (4.55 mmol CO₂/g) at 30°C and 20 bar, in comparison with sample obtained without methanol under the same conditions, which had an uptake capacity of 6.44 wt.% (1.46mmol CO₂/g). This considerable uptake capacity of the sample obtained in the presence of methanol is due to the defectscreated in its crystal lattice, which allow anincrease in its textural properties, such as high specific surface area, pore area and pore volume.

Key Words: CO₂ adsorption; MgO modified with γ-Al₂O₃; mechanical milling; textural properties; structural properties.

Date of Submission: 12-03-2020 Date of Acceptance: 27-03-2020

I. Introduction

In recent years, the CO₂ capture and storage technologies of fossil fuel-based power plants have garnered a great deal of attention, since they are an efficient measure to prevent global warming[1-2]. In this context, in order to mitigate the harmful effects of global warming on ecosystems and living beings, global strategies have been proposed to reduce the high atmospheric concentrations of CO₂[3]. Consequently, many methods for CO₂ capture have been recently explored, such as amine scrubbing, separation membranes, cryogenic fractionation, adsorption systems, among others[4]. The adsorption method is particularly promising, owing to its superior advantages, such as no liquid waste, low energy consumption and a wide range of operating temperatures[3,5,6]. Specifically, for CO₂ adsorption technologies, a great variety of solid sorbents, such as zeolites[7], carbon-based materials[8-10], hydrotalcites[11], organic-inorganic hybrids, metal organic frameworks[12], metal oxides[5,13-15] and oxide composites[16,17] have been widely studied. Among the aforementioned adsorbents, metal oxides such as MgO are promising candidates for CO₂ capture, due to its abundant source and low cost. MgO can adsorb CO₂ and can be regenerated at relatively low temperatures (<200°C), in comparison with CaO, for example[18,19]. Additionally, it is recognized that water vapor in flue gas is favorable for the adsorption of CO₂ by MgO[20]. Pure MgO presents drawbacks, such as low surface area-to-volume ratio and formation of an undesired carbonatelayer on its surface, which is an impediment for further interaction between MgO and CO₂[21]. Thus, the CO₂ adsorption capacity of MgO is correlated with its textural and structural properties, allowing a more efficient contact between the active sites of MgO and CO₂[22,23]. It has been observed that porosity, high surface area, small particle size and the crystalline structure of MgO enhance CO₂ capture capacity[24]. Introducing Mg species into porous supports such as alumina, silica, active carbon, among others, promote the exposure of more basic active sites and improve adsorption towards acidic CO₂ molecules. Previously, it has been reported that MgO/Al₂O₃ nanocomposites used as CO₂ adsorbents are ideal for low-temperature CO₂ capture in presence of water vapor [3]. The supported MgO/γ-Al₂O₃ composite, with its advantages, can enhance interactions with natural acidic CO₂, increasing its adsorption capacity and selectivity. For this purpose, high-energy ball milling (known as mechanical milling) has been considered as a viable method for preparation of MgO modified with γ-Al₂O₃ with reduced particle grain size, on ananometric scale (<100 nm), with homogeneous distribution, and supported on a metal matrix. Additionally, it allows production of bulk quantities of solid-state materials using simple equipment at room temperature [25-27].

DOI: 10.9790/2402-1403015967 www.iosrjournals.org
In this work, mesoporous MgO modified with \(\gamma\)-Al\(_2\)O\(_3\) powders were obtained via the high-energy mechanical milling from MgO and \(\gamma\)-Al\(_2\)O\(_3\) powders used as raw materials. The textural and structural changes of these materials during the ball milling with and without process control agent were studied in detail. Samples were also tested for CO\(_2\) uptake at different conditions of temperature and pressure. The results obtained were analyzed and widely discussed.

