Eco-Fibers: Product Of Agri-Bio-Waste Recycling

Saroj Devi¹, Charu Gupta², M.S. Parmar³, Shankar Lal Jat⁴ and Nidhi Sisodia⁵

¹Research Scholar, Department of Fabric & Apparel Science, Institute of Home Economics, University of Delhi, Corresponding Author: Saroj Devil

ABSTRACT: Indian agriculture is producing very large quantity, approximately 500 million tonnes of crop residues every year (MNRE, 2016) which may either burnt in the field that produces green house gases ultimately or left in the field unutilized. Here, a review work has been done to get an eco-friendly fiber which would be the product of extraction of all possible agriculture based bio-waste, crop residues, stalks, straw etc of rice, wheat, maize, sunflower and mach more. Here all possible methods of fiber extraction like different retting processes, namely, dew, water, enzymatic, mechanical, and chemical retting, mechanical and alkali methods were comprehensively reviewed to find out suitable methodology. Chemical and Enzymatic extraction process has apparent advantages over the retting processes by having significantly shorter retting time and acceptable quality fibres, but it is quite expensive. Review paper also reveals about properties of fiber extracted from different agriculture based biowaste sources.

Keywords: Agriculture Based Bio-Waste, Crop Residues, Fiber Extraction Methods, Eco-Friendly

Date of Submission:29-08-2016	Date of acceptance: 08-09-2017

I. INTRODUCTION

Food security has been forced to produce more and more food grains. India produces 252.4 million tonnes of food grains in 2015-16. But this demand also contribute production of a very large quantity of crop residues, approximately 500 million tonnes of crop residues every year (Economic Survey, 2015-16, MNRE, 2016) and this may increase in future. With increased production of rice and wheat, residue production has also increased substantially. The RW system accounts for nearly one-fourth of the total CRs produced in India. (Sarkar *et al.*, 1999). The surplus CRs (i.e., total residues produced minus the amount used for various purposes) are typically burned on-farm. Management of rice straw, rather than wheat straw is a serious problem, because there is very little turn-around time between rice harvest and wheat sowing and due to the lack of proper technology for recycling. Among options available to farmers for the CRM (including burning), important are baling/removal for use as feed and bedding for animals, *in situ* incorporation in the soil with tillage, and complete/partial retention on the surface as mulch using zero or reduced tillage systems.

This crop residue are one of the biggest component of all agriculture bio waste which either left in field or its large amount, 140 million tones is burnt on the field primarily to clear the remaining straw and stubble after the harvest. Burning of crop residue is resulting into emission of significant quantity of air pollutants ad green house gases like CO_2 , N_2O , CH_4 , CO, NH_3 , NO_x , and SO_2 etc. Biomass burning from forest regions and agriculture crop residues can emit substantial amounts of particulate matter and other pollutants into the atmosphere.

Very small amount of crop residue is used as animal feed, composting, thatching for rural homes and fuel for domestic and industrial use. The field burning of CRs is a major contributor to reduced air quality (particulates, greenhouse gases), and impacts human and animal health both medically, and by traumatic road accidents due to restricted visibility in NW India. Besides, burning of CRs leads to a loss of organic matter and precious nutrients, especially N and S. The peak in asthmatic patients in hospitals in NW India coincides with the annual burning of rice residue in surrounding fields (Yadvinder-Singh *et al.* 2010b). Crop residue, a renewable resource, is an important component in ecosystem stability of the world's agricultural land. Developing techniques for effective utilization. of this vast resource is a major challenge. Almost all the leading newspapers of northern India published reports on the incidence of a thick cloud of smog that enveloped many parts of Delhi on November 2016.People experienced reduced visibility, besides irritation in the eyes and throat. This smog was attributed to the large scale burning of rice straw by farmers. The burning of the residue is not only a source of atmospheric pollution, but also leads to loss of rich renewable soil rejuvenating organic resource. Farmers opt for burning as it is a quick and easy approach for disposal of residue and enables farmers

to plant the next wheat crop well on time. This is the primary reason for burning rather than incorporating the same for soil enrichment.

Burning of crop stubble has severe adverse impacts especially for those people suffering from respiratory disease, cardiovascular disease. Pregnant women and small children are also likely to suffer from the smoke produced due to stubble burning. Inhaling of fine particulate matter of less than PM2.5 μ g triggers asthma and can even aggravate symptoms of bronchial attack. According to Singh et al. (2008), more than 60 % of the population in Punjab live in the rice growing areas and is exposed to air pollution due to burning of rice stubbles. As per the same study, medical records of the civil hospital of Jira, in the rice-wheat belt showed a 10 % increase in the number of patients within 20–25 days of the burning period every season.

