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Abstract: The sequence spaces 0( ) , ( )w p w p  and ( )w p were introduced and studied by I.J. Maddox 

[1,2,3,4]. In [8,9,10] , the authors have introduced sequence spaces 0( , , ) , ( , , ) , ( , , )c u v p c u v p l u v p and 

( , , )l u v p and established some properties.  In this paper we introduce the sequence spaces ( , ; )w u v p  , 

0( , ; )w u v p and ( , ; )w u v p ; study some properties, find  - dual of ( , ; )w u v p .  We also characterize the 

matrix classes   , ; ,w u v p l ,   , ; ,w u v p c and   0, ; ,w u v p c .  

Key Words: Paranormed sequence spaces,  - dual, matrix transformation, generalized weighted mean. 

AMS classification : 40 

  

I. Introduction 

By   we mean the space of all real valued sequences. A vector subspace of  is called a 

sequence space. We shall write , with usual notation , l , c and 0c for the spaces of all bounded, 

convergent and null sequence respectively. A linear topological space X  over the field ℝ  is said to 

be a paramormed space if there is a sub-additive  function  :g X   such that ( ) 0g   , 

( ) ( )g x g x   and scalar multiplication is continuous i.e.  0n   and ( ) 0ng x x   

imply ( ) 0n ng x x   , where  is the zero vector in the linear space X . 

If  kp p  be a bounded sequence of strictly positive real numbers, I.J. Maddox defined the 

sequence spaces 0( ) , ( )w p w p  and ( )w p  as: 
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.  

The spaces ( )w p and 0 ( )w p  are paranormed spaces paranormed by 
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kp Mn
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k

g x x
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or equivalently  

1

( ) sup 2 k Mpr

r k
r

g x x                                                            

(1.1) 

where 
r

 is the sum over the range 
12 2r rr    and (1,sup )kM p . Further ( )w p  is the 

paranorm space paranormed by (1.1) if and only if 0 inf supk kp p  
 
 [ 1]. 

Let X  and Y  be any two sequence spaces and  ( ); ,    nkA a n k    be infinite matrix of complex 

numbers nka  . Then we say that A  defines a matrix mapping X  into Y   ; and it is denoted by 

writing :A X Y if for every sequence ( )kx x X    , the sequence  ( )nAx  is in Y  , where 
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1

( ) ; ( )   n nk k
k

Ax a x n




                                                                                                                                            

(1.2) 

By ( , )X Y we denote the class of all matrices A  such that :A X Y  . Thus, ( , )A X Y  if and only 

if the series on right side of (1.2) converges for each n and every x X   ; and we write, 

      n n
Ax Ax Y


   for all x X .  

We denote by U for the set of all sequences ( )nu u  such that 0nu     for all    n . For u U , 

let 
1 1

nu u

 
 
 

. Let us define the matrix ( , ) ( )nkG u v g  as: 

; 0

0;

n k

nk

u v k n
g

k n

 



                                                                                                                                   

(1.3) 

for all  ,  n k ,where nu depends only on n  and kv only on k . The matrix ( , ) ( )nkG u v g is called 

generalized weighted mean or factorable matrix. 

The main purpose of the present paper is to introduce the sequence spaces 0( , ; ) , ( , ; )w u v p w u v p and 

( , ; )w u v p ; which are the set of all sequences whose ( , )G u v -  transforms are in the spaces 

0( ), ( )w p w p and ( )w p respectively, where ( , )G u v denotes the matrix as
 
defined in  (1.3).  We 

have discussed some topological properties of 0( , ; ) , ( , ; )w u v p w u v p and ( , ; )w u v p ;  investigated 

β –dual for the new space ( , ; )w u v p . Moreover we have characterized the matrix 

classes   , ; ,w u v p l ,   , ; ,w u v p c and   0, ; ,w u v p c .  

 

II.  The paranormed sequence spaces 

( , ; )w u v p , 0( , ; )w u v p  and ( , ; )w u v p . 

Before introducing these sequence spaces we would like to present some remarks. Malkowsky and 

Savas [10 ] have defined the sequence spaces Z(u,v,X) which consists of all sequences whose G(u,v)- 

transforms are in  0, , , ( )X l c c l p where ,u v U . Chaudhary B. and Mishra S.K. [6] have 

defined the sequence space ( )l p  which consists of all sequences whose S- transforms are in 

( )l p ;where ( )nkS s is defined by 
1; 0

0;
nk

k n
s

k n

 



 

Moreover I.J. Maddox [1] introduced the sequence space 0( ) , ( )w p w p and ( )w p which consists of 

all strongly summable , strongly summable to zero and bounded sequences respectively whose C- 

transforms are in the spaces 0( ) , ( )l p c p and ( )l p respectively ; where 

1
; 1

( )

0;
nk

k n
C c n

k n


 

 
 

 

and ( )nkC c is called the Ceasaro matrix of order 1 or the matrix of arithmetic mean. 