II. Material And Methods

2.1 Raw materials

Magnesium and alumine oxides were utilized as raw materials for the preparation of MgO modified with \(\gamma\)-Al\(_2\)O\(_3\). MgO powder was obtained by oxidation of nanocrystalline Mg at 600 °C for 10 minutes, according to the report by Sánchez [28]. In a typical synthesis, 3g of Al(NO\(_3\))\(_3\)·9H\(_2\)O (Merck; 99.9% purity) and 3g CO(NH\(_2\))\(_2\) (Merck; 99.9% purity), in a molar ratio of 1:1, were transferred directly into a 50mL crucible and mixed with 1 mL distilled water to obtain a solution, which was afterwards heated at 110°C in order to evaporate the water. After, the powder was calcined at 800°C for 10 min in a muffle furnace. Alumina powder was previously obtained via the chemical-combustion method as reported by Granados et al. [29].

2.2 Preparation of MgO modified with \(\gamma\)-Al\(_2\)O\(_3\)

MgO modified with \(\gamma\)-Al\(_2\)O\(_3\) were obtained under different conditions of mechanical milling. Separately, measured quantities of MgO and \(\gamma\)-Al\(_2\)O\(_3\) powders, in a molar ratio of 3:1, were placed in a 50 mL stainless-steel container with stainless steel balls as milling media. The mixtures were mechanically milled for 2 and 4 h, at ball-to-powder ratio of 10:1, in an high-energy Spex 8000 ball mill. Thesamples were obtained and denoted as MA1 and MA2, respectively. For MgO modified with \(\gamma\)-Al\(_2\)O\(_3\) obtained at the same milling time with methanol as processes control agent (PCA), these were denoted as MA3 and MA4, respectively.

2.3 Characterization

The alumina, MgO and MgO modified with \(\gamma\)-Al\(_2\)O\(_3\) powders were characterized by using different analytical methods. X-ray diffraction (XRD) patterns profiles, for the as synthesized samples were recorded using a Bruker D8 Discover instrument coupled to CuK\(_\alpha\) (\(\lambda\)=1.5406 Å) radiation in the 20 range (from 20° to 90°) at 35 kV and 25 mA, with a step of 0.035°/6 seconds. The average crystallite size was estimated by the method of broadening of X-ray diffraction peaks using the Debye-Sherrer equation. The sample morphology was analyzed by scanning electron microscopy (SEM), using a Zeiss 6610LV microscope coupled to an energy dispersive spectroscopy (EDX) system. Sample textural properties were examined by N\(_2\) adsorption-desorption measurements at 77 K using a Belsorp Max (BEL Japan INC) instrument. The Brunauer-Emmett-Teller (BET) method was applied in order to obtain the nitrogen adsorption-desorption isotherms and to calculate the specific surface area, average pore diameter and pore total volume of the samples. The pore volume and pore area from the desorption branch of the isotherm were analyzed via the Barrett-Joyner-Halenda (BJH) method. It must be said that all samples were degassed at 350°C for 2 h in high-purity N\(_2\) atmosphere before the N\(_2\) adsorption measurements.

2.4 CO\(_2\) adsorption experiments

MgO modified with \(\gamma\)-Al\(_2\)O\(_3\) obtained at 4 h with and without PCA (MA2 and MA4) were tested for CO\(_2\) adsorption. Prior to CO\(_2\) adsorption experiments, the samples were previously heated at 500 °C for 20 min in a muffle to eliminate the pre-adsorbed species (H\(_2\)O and CO\(_2\)) present in the atmosphere. About 50 mg of the powder for each sample was carried out by using a 50 mL-capacity Parr 4592 stainless-steel microreactor, by exposing the powder samples to extra-dry carbon dioxide (99.8% purity) for 1 h (as a constant saturation time), a different temperatures (30, 50, 100 and 150°C), and pressures of 2, 5, 10, 15 and 20 bar. The CO\(_2\) adsorption capacities (wt.% of adsorbent) of the as-prepared MgO modified with \(\gamma\)-Al\(_2\)O\(_3\) were determined by thermogravimetric analysis with a simultaneous TGA-DSC system, using a SDT Q600 calorimeter (TA Instruments-Waters LLC), previously calibrated. The samples were heated from room temperature to 700°C at a heating rate of 10°C/min under a high-purity helium atmosphere, with a flow of 100 mL/min.