Recently it has been scientifically focus towards extraction of fiber from all this agriculture based waste which may produce eco-friendly fiber for a different purpose. Here a review work has been made to obtain a possible best agriculture bio waste and suitable methods of extraction to fiber an eco-friendly fiber. As a kind of abundant and renewable agricultural residue, corn (Zea mays L.) Stover, that refers a combination of corn stalk (stem) and leaf, could be a low-cost and sustainable source for energy and chemicals in future. For a long time (since 1929) fibres obtained from corn waste materials have been studied and utilized for pulp and papermaking [Li 2012].

From the economic point of view it is preferable to produce fibres from locally available biomass waste in order to avoid high transport costs of the raw materials. Lignocellulosic agricultural by-products are a promising and beneficial source for cellulose fibres. Due to the chemical and physical properties, composition and sustainability agro based biofibres represent a potential for use in textile and paper industry for fibres, chemicals, enzymes and other industrial products. Annually renewable resources, e.g. corn, wheat, rice, sorghum, barley, sugarcane, pineapple, banana and coconut, etc. by-products are utilized as agro-based biofibres [Reddy 2005].

At national level there is a need to consider and address the issue of residues and by-products in the following areas like supply control; price control; technology transfer; legislation development; quality control; and agricultural research strengthening. It is essential to immediately launch a regional initiative for the improved use of crop residues and agro-industrial by-products, with the effective and sustainable involvement of relevant actors at national and regional levels.

II. MATERIALS AND METHODS

Environmental awareness today motivates the researchers, worldwide on the studies of natural fiber extraction through residue of different plant and crops. Several research papers, journals, websites, and textbooks have been collected and thoroughly studies on different agriculture bio waste used for fiber extraction and different methods used to find best suitable methods of extraction to fiber a eco-friendly fiber. The study confirms that there is a need to extract fibre from crop residue as an alternative to crop burning.

III. RESULTS AND DISCUSSION

3.1 Agriculture bio waste used for fiber extraction -

Research works of several pioneer researchers has been studied thoroughly (Table 1). Review indicates large number of agricultural bio-waste like rice husks, rice straw, rape straw, wheat straw, corn straw, cornstalk, rye straw, hemp straw, flex straw, carrot leaves, sorghum stalks and leaves, pineapple and banana leaves, sunflower straw, bean straw can be used for extraction of natural cellulose fibres which is suitable for textile, composite, and other industrial applications (Sinha, 1974; Sinha and Ghosh 1977; Doraiswamy and Chellamani, 1993; Reddy and Yang, 2005). Bio wastes from cereal crops are the stalks, made of lignified tissue. It can be easily fractioned into lignin, cellulose and hemicelluloses and is potential sources of biomaterials. Corn stalk was observed as most used agriculture bio waste for extraction of natural fibres (Kopania *et al.*, 2012; Reddy and Yang, 2005; Hassan *et al.*, 2012; Flodzz *et al.*, 2012; Thamal *et al.*, 2008; Fidelis *et al.*, 2013; Tappi, 1983). Rice husks is one of the potenial source of natural fibre straction (Rao *et al.*, 1980; Tappi, 1983; Rosa *et al.*, 2012). Johana *et al.*, 2012 extracted nano crystal fibres from rice husks using enzymatic treatments. Wheat straw is also used by several scientist for fibre extractions (Tappi, 1983; Kopania *et al.*, 2012).

Fibres obtained from hemp straw are the highest cellulose content in this group and because of high content of cellulose they express good mechanical properties. They have found, that natural cellulose fibres obtained from cornstalks have the structure and properties required for textile and other industrial applications.