The matrix domain AX of an infinite matrix A  in a sequence space X  is defined by                       

 ( ) :A kX x x Ax X                                                                                                                                                                     

(2.1) 

, which is a sequence space. 
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With the notation as in (2.1) , we can have the following representations: 

 ( , , )
Z

X u v p X ,    for  0, , , ( )X l c c l p  

 ( ) ( ) Sl p l p  .       

Following the works of the authors [1,6,9,10] , for  kp p is a bounded sequence of a strictly 

positive real numbers , we now define the new sequence spaces ( , ; )u v p for 

 0( ), ( ), ( )w p w p w p  by  

  
1

( , ; ) ( ) :
n

k n k k
k

u v p x x u v x  


                                                                                                                                                

(2.2)   

We may write, using (2.1),  

 
( , )

( , ; )
G u v

u v p   ; for  0( ), ( ), ( )w p w p w p   

If 1kp  for all    k , we write ( , )u v instead of ( , ; )u v p  

We shall first establish following some simple properties. 

Proposition 2.1 

The sequence spaces ( , ; )u v p are complete paranorm space paramormed by  

1

1

1
( ) sup

kp Mn

n k k
kn

h x u v x
n 

 
  

 
;  or equivalently  

1

( ) sup 2 k Mpr

r n k k
r

g x u v x   

where 
r

 is the sum over r in the range 
12 2r rk   . For the space ( , ; )w u v p , ( )h x is a 

paranorm if and only if 0 inf supk kp p   . 

Proof: The proof of this proposition follows from the similar arguments as in the theorems 5,6 in [4 ] 

and theorem 2.1 in [9]. If  nx is a Cauchy sequence in ( , ; )u v p ; then  ( , ) nG u v x is a Cauchy 

sequence in  . Now it is a routine work to show ( , ; )u v p is complete paranorm space under the 

usual paranorm. 

 

Proposition 2.2 

The sequence spaces ( , ; )u v p  are linearly isomorphic to  0( ), ( ), ( )w p w p w p  . 

Proof: We define the transformation  

: ( , ; )T u v p   by, 

( )x y T x . Linearity of T is obvious. Further, if Tx  , then x  . Hence T is injective. Now, 

let y  and define the sequence ( )kx x by 1

1

1 k k
k

k k k

y y
x

v u u





 
  

 
;      k . 

Then, 
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n k k
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                  = 
1   

1

1
sup k

n Mp

k
kn

y
n 

 
 

 
 

                  = ( )g y  

                     . 

Thus , we deduce that ( , ; )x u v p and as a consequence we conclude that T is surjective and is a 

paranorm preserving. Hence T  is a linear bijection and showing that the sequence spaces 

( , ; )u v p are linearly isomorphic to  . 
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III. Duals  

In this section we find  - dual of ( . ; )w u v p . If X be a sequence space , we define   dual 

of X as: 

 
1

( ):k k k
k

X a a a x is convergent for each x X




   .   

Theorem 3.1 

Let 0 1kp  for every    k . Then ( . ; )w u v p where  
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Proof : We first assume that the conditions hold. Let a and ( , ; )x w u v p .Then for ( )y w p , 

there exists a positive integer 1N  Such that  

1

1 kpn

k
k

y
n 

   

or equivalently 
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y   , where sum over r runs from 
12 2r rk   . It follows that ,  
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It follows that 
1

k k
k

a x




 converges for each ( , ; )x w u v p  . 

Hence, ( . ; )w u v p . 

On the other hand , let ( , ; )a w u v p . Then , 
1

k k
k

a x




 converges for each ( , ; )x w u v p  . Since , 
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 converges. We need to show that 
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As a contrary let, 
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converges. 

Hence we must have,  
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So, we arrive at the result ( . ; )w u v p  ; thereby proving ( . ; )w u v p   . 

 

IV. Matrix Transformation 

In this section we give characterization for the matrix classes 

( ( , ; ), )w u v p l , ( ( , ; ), )w u v p c and 0( ( , ; ), )w u v p c . 

Theorem 4.1  

Let 0 1kp  for every    k . Then ( ( , ; ), )A w u v p l if and only if  

i) there exists an integer 1N   such that  
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Proof: Let the conditions be satisfied. Since,  
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                     , by using conditions (i) and (ii). 

It follows that nA  and hence 
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Thus Ax l . 

On the other hand , let ( ( , ; ), )A w u v p l . Since , 
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, the condition (i) holds. In order to see that condition 

(ii) is necessary, we assume that for 1N  , 
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Now, therefore, there exists a sequence  rN  such that  
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Hence , ( ( , ; ))kx o w u v p  but ( ( , ; ))kx l w u v p . So, we arrive at the contradiction to our 

assumption ( ( , ; ), )A w u v p l . Thus , condition (ii) is necessary ; thereby completing the proof for 

the theorem. 

By using the arguments as in theorem (4.1) it is straight forward matter to prove the following 

theorems: 

Theorem 4.2 

 Let 0 1kp  for every    k . Then ( ( , ; ), )A w u v p c if and only if  

i) there exists an integer 1N   such that  
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Theorem 4.3 

 Let 0 1kp  for every  k . Then 0( ( , ; ), )A w u v p c if and only if  
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