III. Results and Discussion

3.1 XRD analysis

The X-ray powder diffraction patterns of alumina, MgO, used as starting materials, and MgO modified with \(\gamma\)-Al\(_2\)O\(_3\) prepared via mechanical milling are shown in Figure 1. Figure 1(a) shows the diffraction pattern of the alumina obtained by solution combustion at 800 °C for 10 min, shows only Bragg reflections that exhibit a marked broadening of all of the diffraction peaks, this sample was identified, and confirms an amorphous phase that corresponds to \(\gamma\)-Al\(_2\)O\(_3\) (JCPDS file 001-1307). These results are consistent with previous report of \(\gamma\)-

DOI: 10.9790/2402-1403015967 www.iosrjournals.org 60 | Page
Al₂O₃ materials prepared by solution-combustion[29]. Figure 1(b) shows the XRD pattern of the MgO sample obtained by a direct oxidation reaction of nanocrystalline Mg at 600 °C for 10 minutes. The sharp and well defined peaks which correspond to MgO crystalline phase known as periclase(JCPDS file 009-5447). According to the literature[30], this MgO phase crystalline was obtained by solution combustion. Also, sample MgO exhibits a marked broadening of all the diffraction peaks, suggesting the existence of small crystallite sizes in the existing crystalline phase. It was estimated that their average crystallite size was of 17 nm. Figures 1(c) and 1(d), shows the XRD patterns of MA1 and MA2 samples prepared for 2 and 4 h of milling without PCA. Both samples, were indexed, as main phase, to crystalline phase MgO with a cubic structure, and another crystalline phase of low intensity, attributed to the structure of magnesium aluminium oxide (MgAl₂O₄), this phase is also known as spinel (JCPDS file 021-1152). This is due that during the milling, without lubricating agent, the powders react by the reaction of the solid state between MgO and γ-Al₂O₃ oxides to form the ternary oxide. After 4 h of milling it is observed that the intensity of the MgAl₂O₄ phase increases slightly with respect to the sample prepared for 2 h. According to literature the secondary phase MgAl₂O₄ appeared when the Al₂O₃ was doped with 5 wt.% MgO[30]. Comparing Figures 1(c) and 1(d) with the MgO XRD pattern (Figure 1(b)), it is clear that the MgO all diffraction peaks heighten and broaden; this change is due to the decrease in grain size as a result of the milling process. For these MA1 and MA2 samples, the average crystallite size for the MgO phase, were 15 and 13 nm, respectively. The XRD patterns of MA3 and MA4 samples obtained for 2 and 4 h of milling with PCA are shown in Figures 1(e-f). As can be observed the diffractogram show only the characteristics peak of MgO, whereas the peaks corresponding to the MgAl₂O₄ phase disappear, this could be due to the complete dissolution of γ-Al₂O₃ in the MgO phase. The milling processes of MgO and γ-Al₂O₃ with PCA form the solid solution and the decrease in grain size. The MgO powder produced at 2 and 4 h have crystallite sizes of 14 and 12 nm, respectively, as determined by the XRD line-broadening technique.

![XRD patterns of MgO samples](image)

Figure 1. XRD patterns of: a) γ-Al₂O₃, b) MgO, c-d) MgO modified with γ-Al₂O₃ without PCA and e-f) MgO modified with γ-Al₂O₃ and PCA, obtained for 2 and 4 h by mechanical milling.

3.2 SEM analysis

The MgO, γ-Al₂O₃ and the MgO modified with γ-Al₂O₃ at different milling times, with and without PCA, were analyzed by scanning electron microscopy to observe their microstructural morphologies. Figure 2(a) shows the morphology of the γ-Al₂O₃ sample obtained by chemical-combustion at 800°C for 10 minutes, constituted by homogeneous particles of smooth and porous surface, with particle size greater of approximately 25 μm. The MgO powder obtained by oxidation at 600°C for 10 minutes (Figure 2(b)), exhibited homogeneous particles with irregular shape and porous structure; the particle size was less than 5 μm and formed agglomerates of fine particles, characteristic of the crystalline material. Figures 2(c) and 2(d) showsthe images of the MA1 and MA2 samples in which the morphology is different with regard to the MgO and γ-Al₂O₃ starting powders. The SEM image shows that the milled MgO modified with γ-Al₂O₃ particles become smaller with sizes of less than 3 μm and irregular shape. The SEM images of MA3 and MA4 samples (Figures 2(e-f)) shows a very similar behavior in their morphology with respect to the MA1 and MA2 samples. However, it is observed in these samples that they are more porous, with particles sizes between 1 and 5 μm and form..
agglomerates of smaller sub-particles. It must be pointed out that the milling process with a lubricant agent favour the formation of MgO modified with γ-Al_2O_3 with mesoporous structure and small grain size. To identify the dispersion of the elements, present in MA2 and MA4 samples, an elemental mapping, obtained by EDX, was performed.