Tables 1- Possible agricultural bio-waste used for fiber extraction					
Researchers	Agri bio waste used	Cellulose	Lignin (%)		
Rao et al., 1980	Rice husks	38	22		
Tappi, 1983	Rice straw	36	16		
Johana et al., 2012	Rice husk	35	18		
Rosa et al., 2012	Rice husk	37	20		
Kopania et al., 2012	Rape straw	41	19		
Tappi, 1983	Wheat straw	46	9		
Kopania et al., 2012	Wheat straw	41	22		
Kopania et al., 2012	Corn straw	39	20		
Reddy and Yang, 2005	Cornstalk	40	8		
Hassan et al., 2012	Cornstalk	28	21		
Flodzz et al., 2012	Cornstalk	40	21		
Thamal et al., 2008	Cornstalk	28	21		
Fidelis et.al., 2013	Cornstalk	37	23		
Tappi, 1983	Cornstalk	44	21		
Kopania et al., 2012	Rye straw	45	22		
Kopania et al., 2012	Hemp straw	60	12		
Kopania et al., 2012	Retted flax straw	51	18		
Kopania et al., 2012	Flax straw oil variety	42	23		
Kopania et al., 2012	Carrot leaves	32	19		
Kopania et al., 2012	Sunflower straw	41	19		
Kopania et al., 2012	Bean straw	40	18		

3.2 Methods applied for fiber extraction from agricultural bio wastes -

In the present work research works of several pioneer researchers has been studied thoroughly that are shown in Table 2 and 3. Review works indicates natural cellulose fibers are extracted from lignocellulosic byproducts using a process called retting using microbes, enzymes and chemical methods.

3.2.1 Retting

Retting is sometimes termed degumming. It is a chemical process for removing non-cellulosic material attached to fibres to release individual fibres. After harvesting, the stems are usually kept either in the field or under water for 2 to 3 weeks, during which the pectinous substances that bind the fibre with other plant tissues are softened and degraded by micro-organisms. A quality of fibre is largely determined by the retting condition and duration. Table 2 compares five types of retting processes, namely, dew, water, enzymatic, mechanical, and chemical retting, which are normally applied to hemp, jute, flax, and kenaf. Apparently, there is no single method that can give optimum results in terms of retting period, fibre strength, environmental pollution, and cost. Dew retting largely relies on indigenous soil fungi to colonise the stem/bast and to degrade pectin and hemicellulose by releasing polygalacturunase (PGase) and xylanase. The resulting fibres are often coarse and of variable quality. Conversely, water retting is performed in an aqueous environment, and anaerobic, pectinolytic bacteria are responsible for the decomposition of pectic substances and the subsequent release of fibre (Akin et al. 2002).

Chemical and enzyme retting offer substantially more control compared with dew and water retting. Paridah et al. (2009) used 5% sodium hydroxide and 5% sodium benzoate during retting of kenaf bast fibre and found that both methods produced fibres of relatively lower tensile strength than those obtained with water alone.

To extract the fibre strands from other plant tissues the natural gum binding them must be removed by retting. The traditional methods for separating the long bast fibres are by dew and water retting. Both methods require 14 to 28 days to degrade the pectic materials, hemicellulose, and lignin. Even though the fibres produced from water retting can be of high quality, the long duration and polluted water have made this method less

attractive. A number of other alternative methods such as mechanical decortication, chemical, heat, and enzymatic treatments have been reported for this purpose with mixed findings.

Microbial retting is not a new process. This traditional method is mainly achieved by the pectic enzymes produced by bacteria. During retting, the bacteria multiply and produce extracellular pectinases, which release the bast fibre from the surrounding cortex by dissolving the pectin. Nowadays, with the advancement of biotechnology tools, such enzymes can be commercially produced, thus making enzymatic retting a more popular choice for the production of long fibres. In microbial retting, Uses of microbes like bacteria and fungi for retting is traditional process to extract fibers. Bacteria such as *Bacillus* and *Clostridium* has been used in water retting, and fungi such as *Rhizomucor pusillus* and *Fusarium lateritium* has been used in dew retting most effectively for fibers extraction (Mukherjee, 1972; Henriksson, *et al.*, 1997). Based on review works it is found that this method is suitable for corn stalks and flex.

Van Sumere (1992) reported that the bacterial method is relatively better than chemical, because it gives better fibre quality and lower pollution, whilst chemical retting requires high energy and generates costly wastes.

Yu and Yu (2007) removed 91.3% of pectin from kenaf bast fibre by subjecting the bast fibres with enzyme from fungal strain isolated from the river where the kenaf was retted. The optimal retting conditions used were: culture temperature 32°C, initial pH 6.0 of the culture medium, cultivation time 24 h, retting time 21 h, and inoculation size 25%.

