Physio-Chemical and Sensory Characteristics of Pasta Fortified With Chickpea Flour and Defatted Soy Flour

1. Khalid Bashir, 2. Dr Vidhu Aeri, 3. Lubna Masoodi,
1. Department of Food Technology
2. Faculty of Engineering and Interdisciplinary Sciences
3. Jamia Hamdard, Hamdard University, New Delhi-62

Abstract: Pasta is a popular carbohydrate based food because of its low glycaemic index (GI) and ease of preparation, its low GI can be attributed to its specific structure. Effects of fortification of pasta with the combination of chickpea flour and defatted soy flour at different levels were assessed on the nutritional, sensory and cooking quality of the pasta. The fortification of durum wheat semolina was done by the combination of chickpea flour and defatted soy flour at levels (0,0)% containing only semolina as control, (10,6)%, (14,10)%, (18,14)% respectively. A novel legume fortified pasta product was successfully produced and it was observed as the concentration of legumes was increased the cooking time also increased. The cooking quality of the pasta was enhanced by steaming. On the basis of cooking and sensory quality, pasta containing 14% chickpea flour and 10% defatted soy flour resulted in better quality and nutritious pasta.

Keywords: Pasta, Cooking quality, Sensory quality, Protein supplementation

I. Introduction

Pasta is a staple food of traditional Italian cuisine, now renowned worldwide. It takes the form of unleavened dough, mostly of durum wheat, rarely buckwheat flour, water and sometimes eggs. Pasta comes in a variety of different shapes that serve for both decoration and to act as a carrier for the different types of sauce. Pasta also include varieties, such as ravioli and tortellini that are filled with other ingredients, such as ground meat or cheese (Serventi and Sabban 2002). Pasta products, traditionally manufactured from durum wheat semolina, known to be the best raw material suitable for pasta production (Feillet and Dexter 1996). Pasta is a source of carbohydrates (74–77%, dry basis) whose interest is increasing due to its nutritional properties, particularly its low glycaemic index (GI) (Monge et al 1990). Pasta also contains 11–15% (db) proteins but is deficient in lysine and threonine (the first and second limiting amino acids), common to most cereal products (Abdel-Aal and Hucl 2002; Kies and Fox 1970). This provides an opportunity for the use of non-traditional raw materials to increase the nutritional quality of pasta (Del Nobile et al. 2008). Among these non-traditional raw materials, legumes represent an interesting source of proteins, fibres, vitamins and minerals. Legume proteins are relatively low in sulphur-containing amino acids, methionine, cysteine and tryptophan, but high in lysine. Consequently, legumes and cereals are nutritionally complementary (Duranti 2006).

Although pasta products were first introduced in Italy in the 13th century, efficient manufacturing equipment and high-quality ingredients have been available only since the 20th century (Agnesi E. 1996). Prior to the industrial revolution, most pasta products were made by hand in small shops. Today, mostly pasta is manufactured by continuous, high capacity extruders, which operate on the auger extrusion principle in which kneading and extrusion are performed in a single operation. Due to the nutritional advantages and along with the appeal of pasta amongst consumers, have made this food product a potential vehicle for nutraceuticals, such as vitamins or polyunsaturated fatty acids (Verardo V. et al. 2009). In fact, pasta was one of the first foods for which USFDA permitted vitamin and iron enrichment in 1940’s (Marconi E. and Carcea M. 2001). AmudhaSenthil, Bhat et al. (2002), blended wheat flour and defatted soya flour in the ratio of 65:20, 60:25, 55:30 and 45:40; were studied in respect of dough characteristics and quality of fried savoury and sweet snacks prepared from them. Farinograph characteristics of flour blends showed that as the proportion of soya flour increased there was a slight increase in water absorption and decrease in dough stability. Prabhshankar et al. (2007) studied the influence of whey protein concentrate on the quality of vermicelli and found that addition of WPC at 5% level increased the protein valve of pasta. Limroongreungrat and Huang (2007) studied that alkaline treated sweet potato flour could be used as an alternative ingredient in the preparation of nutritious pasta. Depigmentation of pearl millet was carried out by Rath et al. (2004) to use in the preparation of pasta. Their results indicate that depigmentation was an effective process technique to develop acceptable pearl millet products having improved invitro protein and starch digestibility. A number of research studies have been reported on baked products, extruded products and deep fat fried snacks made from cereal and legume flours supplemented with soya flour. Singh, and Chauhan (1996) showed that a maximum of 20% soya flour can be incorporated to prepare acceptable quality biscuits. Cookies, macaroni and burger prepared from flour mixtures
using wheat, soya and defatted sesame flour blends in various proportions were sensorily evaluated and the results revealed that products had good acceptance (Marques, Bora, & Narain, 2000).