![Figure 2. SEM images of: a) γ-Al_2O_3, b) MgO, c-d) MgO modified with γ-Al_2O_3 without PCA and e-f) MgO modified with γ-Al_2O_3 and PCA, obtained for 2 and 4 h by mechanical milling.]

Figures 3(a) and 3(b) suggest a homogeneous dispersion for oxygen, aluminum and magnesium over the surfaces of the MgO modified with γ-Al_2O_3. Figures 3(c) and 3(d) show the EDX spectra of the MA2 and MA4 samples. Mean peaks of higher intensity correspond to O, Al and Mg, of which the composites are formed. The presence of carbon as impurity, is due to the methanol used as PCA during the mechanical milling.

![Figure 3. SEM images of elemental mapping of MgO modified with γ-Al_2O_3: a) without PCA, b) with PCA for samples obtained for 4 h by mechanical milling and c-d) their EDS spectra.]

3.3 N_2 Physisorption analysis

Figure 4 shows the N_2 adsorption-desorption isotherms all the samples. The MA1 and MA2 samples obtained for 2 and 4 h of milling without process control agent, show isotherm type II, having a well-defined plateau, and exhibit the characteristics of microporous materials, however, the curves present a very small hysteresis loop. From MA3 and MA4 samples obtained at 2 and 4 h of milling with process control agent it could
be seen that the samples displayed isotherms type IV with H3 hysteresis loop according to the IUPAC classification, indicating the presence of micropores associated with mesopores. Hysteresis indicates the existence of mesopores that are characteristic of solids formed by agglomerates or aggregates of particles. The values obtained in pore size correspond to mesoporous materials with pore sizes ranging from 2 to 50 nm[31].

Figure 4. Nitrogen adsorption-desorption isotherms of MgO modified with γ-Al2O3 samples obtained at different conditions via mechanical milling.

Table 1 shows the textural properties of MA1, MA2, MA3 and MA4 samples. The results of the specific surface area, average pore diameter and total pore volume were obtained by using the BET method. For MA1 and MA2 samples, it was observed that when the milling time increased, the specific surface area and the total pore volume decreased, but its average pore diameter increased; this could be due to the fact that during the impact of the ball milling with the oxide powders, the particles were compacted and the pores of the oxides were closed. However, with the BJH method, the pore area and pore volume values were very similar. With regard to the MgO modified with γ-Al2O3 obtained with PCA (MA3 sample), a different behavior was observed during the milling process; in this case, the presence of the lubricant avoided agglomeration and reduced the effect of cold melting. The specific surface area and total pore volume determined by the BET method increased; however, its average pore diameter decreased. Similar results for the pore area and pore volume determined by the BJH method were observed. For MA4 sample, it was observed that the specific surface area and pore area doubled in comparison with MA3 sample. In this case, the effect of milling time is another important parameter to consider during the process of mechanical milling. Table 1 shows the results of the textural properties of MgO modified with γ-Al2O3 obtained with and without PCA. The mechanical milling, with the addition of methanol as a process control agent and increase in milling time, improved the milling process by reduction in grain size, creating more active sites and abundant defects, as well as increasing the specific surface area, total pore volume, pore area and pore volume.