3.2.2 Chemical extraction

In review works of different research papers, it is found that chemicals as alkalis, mild acids and enzymes are used for fiber extraction from natural agricultural bio-wastes. Sodium hydroxide is found to be most commonly used chemical for fiber extraction (Henriksson, *et al.*, 1997; Majumdar and Chanda, 2001). Acids such as sulphuric acid and oxalic acid in combination with a detergent have also been used for fiber extraction. Chemical concentration, temperature and duration of treatment are the main factors determining the quality of chemically extracted fibers (Henriksson, *et al.*, 1997). Yilmaz, 2013 extracted fibres from corn husks by alkalisation using NaOH. Yilmaz (2012) also extracted corn husks fibres by enzymatic treatments.

Paridah et al. (2009) used 5% sodium hydroxide and 5% sodium benzoate during retting of kenaf bast fibre and found that both methods produced fibres of relatively lower tensile strength than those obtained with water alone. The colors of chemically-treated bast fibre were also darker

3.2.3 Extraction by enzymatic hydrolysis treatment-

A combination of enzymes such as pectinases, hemicellulases and cellulases can be used for fiber extraction with a pre- or post chemical treatment. Recently, Sejr, 2004 found multienzyme complexes that can express 10–15 enzyme activities and provide better fiber quality have been devel

Retting types	Description	Advantages	Disadvantages	Duration of retting	Types of bast fiber	Referen- ces
Dew retting	Plant stems are cut or pulled out and left in the field to rot	Pectin material could easily be removed by bacteria.	Reduced strength, low and inconsistent quality; restriction to certain climatic change and product contaminated with soil.	2-3 weeks	Flax, jute	1, 2
Water retting	Plant stems are immersed in water (rivers, ponds, or tanks) and monitored frequently (microbial retting)	Produces fiber of greater uniformity and higher quality	Extensive stench and pollution arising from anaerobic bacterial fermentation of the plant, high cost and putrid odor, environmental problems and low-grade fiber. Requires high water treatment maintenance.	7-14 days	Flax, Hemp, kenaf, jute	1, 3, 4, 5, 6, 7

Eco-fibers: product of Agri-bio-waste recycling

	I				I	1
Enzymatic retting	Enzymes such as pectinase, xylanases etc. are used to attack the gum and pectin material in the bast. The process is carried out under controlled conditions based on the type of enzyme.	Easier refining particularly for pulping purposes that degrades and provides selective properties for different applications. The enzymatic reactions cause a partial degradation of the components separating the cellulosic fiber from non-fiber tissues. The process is faster and cleaner.	Lower fiber strength	12-24 hours	flax	1,8
Chemical retting	Boiling and applying chemicals normally sodium hydroxide, sodium	It is more efficient and can produce clean and consistent long and smooth surface bast fiber	The fiber retted in more than 1% NaOH the tensile strength decreases. Unfavorable color and high processing cost.	1 hour	Kenaf, jute, flax	9, 10
Mechanical retting	Hammering or fibers are separated by hammermill or decorticatore	Produces massive quantities of short fiber in short time	High cost and lower fiber quality.		Kenaf	11

Source- ¹Van Sharma 1992; ²Sharma and Faughey 1999; ³Sharma 1987a; ⁴Hongqin and Chongwen 2007; ⁵Cochran, et al. 2000; ⁶Banik et al. 2003;⁷Rome 1998; ⁸Akin et al. 2007; ⁹Kawahara et al. 2005; ¹⁰Mooney et al. 2001;¹¹Paridah and Khalina 200

Table 3- Extraction of fibers from agricultural bio wastes

Researchers	Methods	Details	Agriculture bio waste used
Mukherjee, 1972	Microbial retting	Bacteria such as <i>Bacillus</i> and <i>Clostridium</i> has been used	Corn stalks
Henriksson, et al., 1997	Microbial retting	fungi such as <i>Rhizomucor</i> pusillus and <i>Fusarium</i> lateritium has been used	Dew retted flex
Collier and Collier, 1998	Mechanical separation	Tilby process; Separated fibres from plant components without disintegrating their constituents	Corn and sorghum stalks
Focher et al., 1998	Mechanical separation	Tilby process and steam explosion; cellulose fibres extracted	Wheat straw and rind of sugarcane
Henriksson et al., 1997	Chemical retting	Alkalinization using Sodium hydroxide	Flex
Majumdar and Chanda, 2001	Chemical retting	Alkalinization using Sodium hydroxide; Usings Acids like Sulphuric acid and oxalic acid	Flex
Yilmaz, 2013	Chemical retting	Alkalisation using NaOH	Corn stalks
Reddy and Yang, 2005	Chemical retting	Chromic acids	Switchgrass leaves