Osorio et al. (2008) prepared chickpea supplemented pasta, a dietic alternative for people with low calorie requirements. Young-Soo-Kim (1998) prepared wet noodles from wheat flour with 3, 5 and 7% oyster mushroom and oak mushroom with improved protein and fibre contents having better acceptability. Alonso et al. (2001) reported that thermal treatments of peas improved their nutritional quality without reducing the hypercholesteremic properties. To retain the vitamin C and chlorophyll pigments in peas, blanching for 2 min at 80°C inactivated 90% of peroxidase (Gokmen et al. 2005). Pea products increased the protein content by about 23% and also the textural quality of spaghetti produced was similar to durum spaghetti (Nielsen et al. 1980).

ZanetaUgaric-Hardi, Marko Jukic et al. (2008) studied the quality parameters of noodles made with various supplements (extruded maize, maize, defatted soy flour and maize/soy flour blends, lecithin and wheat straw). The noodles made with extruded maize flour, maize flour, and wheat straw supplements had the highest total sensory score. Cooking losses of these samples were below 10%. Maud Petiot et al. (2010) investigated the impact of legume flour addition on pasta structure and the inherent consequences on the in vitro digestibility of starch. The addition of high level (35% w/w) of legume flour, split pea flour, induced some minor structural changes in pasta. M. L. Sudha, K. Leelavathi (2010), effect of dehydrated green pea flour (DGPF) and additives like glycerol mono stearate (GMS), sodium stearoyl lactylate (STL) and dry gluten on the rheological characteristics and pasta making quality made from Indian Triticum aestivum was studied, 5-10% of amaranth seed flour was used in the formulation to enhance the protein and fibre of the product.

Gurpreet Kaur, Savita Sharma et al. (2011), produced pasta enriched with different plant proteins (mushroom, defatted soy flour). The pasta containing 8% mushroom powder increased the cooking time. Keeping in view the nutritive aspects of the plant proteins, the main objectives of the present investigation was to improve the nutritional, cooking and sensory qualities of the pasta.

II. Materials And Methods

Semolina (Triticum durum), chickpea flour (Cicer arietinum) and defatted soy flour (Glycine max) were procured from the local market.

Sample preparation Four samples were prepared using sample one as Control containing only durum semolina, sample two contained semolina (84%), chickpea flour (10%) and Defatted soy flour (6%), sample three contained Semolina (76%), chickpea flour (14%) and Defatted soy flour (10%) and the fourth sample contained Semolina (68%), Gram flour (18%) and Defatted soy flour (14%). All the samples were passed through sieve (10 mesh) thrice to improve mixing.

Chemical characteristics Moisture, ash and fat content were determined according to AOAC 2000 methods. Protein content was determined as per (IS: 7219:1973): Kjeldhal Method, protein content was obtained by using the conversion factor of 6.25. Dietary fibre was determined by (IS: 11062).

<p>| Table 1: Alverograph readings of Semolina. |</p>
<table>
<thead>
<tr>
<th>S. No.</th>
<th>Resistance (P) cm</th>
<th>Extensibility (L)</th>
<th>Strength (W) cm²</th>
<th>P/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>107</td>
<td>135</td>
<td>251</td>
<td>0.80</td>
</tr>
<tr>
<td>2</td>
<td>109</td>
<td>135</td>
<td>252</td>
<td>0.807</td>
</tr>
<tr>
<td>3</td>
<td>109</td>
<td>135</td>
<td>252</td>
<td>0.807</td>
</tr>
<tr>
<td>4</td>
<td>110</td>
<td>134</td>
<td>252</td>
<td>0.82</td>
</tr>
<tr>
<td>Mean</td>
<td>109</td>
<td>134.75</td>
<td>251.75</td>
<td>0.8087</td>
</tr>
</tbody>
</table>

P was calculated from the maximum height reached by the curve, L was taken from the total length from the time it starts to blow up until the bubble breaks and W was taken from the area under the alveogram (curve).

