Estimation of Worker’s Exposure to Thorium from Lanthanide Concentrate and Water Leach Purification Residue via Ingestion

NurShahidah Abdul Rashida, ShazanaAthirahYunusa, AmranAb.Majida, KhooKokSiongab

aSchool of Applied Physics, Faculty of Science and Technology, UniversitiKebangsaan Malaysia (UKM), 43600 Bangi, Selangor, Malaysia.
bTel: +60389214506; Fax: +60389213777; E-mail: khoo@ukm.edu.my

I. Introduction

Thorium is a radioactive element occurring naturally in low concentrations (about 10 ppm) in the earth’s crust (HPS, 2014). Small amount of thorium found in soil is harmful when exposed to human. It is harmful to humans, who can be exposed to the small amounts found in the soil (HPS, 2014). Higher level of 232Th radionuclides are present in geological material such as monazite sand. Essentially all naturally occurring thoriums are presented as 230U radionuclide and 232Th radionuclide. 230U radionuclide is a radioactive decay product of 232Th radionuclide which can be found at low concentration in uranium deposits and mill tailings (HPS, 2014).

In 2012, the Malaysian government awarded Lynas Advanced Material Plant (LAMP) license to process rare earth elements (MOSTI, 2012). Lanthanide concentrate (LC) is transferred into the Advanced Materials Plant where it is subjected to the cracking and separation process involving concentrated acid in a rotary kiln and water leaching of the calcine. These processes are followed by three stages of leaching and solid-liquid. In separation process, solvent extraction will be used to separate, purify and concentrate the lanthanide elements. The lanthanide elements are finally precipitated and calcined to produce a range of carbonate and oxide products. After that, three separate residues are produced known as Flue Gas Desulphurisation (FGD), Neutralisation Underflow (NUF) and Water Leach Purification (WLP). WLP is the main residue produced by LAMP the extraction process of leaching and purifying the water soluble lanthanide components of calcined and cracked lanthanide concentrate (MOSTI, 2012). It also have the highest radionuclide and toxic content than NUF and FGD (Schüler et al., 2011).

Lanthanide concentrate and WLP can enter the human digestive system either directly or (indirectly) via contaminated soil. The thorium radionuclide, 232Th, may enter the human digestive system via intentional or accidental intake of (contaminated) soil. Intake of LC and WLP may inadvertently occur through consumption of food contaminated with soil, via either inhalation or swallowing of dust suspended in the air, or directly from hand-to-mouth (particularly by children, when playing with soil) (Stanek and Calabrese, 2000). Living near a thorium contaminated site, or working in an industry where thorium is widely used, increases the probability of thorium exposure (EPA, 2014). Because of the radioactive nature of 232Th, this exposure can be a radiation hazard for workers. The increase of 232Th radionuclide in soil can occur either through uncontrolled mineral mining activities involving 232Th radionuclide, in addition to the leakage of radionuclides from the nuclear industry, such as rare earth processing plant or a nuclear accident that can cause pollution to human and environment (Arogunjo et al., 2009). When inhaling or ingesting 232Th radionuclide, it will be accumulated in human lungs, liver and skeleton tissues. Deposition of large quantities of 232Th radionuclide in particular organs produce radiation damages, biochemical and morphological changes. This results in weakening of immune systems, developing various types of disease/cancers and increase mortality rate (Abbady, 2004).

This study is aimed to investigate and measure human exposure to 232Th radionuclide derived from LC and WLP that enters the human digestive system in a simulated human digestive system for both adults and children. It is primarily focused on 232Th radionuclide found in LC and WLP. The objectives of this study are to determine the level of 232Th radionuclide solubility in LC and WLP and to analyse the effectiveness of 232Th radionuclide solubility with synthetic gastrointestinal fluids using USP in vitro digestion method.

II. Methodology

2.1. Study area

This study has been carried out in Lynas Advanced Materials Plant (LAMP), Gebeng, Pahang. The sampling location is shown in Fig. 1. Standard soil sample IAEA SOIL-312 (Valkovic et al. 1992) used as a reference standard in this study.