3.2.4 Mechanical separation of fibers -

Review works finding state natural fibers are also separated mechanically by using decorticating machines, steam explosion (STEX), ammonia fiber extraction, Tilby process etc. Collier and Collier, 1998 used the Tilby process for extracting fibres from corn, sorghum and other lignocellulosic plant stalks. This process offers the advantage of separating the plant components without disintegrating their constituents, which can be further treated to extract fibers and other bioproducts. Focher *et al.*, 1998 found Tilby process and steam explosion as suitable mechanical method for extracting cellulose fibres from wheat straw and rind of sugarcane which is suitable for textile, paper and composite use.

IV. FIBER PROPERTIES

Fibers from the switch grass leaves and stems have very similar width of single cell but the switch grass leaves have slightly longer single cell then stem. Natural cellulose fibers obtained from cotton stalks are coarser than that of linen as given in Table 4.The presence of short single cells and the formation of the fibers by a bundle of single cells results in relatively coarser fibers from cotton stalks compared to linen fibers.

The soybean straw technical fibers have deniers of about 65 and in the range of about 30–90 as given in Table 1.4.Technical fibers obtained from soybean straw are much coarser than the cotton mainly because soybean straw technical fibers are a bundle of single cells whereas cotton is a single cell fiber. However, finer denier soybean straw technical fibers have fineness similar to that of jute fibers and the coarser soybean straw technical fibers have fineness similar to that of jute fibers. The soybean straw technical fibers have for processing on the lengths of fibers. The soybean straw technical fibers such as linen. However, the soybean straw can be cut to obtain technical fibers with the desired length to process on the short staple system with fibers such as cotton. Lower % crystallinity, poor crystal orientation and presence of a bundle of single cells are some of the factors that contribute to the lower strength of cotton stalk fibers compared to linen.

Table 4 -Mechanical properties of extracted fiber from different agro bio wastes						
Publisher Year	Bio waste	Strength(g per denier)	Crystali-nity (%)	Moisture regain(%)	Elongation(%)	
Narendra Reddy and Yiqi Yang 2007	Switchgrass leaf	5.5± 1.2	51	10	2.2± .7	
Narendra Reddy and Yiqi Yang 2007	Switchgrass stem	2.7± .8	46	9.3	66.8± 2.1	
Narendra Reddy and Yiqi Yang 2008	Soybean straw	2.7± 1.4	47± .4	11.2	3± 1.8	
Narendra Reddy and Yiqi Yang 2009	Cotton stalk fibre	2.9 ±1.4	47± .2	8.8± 2.2	3.9± 1.4	
Batra 1998	Linen	4.6 6.1	65 70	12 14	1.6 3.3	

Although fibre properties of corn stover have been studied for decades, the first systematic investigation of cell morphology and fibre quality of different corn stover fractions was performed by Li et al. [Li 2012]. Individual fibres were connected in bundles by middle lamella with the highest lignin concentration. Obvious differences in cell morphologies and chemical compositions between four different plant fractions, i.e. stalk rind and stalk pith, and leaf blade and leaf sheath were observed. Fibres were shorter and finer in stalk pith and parenchyma, and vessel content was the highest in this part of the plant. Therefore it was not suitable for papermaking, while morphological characteristics of fibres from corn stalk rind were appropriate as papermaking materials. There were also differences in lignification and hemicellulose content. Sclerenchyma cells in stalk rind were more lignified than those in other tissues. The lowest hemicellulose content was observed in stalk rind [Li 2012].

Natural fibres are currently attracting a lot of attention for reinforcement. Fibre reinforced composites consists of fibre as reinforcement and a polymer as a matrix. Their special advantage is their low cost, low density, good mechanical properties, biodegradability, etc. The advantage of natural fibre composites includes lack of health hazards and non-abrasive nature [Sreenivasan 2012]. Natural fibres provide stiffness and strength to the composite and are easily recyclable. Natural fibres from conventional and unconventional source are considered as potential replacement for man-made fibres in composite materials for their reinforcement. They are a renewable material. In addition to, an important advantage of these materials is their biodegradability and

low toxicity. It was confirmed by many researchers that properties of natural fibres of different origin improve composites properties, e.g. the mechanical properties of natural fibres - polymer composites are superior to those of the unreinforced materials

