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Abstract: C optimal design is use to analysing the geometry of the canonical design space a design point is 

required when estimating point of the height and response curve at the maximum or minimum to estimating β, 

which is related to width of the response curve. An analogous  of C optimality design criterion was developed 

using variance covariance matrix, for GLM, We consider the problem of finding an optimal design model under 

a compound Poisson distribution with any number of independent  variables and a reciprocal link additive 

linear predictor model. One of the main interests to determine the optimum operating conditions is to locate the 

point of maximum or minimum response on response variables to be optimized are different quality aspects of a 

product, such as yield or strength. The fact that the optimal design depends on the unknown true model 
parameters for the compound Poisson regression model with gamma link relative is very use full. One approach 

to solve this problem is to use sequential designs for binary data with the purpose to estimate a percentile of the 

response curve are treated. The theory of stochastic approximation provides an alternative method for 

estimation of the optimum point of a response function. The design points are determined successively will 

converge to the point of optimum response.  
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I. Introduction 
The optimum operating conditions to locate the point of maximum or minimum response on response 

variables to be optimized are different quality aspects of a product, such as yield or strength. The fact that the 

optimal design depends on the unknown true model parameters for the compound Poisson model, there would 

be no point in performing experiments if the true parameters were known. One approach to solve this problem is 

to use sequential designs. Starting with a preliminary estimate or guess of the parameters a locally optimal 

design can be constructed. This design is then used to update the parameter estimates, which in turn leads to 

another locally optimal design, new parameter estimates and so on. Sequential designs for sequential data with 

the purpose to estimate a percentile of the response curve are treated in    Wu (1985). The theory of stochastic 

approximation provides an alternative method for estimation of the optimum point of a response function. 

Stochastic approximation started with the work of Robbins and Monro (1951) and Kiefer and Wolfowitz (1952) 

and is a nonparametric sequential approach. The design points are determined successively according to a 

recursive scheme such that the resulting sequence will converge to the point of optimum response.             A 

stochastic approximation method is evaluated for binary data in the case of estimating a percentile of the 
response curve in Wu (1985). Wu (1986) goes through the connections and differences between the stochastic 

approximation method and a parametric approach based on maximum likelihood estimation. The parametric 

approaches of optimal designs are derived sequentially based on the assumption that the most recent parameter 

estimates are true.  

 

Sequential Designs 

Locally C-optimal designs consisting of two equally weighted designs points are computed at each 

stage, using two versions of the standardized information matrix of the weighted version that takes into account 

the information of the observed points.  In accordance with a recursive scheme successive observations are 

made on the response variable in a way that the sequence of design points x1,x2 ….   converges to μ. This 

approach is adaptive in the sense that it makes use of the information gained so far by adjusting the step from xr 
to xr +1. The second approach is parametric; optimal designs are derived sequentially based on the assumption 

that the most recent parameter estimates are true. Locally c-optimal designs consisting of two equally weighted 

designs points are computed at each signs consisting of two equally weighted designs points are computed at 

each stage, using two versions of the standardized information matrix. The first is the regular version that 

reflects the information matrix. The first is the regular version that reflects the information in the candidate 

design and the second one is a weighted version that also takes into account the information in the already 

observed points. 
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Let f (x) denote a response function that is unknown. Robbins and Monro (1951) give a stochastic 

approximation method for finding the solution x=θ  to the equation f (x)=c, where c is a constant. It is assumed 

that f(x)=c has a unique solution θand that for every   observations con be made on a random variable   Y(x) 

such that   E(Y(x))=f(x).. Starting at an arbitrary x1 consecutive observations are made on  Y(x) at x2,x3…. in 

such a way that  xr converges to   as θ as r ⟶∞. At  xr the next design point, xr+1, is chosen according to the 

following scheme. 

  xr+1= xr+ βr(yr-d), 

where  βr  is a fixed infinite sequence of decreasing positive constants satisfying  βr
2 < ∞. The 

choice of the constants  βr  is important for the performance of the sequence {xr). In the sense of achieving 

minimal asymptotic variance it is optimal to set  βr equal to  rf ′(θ) ′ , see e.g. Chung (1954) and Sacks (1958). 

However, f ′(θ) f is generally unknown and needs to be estimated. One possible estimator is the least squares 
estimator of the slope in the regression Y on x. An adaptive version of the Robbins-Monro procedure, where the 

estimate of f ′(θ) is updated at each step by using the least squares estimator, is given by 

  xr+1=xr- ηλ r 
−1

 (yr-d), 

  where λ r = 
  y i x i−xr  

  xi−xr  
2  , xr=

  xr

n
 

This procedure is described by Anbar (1978) and was reviewed and evaluated for binary data in Wu 

(1985). The adaptive procedure was proven to be asymptotically equivalent to the non adaptive Robbins-Monro 

procedure with βr =    rf ′(θ) −1 by Anbar (1978)  and Lai and Robbins (1979). 