DOI: 10.9790/2402-1003017277 www.iosrjournals.org 72 | Page
2.2. XRF method

X-Ray Fluorescence Spectrometer (XRF) was used in this study to determine the concentration of 232Th radionuclide before ingestion method was carried out. The LC and WLP sample was dried, filtered and sieved to be refined until 1.0 g of sample was obtained. Later, all the samples were turned into pellet with a ratio of 1 : 6 of 1.0 g of sample and 6.0 g of ascorbic acid. Finally, the pellets were labeled and analysed using XRF. The performance of instrument was assessed by comparing XRF analysis result with the standard soil sample, IAEA SOIL-7 (Pszonicki et al. 1984).

2.3. US P method

The method described per the US Pharmacopia (US P) is used to determine the bioaccessibility of heavy metals in the stomach from contaminated soils using a synthetic gastric solution, originally developed based on Hamel et al. (Hamel et al., 1998) experiment which currently used to determine the bioaccessibility of heavy metals in the stomach from contaminated soils using a synthetic gastric solution. The methodology uses the US P Simulated Gastric Fluid (NaCl, HCl and pepsin) to extract the 232Th radionuclides at 37 ºC for two hours. Table 1 shows the preparation of saliva, gastric fluid and intestinal fluid. This method includes a simulated digestive tract method “intestinal phase” and a simulated gastric extraction method “gastric phase”.

Table 1: Preparation for the saliva, gastric fluid and intestinal fluid.

<table>
<thead>
<tr>
<th></th>
<th>Saliva</th>
<th>Gastric Fluid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium Chloride (NaCl)</td>
<td>0.4 g</td>
<td>Sodium Chloride (NaCl) 2.0 g</td>
</tr>
<tr>
<td>Potassium Chloride (KCl)</td>
<td>0.4 g</td>
<td>Pepsin 3.2 g</td>
</tr>
<tr>
<td>Calcium Chloride (CaCl$_2 \times 2$H$_2$O)</td>
<td>0.6 g</td>
<td>Hydrochloric Acid 30% (HCl) 7.0 ml</td>
</tr>
<tr>
<td>Magnesium Chloride (MgCl$_2 \times 6$H$_2$O)</td>
<td>0.96 g</td>
<td></td>
</tr>
<tr>
<td>Mucin</td>
<td>4.0 g</td>
<td></td>
</tr>
<tr>
<td>Urea</td>
<td>1.0 g</td>
<td>Urea 1.0 g</td>
</tr>
<tr>
<td>Final pH</td>
<td>5.5</td>
<td>Final pH 2.0</td>
</tr>
</tbody>
</table>

Intestinal Fluids

<table>
<thead>
<tr>
<th></th>
<th>16.8 g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium Bicarbonate (NaHCO$_3$)</td>
<td></td>
</tr>
<tr>
<td>Final pH</td>
<td>7.5</td>
</tr>
</tbody>
</table>

These methods are generally run at the temperature of 37ºC, but the extraction time, pH and particular composition of the respective simulated digestive fluids are varied (Wragg and Cave, 2003). Fig. 2 shows the sequence of US P method. Both LC and WLP were prepared for this experiment. The filtered concentrations of 232Th radionuclides was measured by inductively coupled plasma mass spectrometry (ICP-MS).
The concentration of 232Th radionuclide was calculated based on the following equation:
\[
\rho = \frac{c \cdot M}{V}
\]
where ρ is the sample concentration (mg/kg), c is the mean of the sample from the ICP-MS analysis (ppb), V is the volume of the sample in this experiment and M is the mass of the sample.

The value of committed effective dose and the committed equivalent dose was calculated by using equation as follows:
\[
H_A = \sum I_{A\text{Th}} h_{A\text{Th}}
\]
Where H_A is the committed effective dose or the committed equivalent dose (Sv) by ingestion, $I_{A\text{Th}}$ is the activity (Bq) of 232Th radionuclide in samples (Bq/kg), $h_{A\text{Th}}$ is the ingestion dose coefficient (Sv/Bq) for the effective dose or for the target organs for 232Th radionuclides. Based on IAEA 1999, given the committed effective dose for 232Th radionuclide is 0.23 µSv/Bq and committed equivalent tissue dose per unit activity ingested by adults are 0.7 µSv/Bq for bone surfaces, 0.78 µSv/Bq for kidney and 0.74 µSv/Bq for liver (IAEA, 1999).