V. CONCLUSION

In this review works, It is found that several agricultural bio-waste like rice husks, rice straw, rape straw, wheat straw, corn straw, cornstalk, rye straw, hemp straw, flex straw, carrot leaves, sorghum stalks and leaves, pineapple and banana leaves, sunflower straw, bean straw can be used for extraction of natural cellulose fibres which is suitable for textile, composite, and other industrial applications. Several fibre extraction methods has been reviewed which includes different extraction processes namely enzymatic, alkaline and retting. The retting method is the predominant challenge in the application of bast fibres. The selection of retting method is most important if the fibres are to be used in textiles. Studies have shown that the most efficient method is by combining chemical and enzymatic retting. Sodium hydroxide is found to be most commonly used chemical for fiber extraction. Based on different review studies mechanical properties of extracted fiber from different agro bio wastes were also analyzed. The main indicators of these properties are length, strength, fineness, crystallity and elongation. The future of use of agro bio waste for fibre extraction also depends on the end uses of the fibres.

REFERENCES

- [1]. Akin, D. E., Condon, B., Sohn, M., Foulk, J. A., Dodd, R. B., and Rigsby, L. L. (2007). "Optimization for enzyme-retting of flax with pectate lyase," *Ind. Crops Prod.* 25, 136-146.
- [2]. Akin, D. E., Foulk, J. A., and Dodd, R. (2002). "Influence on flax fibre of components in enzyme-retting formulations," Textile *Res. J.* 72, 510-514.
- [3]. Banik, S., Basak, M. K., Paul, D., Nayak, P., Sardar, P., Sil, S. C., Sanpui, B. C., and Gosh, A. (2003). "Ribbon retting of jute A prospective and ecofriendly method for improvement of fibre quality," *Ind. Crop. Prod.* 17, 183-190.
- [4]. Bijay-Singh, Shan Y H, Johnson-beeebout S E, Yadvinder-Singh and Buresh R J Crop residue management for lowland ricebased cropping systems in Asia.*AdvAgron* **98** (2008)118-199
- [5]. Cochran, M. J., Windham, T. E., and Moore, B. (2000). "Feasibility of industrial hemp Production in Arkansas".
- [6]. Collier, J.R. and Collier, J.B., 1998. Process for obtaining cellulosic fiber bundles at least 2.5 cm long from plant stalk rind. U.S. Patent No. 5718802
- [7]. corn stover fractions. Industrial. Crops and Products 2012; 37 (1) 130-136.
- [8]. Doraiswamy, I. and Chellamani, P., 1993. Pineapple-leaf fibers. Textile Progress 24(1), 1–25
- [9]. Flandez, J., Gonzalez, J. and Mutje, P., 2012. Management of Corn Stalk Ash as Reinforcement for Polypropylene Injection Moulded Composites, *Journal of Bioresources*, 7(2): 1836-1849.
- [10]. Focher, B. et al, 1998. Regenerated and graft copolymer fibers from stem-exploded wheat straw: characterization and properties. J. Appl. Poly. Sci. 67, 961–974
- [11]. Hassan, S., Ogherevwet, E.J. and Aigbodion, V. 2012. Potential of Maize Stalk Ash as Reinforcements for Polyester Composites. *Journal of Minerals and Materials Characterisation and Engineering*, 11(4): 543-557.
- [12]. Henriksson, G. et al., 1997. Identification and retting efficiencies of fungi isolated from dew-retted flax in the United States and Europe. Appl. Environ. Microb. 63, 3950–3956
- [13]. <u>http://www.fibre2fashion.com</u>, Ministry of New and Renewable Energy (MNRE, 2012)
- [14]. Johara, N., Ahmad, I., Dufresnec, A. (2012). Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. *Industrial Crops and Products*, **37** (1) : 93–99.
- [15]. Kawahara, Y, Tadokoro, K, Endo, R., Shioya, M., Sugimura, Y., and Furusawa, T. (2005). "Chemically retted kenaf fibres," Sen'i Gakkaishi 61, 115-117.
- [16]. Kopania, E., Weitecha, J., and Ciechanska, D., 2012. Studies on Isolation of Cellulose Fibres from Waste Plant Biomass. Fibre. Text. East. Eur. 20(96): 167-172
- [17]. Li Z.Y.; Zhai H.M. Zhang Y., Yu L. Cell morphology and chemical characteristics of
- [18]. Majumdar, P. and Chanda, S., 2001 Chemical profile of some lignocellulosic crop residues. *Indian J. Agric. Biochem.* **14**(1 & 2), 29–33
- [19]. Mooney, C., Stolle-Smits, T., Schols, H., and de Jong, E. (2001). "Analysis of retted and non retted flax fibres by chemical and enzymatic means," *Journal of Biotechnology* 89, 205-216.
- [20]. Mukherjee, J.J., 1972. Long vegetable fibers. Textile Progress 4(4), 8–9
- [21]. Paridah, M. T., and Khalina, A. (2009). "Effects of soda retting on the tensile strength of kenaf (*Hibiscus cannabnius* L.) bast fibres," Project Report Kenaf EPU, 21 pp.
- [22]. Reddy N. and Yang Y., 2005. Biofibers from agricultural byproducts for industrial applications. USA TRENDS in Biotechnology. 23 (1)
- [23]. Reddy, N. and Yang Y., 2005. Structure and properties of high quality natural cellulose fibers from cornstalks. *Polymer* 46 5494– 5500
- [24]. Residues in India. Technical Bulletin. Directorate of Cropping System Research, Modipuram, India.
- [25]. Rome (1998). "Improved retting and extraction of jute project findings and recommendations international jute organization fao/government cooperative programmed," Food and Agriculture Organization of the United Nations.
- [26]. Rosa, S.M.L, Rehman, N., Miranda, M.I.J., Nachtigall, S.M.B, Bica, C.I.D 2012. Chlorine-free extraction of cellulose from rice husk and whisker isolation. *Carbohydrate Polymers*, 87 (2): 1131-1138.
- [27]. Sarkar A, Yadav R L, Gangwar B and Bhatia P C (1999) Crop
- [28]. Sharma, H. S. S., (1987). "Studies on chemical and enzyme retting of flax on a semi- industrial scale and analysis of the effluents for their physicochemical components," *International Biodeterioration* 3(6), 329-342.
- [29]. Sharma, H. S. S., and Faughey, G. J. (1999). "Comparison of subjective and objective methods to assess flax straw cultivars and fibre quality after dew-retting," *Ann. Appl. Biol.* 135, 495-501.