<p>| Table 2: Proximate composition of raw materials. |</p>
<table>
<thead>
<tr>
<th>Raw materials</th>
<th>Moisture, %</th>
<th>Ash, %</th>
<th>Fat, %</th>
<th>Dietary fibre, %</th>
<th>Carbohydrate, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semolina</td>
<td>11.56 ± 0.31</td>
<td>0.80 ± 0.01</td>
<td>1.02 ± 0.02</td>
<td>12.99 ± 0.25</td>
<td>73.92 ± 0.19</td>
</tr>
<tr>
<td>Chickpea flour</td>
<td>10.99 ± 0.39</td>
<td>2.59 ± 0.25</td>
<td>4.57 ± 0.26</td>
<td>21.61 ± 0.37</td>
<td>9.71 ± 0.23</td>
</tr>
<tr>
<td>Defatted soy flour</td>
<td>7.14 ± 0.11</td>
<td>5.93 ± 0.09</td>
<td>0.77 ± 0.05</td>
<td>49.90 ± 0.37</td>
<td>6.94 ± 0.17</td>
</tr>
</tbody>
</table>

Mean Value ± standard deviation
III. Pasta Preparation

Semolina, chickpea flour and defatted soy flour blends were prepared in the ratio of 100:0:0, 84:10:6, 76:14:10, 68:18:14 respectively. In each case an amount of 700g was taken. Required amount of water was then added (31%) in the mixing chamber of the double screw extruder (Le monferrina, Masoero Arturo, Italy) for 10 min to distribute the water uniformly throughout the flour. The flour was extruded through an adjustable die (No. 225). The speed of the revolving sharp blade cutter in front of the die was adjusted so that the length of the pasta finished at 1.5cm and the thickness of 1mm for each sample. Prior to drying each sample was steamed for 30 min, steaming results in the partial gelatinization of the starch thereby preventing the cooking loss. The drying of pasta was carried out in Hot Air oven at 75°C for 3hrs (as per DWR Karnal). The dried products were packed in polyethylene. The main objective of the drying was to reduce the moisture content of the samples below 10%. The samples were then subjected to various chemical and sensory analyses.

Cooking quality The cooking quality was determined by minimum cooking time as per AACC 2000.

Sensory evaluation Pasta was evaluated for overall acceptability (colour, texture, aroma and taste) and was carried out as per 9 point Hedonic scale, by the help of ten semi trained judges.

Statistical analysis ANOVA - post hoc comparison ns. The means were compared using Duncan’s multiple range test (2007).

Results and Discussion

Alverograph characteristics of semolina The mean resistance (P), of the semolina was found to be 109, which was calculated from the maximum height reached by the curve, the mean extensibility (L) was found to be 134.7, which was taken from the total length from the time it starts to blow up until the bubble breaks and the strength (W) was taken from the area under the alveogram (curve), Table 1. As per the IS the values of W and P/L should be greater than or equal to 250 and 0.8 respectively for pasta making.

Proximate composition of raw materials Defatted soy flour had highest protein and ash content followed by chickpea flour and semolina, Table 2. Chickpea flour had highest fat and dietary fibre while semolina contained higher carbohydrate content.

Proximate composition of pasta samples Fortification of pasta resulted in increased protein, fat, ash and dietary fibre content, while as carbohydrate content was decreased, as compared to control. The results agreed with other research workers, Gurpreet et al. 2011, Young-Soo-Kim 1998, Osorio et al. 2008, Bahnassey and Khan 1986, who reported the incorporation of plant proteins, oyster, oak mushroom, bengal gram flour increased the protein content, fibre content, moisture content and ash content of the final products. The results showed a significant difference as the fortification was increased (p ≤ 0.05), Table 3.

Cooking quality of pasta samples The cooking time of pasta samples was significantly increased as compared to the control sample, in each case 10g of sample was taken and cooked, Table 4. Oh et al. (1985) observed that cooking time of the noodles increased linearly with protein content. The water absorption also increased when the fortification was increased as compared to the control.