The mortality cancer risk was estimated by using equation as follows:
\[
ELCR = A_{ir} \cdot A_{rs}
\]
Where A_{ir} is the annual intake of 232Th radionuclide in the sample (Bq), A_{rs} is the average span of life (74 years) and mortality risk coefficient (Bq$^{-1}$) of the sample (Asaduzzaman et al., 2015).

III. Results and discussion

The concentrations of 232Th radionuclide determined by XRF and ICP-MS are summarized in Table 2. X-ray fluorescence (XRF) spectrometry analysis shows that WLP had the highest concentration of 232Th radionuclide (27.0 mg/kg) followed by LC (18.0 mg/kg). This represents the concentration of 232Th radionuclide before ingestion. The 232Th radionuclide in the LC sample was broken down after cracking and leaching process. 232Th radionuclide in the WLP sample was more soluble than that in the LC sample. The WLP process will generate the most radioactive and contaminated tailings by producing heavy elements such as thorium and uranium (Mehta and Monteiro, 2006). In addition, the concentration of 232Th radionuclide in LC and WLP before undergoing the digestive tract method analysis was found to be dependents on soil origin and process (NTN, 2012).

<table>
<thead>
<tr>
<th>Sample</th>
<th>XRF (mg/kg)</th>
<th>Solubility of 232Th radionuclide (ICP-MS)</th>
<th>Specific Activity of 232Th radionuclide (ICP-MS)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gastric Phase</td>
<td>Intestinal Phase</td>
<td>Gastric Phase</td>
</tr>
<tr>
<td>LC</td>
<td>18.0</td>
<td>0.398 ± 0.007</td>
<td>0.084 ± 0.000</td>
</tr>
<tr>
<td>WLP</td>
<td>27.0</td>
<td>7.430 ± 0.214</td>
<td>0.066 ± 0.001</td>
</tr>
</tbody>
</table>

Fig. 3 shows that the concentration of 232Th radionuclide from the WLP samples was highest in the gastric phase (7.43±0.21 mg/kg) and decreased during the intestinal phase (0.066±0.001 mg/kg). The concentration of 232Th radionuclide from LC samples was 0.398±0.007 mg/kg in the gastric phase and 0.084±0.001 mg/kg in the intestinal phase. The decreases were caused by different pH values of the synthetic gastric fluid and synthetic intestinal fluid, with an increased concentration of 232Th radionuclide in gastric phase, which has more acidic. Furthermore, the specific activity of 232Th radionuclide for WLP was highest in the
gastric phase (30.166 ± 0.869 Bq/kg) and decreased in the intestinal phase (0.268 ± 0.004 Bq/kg). However, the specific activity for LC increased in the intestinal phase: 1.616 ± 0.028 Bq/kg vs. 0.341 ± 0.000 Bq/kg in the gastric and intestinal phase, respectively.

According to Oliver et al. (Oliver et al., 1999), lowering the pH of the synthetic gastric fluid increases the solubility of trace elements. This leads to 232Th radionuclide being dissolved in acid by means of a chemical reaction(Jernström et al., 2002). Additionally, 232Th radionuclide reacts chemically in acidic than in alkaline conditions. According to Lynas report, in the refining process over 99% of 232Th radionuclide is removed from LC to WLP and through calcination at temperature up to 600°C, 232Th is then converted into refractory and insoluble forms and disposed into WLP residue. A fundamental chemical property of 232Th poor solubility at a pH greater than 1 (AL-Areqi et al., 2014). The decrease in soluble concentrations of 232Th radionuclides in LC and WLP during the intestinal phase could be because of chemical precipitation at pH 7.5, and the formation of less soluble or insoluble 232Th compounds because of absorption by soil minerals, organic material and other suspended solids (Höllriegel et al., 2010).

According to the Washington State Department of Health (WSDH, 2002), the level of daily intake of 232Th radionuclide in the form of food or liquid is 3 mg kg$^{-1}$. We found the concentration of WLP residue in the intestinal phase, which is the site at which 232Th is absorbed into human bloodstream, to be significantly lower than the value referred in the guideline by Washington State Department of Health (WSDH, 2002).

The maximum concentration of 232Th radionuclide in the intestinal phase for high risk cases was 0.084 mg/kg (Table 2). The daily intake of 232Th radionuclide is 0.021 mg/kg/day. Calculating from this value, about 4.2 µg/kg/day of soluble 232Th radionuclide will enter the human blood stream. This is below the minimum risk level (of 3 mg/kg/day). Thus, the concentrations of 232Th, based on these in vitro extraction techniques are considered safe.