Table 1: Textural properties of CO2 adsorption behavior on MgO modified with γ-Al2O3 obtained without and with process control agent for 2 and 4 h via mechanical milling.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Milling time (h)</th>
<th>BET</th>
<th>BJH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Specific surface area (m²/g)</td>
<td>Average pore diameter (nm)</td>
</tr>
<tr>
<td>MA1</td>
<td>2</td>
<td>71.18</td>
<td>7.41</td>
</tr>
<tr>
<td>MA2</td>
<td>4</td>
<td>54.39</td>
<td>9.11</td>
</tr>
<tr>
<td>MA3</td>
<td>2</td>
<td>114.38</td>
<td>5.78</td>
</tr>
<tr>
<td>MA4</td>
<td>4</td>
<td>221.37</td>
<td>3.31</td>
</tr>
</tbody>
</table>
3.4 CO₂ capture performance of MgO modified with γ-Al₂O₃

3.4.1 TGA analysis

Based on the N₂ physiosorption and XRD results, tests for CO₂ adsorption were performed in MA2 and MA4 samples. These samples, exposed to a CO₂ atmosphere, were denoted as MA2-CO₂ and MA4-CO₂ respectively, and were evaluated by thermogravimetric analysis. The results show that for MA2-CO₂ sample, the effect of pressure does not influence the adsorption capacity at 30 °C and 1 h of contact time, what was observed from the TGA curves (Figure 5(a)), however, it must be noted that at a pressure of 15 bar, a total weight loss of 7.04 wt.% of CO₂ (1.60 mmol CO₂/g) was achieved. As can be noticed the MA4-CO₂ sample (Figure 5(b)) had a different behavior in CO₂ weight loss. At 2, 5 and 10 bars, the total loss weight is ~ 16.4 wt.%, but when pressure was increased at 15 and 20 bars at 30 °C for 1 h of contact time, the capture capacity increased to a total loss weight of 17.20 (3.90 mmol CO₂/g) and 20.06 (4.55 mmol CO₂/g) wt.%, respectively. Figures 5(c) and 5(d) show the TGA curves of MA2-CO₂ and MA4-CO₂ samples, subjected to a different temperatures. The MA2-CO₂ sample had a maximum capture capacity of 9.84 wt% CO₂ (2.23 mmol CO₂/g); was achieved at 50 °C, however, as temperature increased, the adsorption capacity decreased. For the MA4-CO₂ sample, the CO₂ capture temperature was increased (30-150 °C), the adsorption capacity remained constant with an average value of 16.21 wt.% (3.69 mmol CO₂/g). From TGA analysis, is must be pointed out that the total weight loss for all samples is associated with full CO₂ desorption. The samples show the same decay profile, showing two types of weight loss (wt.%), which means that the samples are independent of CO₂ sorption pressure and the temperature. This desorption behavior is associated with their specific structural characteristics, and show the same chemical desorption species. The first stage of decomposition is observed from room temperature to 300 °C, which corresponds to the CO₂ physisorbed on the MgO modified with γ-Al₂O₃ surface. The second stage of decomposition is observed in the range of 300 to 700 °C, which corresponds to residual carbonate decomposition. As can be seen, the MA4-CO₂ sample has the higher efficient CO₂ capture, due to the mechanical milling process for 4 h with PCA modified its properties, such as size grain, specific area, dislocations, pore volume and pore area, which improved their CO₂ adsorption capacity with respect to MA2-CO₂ sample obtained without PCA. The MA1-CO₂ and MA3-CO₂ samples (figure not shown) showed the same weight decomposition profile by TGA, as in the case of the MA2-CO₂ and MA4-CO₂ samples. The total weight loss for these samples was 7.88 wt.% (1.79 mmol CO₂/g) and 14.7 wt.% (3.36 mmol CO₂/g) when exposed to 30°C under CO₂ pressures of 2 bar, respectively. Other authors (e.g. Chen, et. al. [10]) obtained a MgO/carbon sphere nanocomposite via the solid-state grinding method with a CO₂ adsorption capacity of 3.08 mmol/g at 1 bar of pressure and 25 °C; Zhang, et. al. [4] obtained MgO/γ-Al₂O₃ with a molar ratio of 2, reaching a maximum CO₂ adsorption capacity of 1.06 mmol/g at 1 bar and 60 °C.