The Robbins-Monro procedure was further developed by Kiefer and Wolfowitz (1952) and extended to 

the case of estimation the maximum at the point θ and f(x) is assumed to be strictly increasing (decreasing) for x 

< θ  x > θ .  Furthermore it is assumed that observations can be taken on the random variable Y(x) at any level 
x and that E [Y (x)]= f (x). The principle is the same as for the Robbins-Montro procedure, that is successive 

observations are made on Y(z) according to a specified scheme. The principle is the same as for the Robbins-

Monro procedure, that is successive observations are made on y(x) according to a specified scheme.  

The difference is that observations are made in pairs at each step. Starting at an arbitrary x1, the 

following x2, x3,… are obtained by making observations at xr ±Dr. i.e. both Y(xr-Dr) are observed at each step. 

The sequence  {xr} is defined as 

 xr+1-xr+βr 

y xr +Dr  −y(xr−D

2Dr
 = x+βrzr     

and converges to θ  as ⟶∞ {ar} and  {Dr}  are pre assigned infinite sequences of positive numbers such that 

   Dr ⟶ 0, 

    βr    =  ∞ 

    βr Dr <  ∞ 

    βr
2 Dr

2 <  ∞ 

For example βr= r-1 and Dr=r-1/3 satisfy these conditions. The random variable     Zr=(Y(xr+Dr)-[Y(xr-
Dr)]/(2Dr) can be viewed as an approximation to the derivative of the response function at xr . This reduces the 

problem to find the maximum of f(x) to that of finding the solution to the equation  f ′ x = 0. The recursion can 

then be thought of as a special case of the Robbins-Monro method for finding the solution to f ′ z = 0. by 

making successive observations on Z. 

In this thesis the procedure of Kiefer and Wolfowitz is combined with the adaptive Robbins-Monro 

procedure (5.2) described above for estimating the maximum of the response function π(x) , abbreviated as KW 

hereafter. At each step   observations are taken at xr±Cr   so that the numerical derivative becomes  

Zr=[Y(xr+Dr)-Y(xr+Dr)]/(2mDr) A graphical illustration is given in Figure Starting at an arbitrary x1, the value 

on xr,  is then updated via the adaptive Robbins-Monro procedure 

  xr+1=xr-ηλ r

−1
zr 

where λ  is the least squares estimator of the slope in the regression Z on x. The estimate of the optimum point at 
the r:th step will then be given by 

  =θ rxe. 
Kiefer and Wolfowitz (1952) put some conditions on the response function that prevents it from being 

too steep or to flatten out towards zero. If the curve is too steep it may cause unduly large changes in x and any 

observations taken where the response curve is zero will be uninformative, making it impossible to know in 

which direction to take the next step. Kiefer and Wolfowitz comment however, that it will be sufficient if the 

conditions are fulfilled in an interval (D1,D2). No observations will be taken outside the limits of this interval. 

The flatness of the logistic response curve may pose some problems unless there is knowledge about an 

appropriate interval before the experiment is started. In some situations it may be the case that such information 

is no available.  

The success of this procedure is also dependent upon good choices of the starting values r1, λ1 and D1. 

If the starting point is too far off, there will be essentially zero probability of obtaining a response so that no 
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information can be gained. The starting value for Dr should be small enough to avoid unduly large changes in x 

and large enough to enable the sequence to move away from a bad starting point. The relation between the 

number of observations taken at each step and the number of steps is another aspect that probably will be 
important, 

 

 
 

C-optimal Sequential Designs 

The point of maximum response of the quadratic response curve is equal to the parameter  . Estimating   

with minimum variance would be desirable justifying the use of a c-optimal design with c = (−1,0,1)′. As an 

attempt to handle the problem of parameter dependence, the c-optimal design is updated sequential. It was 

established in Chapter 3 that a c-optimal design for estimation of the point x= 1/μ consists of two points with 

equal weight. In essence, two points are taken at a certain distance from each other, a distance that does not 

necessarily decrease, as opposed to the KW approach. This parametric sequential approach can be described by 

the following steps: 

1. Choose an initial design ξ (initial) 

2. Estimate the parameters θ  (initial) 

3. Minimize θ  M-1   to find the locally c-optimal design  given    

4. Take m observations at the design points ξ*1 in an estimate the parameters: θ (1) 

5. Maximize C TM-1  ξ,θ (1)  c  to find the locally c-optimal design given  θ (1) ⟶  ξ *2 =  
x1           x2

0.5       0.05
  etc. 

The parameter estimates θ  are the usual maximum likelihood estimates. the ewstimate of the optimum 

point afater r steps is then given by μ .  
If the initial design contains N* observations and 2m observations are taken at each step there are 

N*+2mr=Ntat observations in total after r steps. The observed standardized information matrix can then be 

expressed as  

 Mobs  ξθ   = 
N lmt
 

i = 1

1

Ntat
π i  

−1
−(xi−μ) 2

2β  (xi−μ )

 ′ 

−1
−(xi−μ) 2

2β  (xi−μ )

  

where π 
i=  e

x
i θ  

/  1 + exi  θ   Another version of the previous sequential design, called model 2, makes use of the 

observed information matrix in the following way. M  ξθ   is replaced by a weighted information matrix 

computed as 

Mw  ξθ  =
Ntat

Ntat +2m
 M obs  ξobs θ  + 

2m

Ntat +2m
 M  ξθ  . 