- [30]. Singh, R. P., Dhaliwal, H. S., Sidhu, H. S., Manpreet-Singh, Y. S., & Blackwell, J. (2008). Economic assessment of the Happy Seeder for rice-wheat systems in Punjab, India. *Conference Paper, AARES 52nd Annual conference, Canberra*. Australia: ACT
- [31]. Sinha, M.K. and Ghosh, S.K., 1977. Processing of pineapple leaf fibers in jute machine. *Indian Textile J.* 88 (10), 105–110.
- [32]. Sinha, M.K., 1974. The use of banana-plant fiber as a substitute for jute. J. Textile Inst. 65 (27), 27–33.
- [33]. Sreenivasan V.S., Ravindran D., Manikandan V., Narayanasamy R. Influence of fibre treatment on mechanical properties of short Sansevieria cylindrica / polyester composites; Materials and design 2012; 37 111-121.

- [35]. Thamae, T. and Bailie, C. 2008. Developing and Characterizing New Materials Based on Waste Plastic and Agro-fibre, *Journal of Material Sciences*, **43**(12): 4057-4068.
- [36]. Van Sumare, C. (1992). "Retting of flax with special reference to enzyme-retting," In: *The Biology and Processing of Flax*, Sharma, H., and Van Sumare, C. (eds.), M Publications, Belfast, Northern Ireland, 157-198.
- [37]. Yilmaz, N.D. and Çalişkan E Yilmaz K 2014, Effect of xylanase enzyme on mechanical properties of fibres extracted from undried and dried corn husks, *Indian Journal of Fibre Textile Research* 39 (1) 60- 64
- [38]. Yu, H., and Yu, C. (2007). "Study on microbe retting of kenaf fibre," Enzyme Microb.

IOSR Journal Of Humanities And Social Science (IOSR-JHSS) is UGC approved Journal with Sl. No. 5070, Journal no. 49323.

Saroj Devi. "Eco-Fibers: Product Of Agri-Bio-Waste Recycling." IOSR Journal Of Humanities And Social Science (IOSR-JHSS), vol. 22, no. 9, 2017, pp. 51–58.

^{[34].} Tech. 40, 1806-1809.