![Figure 5](image_url)
Figure 5. TGA curves for the MgO modified with γ-Al₂O₃ (MA2-CO₂ and MA4-CO₂ samples) after sorption of CO₂: a-d) at different pressures and temperatures.
3.4.2 DSC analysis

Figures 6(a-d) correspond to the heat flow curves obtained at different pressures and temperatures for MA2-CO2 and MA4-CO2 samples. As can be noticed, not endothermic peak was identified during the process of CO2 desorption. It means that the release of CO2 in the mixture of oxides is due to a process of physisorption. All the heat flow curves obtained at different pressures and temperatures show similar decay profiles of the CO2 desorption process. For MA4-CO2 sample an exothermic peak between 570-580 °C is observed, this can be due to the chemical reaction between MgO and γ-Al2O3 to form the MgAl2O4 during the desorption of CO2 showed by simultaneously differential scanning calorimetry-thermogravimetric analyses and confirmed by the XRD results (Figure 7).

![DSC curves](image)

Figure 6. DSC curves for the MgO modified with γ-Al2O3 (MA2-CO2 and MA4-CO2 samples) after sorption of CO2: a-d) at different pressures and temperatures.

3.5 Characterization of samples subject to CO2 desorption process

3.5.1 XRD analysis

To identify the crystalline phases presents in the samples after CO2 desorbed process by TGA-DSC, (denoted as MA1D, MA2D, MA3D y MA4D) were characterized by XRD. The XRD pattern of the MA1D sample (Figure 7(a)) shows the main crystalline phase of MgO, and in less intensity, the Al2O3 phase. The crystallite size for the main phase of MgO was 15 nm. In the diffractogram of MA2D sample (Figure 7(b)), the crystalline phase of MgO was observed and, in less intensity, the crystalline phases of Al2O3, MgCO3 and C. For this phase of MgO, the crystallite size was 14 nm. For MA3D sample (Figure 7(c)), MgO was also identified as the main phase and in lower intensities, the phases of Al2O3, MgCO3 and C. The crystallite size for the MgO phase was 12 nm. The XRD pattern for MA4D sample is shown in Figure 7(d), in which the main phase corresponds to MgO: in which the other phases in minor intensities were identified as Al2O3 and MgAl2O4. The average crystallite size for the main phase of MgO was 10 nm. It must be mentioned that the crystallite size of the main phases was determined by using the Debye-Sherrer equation.
Optimization of mechanical milling process to obtain MgO modified with γ-Al_2O_3 and improve its...

IV. Conclusions

MgO modified with γ-Al_2O_3 samples were obtained by high-energy mechanical milling from MgO and γ-Al_2O_3 powders. The addition of methanol as a process control agent (PCA) during the milling process increased its textural and microstructural properties such as the specific surface area, pore area and pore volume with respect to the sample obtained without PCA. The milling time favored the reduction in grain size to nanometric scale and the creation of dislocations in the crystalline lattice, which helped to improve the adsorption processes of CO$_2$ in the MgO modified with γ-Al_2O_3. The main phase for the samples obtained at 2 and 4 h of mechanical milling with and without process control agent was MgO. The results of the thermogravimetric analysis showed that the samples obtained with and without PCA have great affinity and selectivity for CO$_2$ adsorption at low temperatures and moderate pressures. The MgO modified with γ-Al_2O_3 and obtained at 4 h of milling with methanol reached the best sorption of CO$_2$ with a maximum capture of 20.06 wt% (4.55 mmol CO$_2$/g). MgO modified with γ-Al_2O_3 has good CO$_2$ adsorption capacity, excellent stability, and can be prepared easily, which make it viable alternative as a CO$_2$ capture technology in industrial applications.

Acknowledgment: The authors thank the financial support of the ININ through the project CB-706.

References

Figure 7. XRD patterns of MgO modified with γ-Al_2O_3 sample subject to CO$_2$ desorption process.
Optimization of mechanical milling process to obtain MgO modified with γ-Al2O3 and improve its...

DOI: 10.9790/2402-1403015967 www.iosrjournals.org 67 | Page