 

and c T M-1
W  ξθ  c  is minimized instead. Mobs is the information matrix based on all observations up to this point 

and ξobs  deign consisting of these observations. This is potentially an improvement because it also takes into 
account the information from the proceeding steps. Besides the changed information matrix everything is the 

same as for the parametric sequential procedure. 

 

Replication Study of Sequential 

The results of the simulations are also reported in Fackle Fornius (2008). There are many questions to 

bring clarity about including: it’s an  approaches superior? Is there an optimal choice of c for the approach? Is 

the weighted version of the information matrix preferred over the unweighted? What is best, taking few steps 

with many observations at each step, or taking many steps with few observations? Are the performances robust 

to misspecifications of the model? 

Two parameter sets are considered here: θP= (-1, 0.1, 1)’. The sequential design approaches  are 
analyzed in the simulations. Different sample sizes ranging from N=50 to N=100 as well as different batches 



C – Optimal Sequential Design on Compound Poisson Regression Model 

www.iosrjournals.org                                                    62 | Page 

sizes are explored. To study the effects of specifications in the model an alternative to the linear predictor is also 

tested. 

All the three approaches are started from the same initial design before they take separate paths. Two 
different initial designs are used. Design 1 is constructed to be better than Design 2 for estimation of the point of 

maximum response μ. It is better in the sense that it is symmetric around μ = 0. C-optimal designs are similarly 

characterized by design points placed down words sloping   but limited to two points. However, it is not possible 

to obtain maximum likelihood estimates of the model parameters with a C-optimal design because two points 

are not sufficient to estimate three parameters. Design 2 is constructed based on the same principle but pushed 

aside, intended to represent a beforehand assumption that   is close to 1. The initial designs consist of a fairly 

large amount of observations (N=50) to avoid the problem of non-existing maximum likelihood estimates, 

which is also a motive for choosing many design points. 

The C-optimal procedures are made on the response variable Y at the design points specified by the 

initial design. Initial maximum likelihood estimates θ (initial )  are then calculated. Both approaches are now 

ready to start from Step 3 with the minimization of c T M-1 θ (initial ).  m response values are now generated at 

each of the two c-optimal design points, resulting in a new C-optimal design and so on.  

The Kiefer and Wolfwitz  approach needs at least two observations on  

  Z= [Y (x+c) + Y (z-c)] / (2mc)] 

before a least squares estimate of the slope parameter in the Z on x regression can be obtained. As 

discussed before the Kiefer and Wolfwitz approach is so sensitive to the choices of x1 and β1  Some effort is 
therefore put in selecting good starting values. A preliminary estimate of the point of maximum response is 

obtained from the initial design. The first design point in Kiefer and Wolfwitz is set equal to this estimate: 

  x1=μ initial 

Observations are made at these three design points that will result in three observation on Z which then 

can be used to obtain the starting value β1 For different design points are obtained  from Several values on Drare 

tested. 

Table: Support points of the locally C -optimal design for the Compound Poisson model for various values 

ofμi and various values of N and also varying β 
Mean Value Constant Value Initial Design point Model 1 Model 2 Model 3 

0.990099 

 

β=.1 

N = 50 

0.953463    

β0=1  0.426401   

β0=0   0.596159  

β0=-1    1.025978 

0.952381 

 

β=.3 

N = 50 

0.632456    

β0=1  0.254   

β0=0   0.282843 0.302199 

β0=-1     

0.900901 

 

β=.7 

N=100 

0.339032    

β0=1  
0.181071 

 
  

β0=0   0.190693  

β0=-1    0.196305 

0.854701 

 

β=.9 

N=100 

0.247689    

β0=1  0.14825   

β0=0   0.153393  

β0=-1    0.156269 

 

Sequential Design Points 
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The above graph is to identify the location sequential optimal points using inverse link relative 

model. The points are potentially critical points of the model parameters especially estimation of the points of 

maximum or minimum probability D(x). The graph shows the points of intersection between Z values the 
observation attaints optimum point to study the height of the response curve in inverse link GLM model 

optimal design is decreasing when the mean values are decreasing. The optimal design has equal 

allocation between [-1, 1]. 

 

II. Conclusion 
The number of design points in a C optimal sequential design points for estimating the model parameter 

varies depending on which parameter to be estimated. The analytic contraction of      C -optimal sequential 

Compound Poisson model with inverse link function were derived to obtain locally C -optimal design, the 

solution to these formulae can be obtain numerically using R- software in contrast to using for examples 
algorithms which involve issues like finding a good initial design. Thus the C-optimal sequential design 

depends on the various parameters of β with varying ɳ(x) values it is the function of mean values. We 

conclude that when the optimal designs with inverse link function have a linear functional relationship 

between function of mean values and the various predicted vales. When the function of mean values is 

decreasing the predictors are decreasing the design involves asymptotic information matrix. 

The linear predictors of inverse link function attain maximal optimal values for the different β 

values it converges to zero for various functional mean values. When the varying values of β respected models 

attain exact limit point if the β0 decreases the inverse link predictor of sequential design attain maximum 

value point. 
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