The specific activity of 232Th radionuclide in this study for high risk cases is 0.3410 Bq/kg. Thus, the committed equivalent dose of 232Th radionuclide is 2.387 x 10$^{-5}$ µSv on the bone surface, 2.660 x 10$^{-5}$ µSv in the kidney, and 2.523 x 10$^{-5}$ µSv in the liver. The estimated annual committed effective dose of 232Th radionuclide is 1.718 x 10$^{-2}$ µSv which is lower than the annual doses (20 mSv) recommended by the Strategies and Methods for Optimization of Internal Exposures (SMOPIE) project’s occupational exposure guidelines for rare earth element processing (UNSCEAR, 2000). Thus, the result was the permitted level and safe without posing any significant radiological threat towards population. However, the level of exposure depends on a number of factors, including the type of mine, the geology and the working conditions, particularly the ventilation (UNSCEAR, 2000).

According to Sathyapriya et al. (Sathyapriya et al., 2012), about 0.02 to 0.05% of the ingested 232Th is absorbed into the bloodstream via the intestines tracts. 232Th radionuclide which enters the human body will accumulate inside the lungs, liver and bones. Of that, about 70% is deposited in the bone, where it is retained with a biological half-life of about 22 years, 4% is deposited in the liver where it is retained with a biological half-life 700 years and 16% is uniformly distributed to all the other organs and body tissues, where it is cleared with a biological half-life of 700 years (according to simplified models that do not reflect intermediate redistribution) (Sathyapriya et al., 2012). The remaining 10% eliminated in urine via the kidneys (ATSDR, 1990).

In this study, the risk of mortality from cancer was 1.354 x 10$^{-4}$. This gives an annual probability of death 1.0 x 10$^{-4}$ lower than acceptable lifetime cancer risk limit of 1.0 x 10$^{-3}$ for general radiological risk (Patra et al., 2013). Studies have shown that inhalation of thorium dust increases the risk of developing both lung and pancreatic cancer. The risk of bone cancers is also increased because thorium may be stored in the bones.
By natural processes, 232Th radionuclide is transferred to other living beings via various paths. These need to be monitored and potential hazards need to be assessed. Environmental studies are generally conducted to trace the pathway of radionuclide/radioactive elements that affect living beings. However, environmental monitoring and meaningful interpretation of data from man-made pollution are made complicated if adequate knowledge exists about the natural abundance of radioactive elements in the environment (El-Taher et al., 2005).

IV. Conclusions

The concentration of 232Th radionuclide from the WLP samples was found to be highest during the gastric phase (7.43±0.21 mg/kg) and decreased during the intestinal phase (0.066±0.001 mg/kg). Similarly, the concentration of 232Th radionuclide from the LC samples was greater during the gastric than during the intestinal phase (0.398±0.007 mg/kg and 0.084±0.001 mg/kg, respectively). The decrease is caused by the differences of pH value of synthetic gastric fluid and synthetic gastrointestinal fluid. The committed equivalent doses from assessment of the bone, kidney and liver were 2.387x10$^{-3}$µSv, 2.660 x 10$^{-3}$µSv and 2.523 x 10$^{-3}$µSv, respectively. The annual committed effective dose of 232Th radionuclide was 1.718 x 10$^{-2}$µSv. The lifetime cancer risk because of 232Th radionuclide exposure was determined to be 1.354 x 10$^{-4}$.

This study shows that occupational exposure to 232Th radionuclide by ingestion should pose no threat to the health of workers. Guidelines for monitoring processes and methods for assessing 232Th radionuclide intakes arising from occupational or public exposure are required.

Acknowledgement

The authors would like to thank the Ministry of Education Malaysia for financial support under the project code DLP/2014/011.

References

[10] MOSTI.Ministry of Science, Technology and Innovation, 2012. Ruling on the appeal against the decision of the atomic energy licensing board to approve, with conditions, a temporary operating licence (tol) to

DOI: 10.9790/2402-10030172777 www.iosrjournals.org 76 | Page
Estimation of Worker’s Exposure to Thorium from Lanthanide Concentrate and Water L…