Sensory characteristics of pasta samples Sensory evaluation was carried out as per 9 point Hedonic scale, Table 5. The values are the means of ten readings. Among the three fortified samples, the second sample had highest overall acceptability, compared to the control.
Physio-Chemical And Sensory Characteristics Of Pasta Fortified With Chickpea Flour And Defatted

Table 3: Proximate composition of pasta samples

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Moisture. %</th>
<th>Ash. %</th>
<th>Fat. %</th>
<th>Protein. %</th>
<th>Dietary fibre. %</th>
<th>Carbohydrate. %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>9.17 ± 0.29a</td>
<td>1.20 ± 0.01a</td>
<td>0.93 ± 0.00a</td>
<td>11.97 ± 0.30a</td>
<td>2.76 ± 0.13a</td>
<td>76.29 ± 0.39a</td>
</tr>
<tr>
<td>Sample 1</td>
<td>10.55 ± 0.48b</td>
<td>1.28 ± 0.02a</td>
<td>1.23 ± 0.11b</td>
<td>14.50 ± 0.50b</td>
<td>4.04 ± 0.21b</td>
<td>72.30 ± 0.82c</td>
</tr>
<tr>
<td>Sample 2</td>
<td>10.65 ± 0.26b</td>
<td>1.35 ± 0.07a</td>
<td>1.40 ± 0.01c</td>
<td>17.99 ± 0.50c</td>
<td>4.19 ± 0.04bc</td>
<td>68.55 ± 0.22b</td>
</tr>
<tr>
<td>Sample 3</td>
<td>11.33 ± 0.29c</td>
<td>1.70 ± 0.21b</td>
<td>1.53 ± 0.01d</td>
<td>18.13 ± 0.50c</td>
<td>4.30 ± 0.02c</td>
<td>67.31 ± 0.58a</td>
</tr>
</tbody>
</table>

*a mean value ± standard deviation (n = 3)

bMean values marked with different superscripts in the same column are significantly different-Duncan (p ≤ 0.05).

Table 4: Cooking time of pasta samples.

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Cooking time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>7.32 ± 0.22a</td>
</tr>
<tr>
<td>Sample 1</td>
<td>8.32 ± 0.10b</td>
</tr>
<tr>
<td>Sample 2</td>
<td>8.62 ± 0.06b</td>
</tr>
<tr>
<td>Sample 3</td>
<td>9.07 ± 0.17c</td>
</tr>
</tbody>
</table>

*a Mean values ± standard deviation (n = 3)

bMean values marked with different superscripts in the same column are significantly different-Duncan (p ≤ 0.05).
Physio-Chemical And Sensory Characteristics Of Pasta Fortified With Chickpea Flour And Defatted

Table 5: Sensory scoresa,b of pasta samples.

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Color</th>
<th>Texture</th>
<th>Aroma</th>
<th>Taste</th>
<th>Overall acceptability</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>8.40 ± 0.52a</td>
<td>8.30 ± 0.48b</td>
<td>8.00 ± 0.67a</td>
<td>8.20 ± 0.42a</td>
<td>8.60 ± 0.57b</td>
<td>8.20 ± 0.42b</td>
</tr>
<tr>
<td>Sample 1</td>
<td>7.9 ± 0.74a</td>
<td>7.6 ± 0.52a</td>
<td>7.00 ± 0.82a</td>
<td>7.8 ± 0.63a</td>
<td>7.5 ± 0.71a</td>
<td>7.5 ± 0.71a</td>
</tr>
<tr>
<td>Sample2</td>
<td>8.2 ± 0.42b</td>
<td>8.0 ± 0.47b</td>
<td>8.1 ± 0.57b</td>
<td>8.1 ± 0.32b</td>
<td>8.2 ± 0.03b</td>
<td>8.1 ± 0.32b</td>
</tr>
<tr>
<td>Sample3</td>
<td>7.4 ± 0.84a</td>
<td>7.7 ± 0.48a</td>
<td>7 ± 0.94a</td>
<td>7.7 ± 0.67a</td>
<td>7.5 ± 0.71a</td>
<td>7.3 ± 0.67a</td>
</tr>
</tbody>
</table>

aMean values ± standard deviation (n = 10)

bMean values marked with different superscripts in the same column are significantly different-Duncan (p ≤ 0.05).

IV. Conclusion
Defatted soy flour and chickpea flour increased the protein, fibre and ash content of the pasta keeping the fat at optimum level. Fortification increased the cooking time, water absorption and stiffness of the samples than control. Fortified pasta was highly acceptable with respect to sensory attributes and cooking time. On the basis of cooking and sensory quality, pasta when fortified with blends of 10% Chickpea flour and 6% defatted soy flour resulted in better quality and nutritious pasta (carbohydrate content 68.61%, protein content 17.99%, fat content 1.40% and fibre content 4.19%). Resultant pasta can be used as a nutritious food for low income group in developing countries and for patients suffering with life style diseases.

References

