Paranormed Sequence spaces $w(u, v ; p), w_{0}(u, v ; p)$ and $w_{\infty}(u, v ; p)$ generated by weighted mean

Shailendra Kumar Mishra, Vinod Parajuli, Geeta Bhakta Joshi
Pulchowk Campus, Institute of Engineering, Tribhuvan University; Nepal

Abstract

The sequence spaces $w(p), w_{0}(p)$ and $w_{\infty}(p)$ were introduced and studied by I.J. Maddox [1,2,3,4]. In [8,9,10], the authors have introduced sequence spaces $c_{0}(u, v, p), c(u, v, p), l_{\infty}(u, v, p)$ and $l(u, v, p)$ and established some properties. In this paper we introduce the sequence spaces $w(u, v ; p)$, $w_{0}(u, v ; p)$ and $w_{\infty}(u, v ; p)$; study some properties, find β - dual of $w(u, v ; p)$. We also characterize the matrix classes $\left(w(u, v ; p), l_{\infty}\right),(w(u, v ; p), c)$ and $\left(w(u, v ; p), c_{0}\right)$.

Key Words: Paranormed sequence spaces, β-dual, matrix transformation, generalized weighted mean. AMS classification : 40

I. Introduction

By ω we mean the space of all real valued sequences. A vector subspace of ω is called a sequence space. We shall write, with usual notation $, l_{\infty}, c$ and c_{0} for the spaces of all bounded, convergent and null sequence respectively. A linear topological space X over the field \mathbb{R} is said to be a paramormed space if there is a sub-additive function $g: X \rightarrow \square$ such that $g(\theta)=0$, $g(x)=g(-x)$ and scalar multiplication is continuous i.e. $\left|\alpha_{n}-\alpha\right| \rightarrow 0$ and $g\left(x_{n}-x\right) \rightarrow 0$ imply $g\left(\alpha_{n} x_{n}-\alpha x\right) \rightarrow 0$, where θ is the zero vector in the linear space X .
If $p=\left\{p_{k}\right\}$ be a bounded sequence of strictly positive real numbers, I.J. Maddox defined the sequence spaces $w(p), w_{0}(p)$ and $w_{\infty}(p)$ as:

$$
\begin{aligned}
& w(p)=\left\{x=\left(x_{k}\right) \in \omega: \frac{1}{n} \sum_{k=1}^{n}\left|x_{k}-l\right|^{p_{k}} \rightarrow 0 ; \text { for some } l \in \square, n \rightarrow \infty\right\} \\
& w_{0}(p)=\left\{x=\left(x_{k}\right) \in \omega: \frac{1}{n} \sum_{k=1}^{n}\left|x_{k}\right|^{p_{k}} \rightarrow 0, \quad n \rightarrow \infty\right\} \text { and } \\
& w_{\infty}(p)=\left\{x=\left(x_{k}\right) \in \omega: \frac{1}{n} \sum_{k=1}^{n}\left|x_{k}\right|^{p_{k}}<\infty, \quad n \rightarrow \infty\right\} .
\end{aligned}
$$

The spaces $w(p)$ and $w_{0}(p)$ are paranormed spaces paranormed by

$$
\begin{equation*}
g(x)=\sup \left(\frac{1}{n} \sum_{k=1}^{n}\left|x_{k}\right|^{p_{k}}\right)^{\frac{1}{M}} \text { or } \quad \quad \text { equivalently } \quad g(x)=\sup _{r}\left(2^{-r} \sum_{r}\left|x_{k}\right|^{p_{k}}\right)^{\frac{1}{M}} \tag{1.1}
\end{equation*}
$$

where \sum_{r} is the sum over the range $2^{r} \leq r<2^{r+1}$ and $M=\left(1, \sup p_{k}\right)$. Further $w_{\infty}(p)$ is the paranorm space paranormed by (1.1) if and only if $0<\inf p_{k} \leq \sup p_{k}<\infty \quad$ [1].

Let X and Y be any two sequence spaces and $A=\left(a_{n k}\right) ; n, k \in \square \quad$ be infinite matrix of complex numbers $a_{n k}$. Then we say that A defines a matrix mapping X into $Y ;$ and it is denoted by writing $A: X \rightarrow Y$ if for every sequence $x=\left(x_{k}\right) \in X$, the sequence $\left((A x)_{n}\right)$ is in Y, where
$(A x)_{n}=\sum_{k=1}^{\infty} a_{n k} x_{k} ;(n \in \square)$
(1.2)

By (X, Y) we denote the class of all matrices A such that $A: X \rightarrow Y$. Thus, $A \in(X, Y)$ if and only if the series on right side of (1.2) converges for each $n \in \square$ and every $x \in X$; and we write,

$$
A x=\left\{(A x)_{n}\right\}_{n \in \rrbracket} \in Y \text { for all } x \in X .
$$

We denote by U for the set of all sequences $u=\left(u_{n}\right)$ such that $u_{n} \neq 0$ for all $n \in \square$. For $u \in \mathrm{U}$, let $\frac{1}{u}=\left(\frac{1}{u_{n}}\right)$. Let us define the matrix $G(u, v)=\left(g_{n k}\right)$ as:
$g_{n k}=\left\{\begin{array}{rc}u_{n} v_{k} ; & 0 \leq k \leq n \\ 0 ; & k>n\end{array}\right.$
for all $n, k \in \square$, where u_{n} depends only on n and v_{k} only on k. The matrix $G(u, v)=\left(g_{n k}\right)$ is called generalized weighted mean or factorable matrix.
The main purpose of the present paper is to introduce the sequence spaces $w(u, v ; p), w_{0}(u, v ; p)$ and $w_{\infty}(u, v ; p)$; which are the set of all sequences whose $G(u, v)$ - transforms are in the spaces $w(p), w_{0}(p)$ and $w_{\infty}(p)$ respectively, where $G(u, v)$ denotes the matrix as defined in (1.3). We have discussed some topological properties of $w(u, v ; p), w_{0}(u, v ; p)$ and $w_{\infty}(u, v ; p)$; investigated β-dual for the new space $w(u, v ; p)$. Moreover we have characterized the matrix classes $\left(w(u, v ; p), l_{\infty}\right),(w(u, v ; p), c)$ and $\left(w(u, v ; p), c_{0}\right)$.

II. The paranormed sequence spaces

$$
w(u, v ; p), w_{0}(u, v ; p) \text { and } w_{\infty}(u, v ; p)
$$

Before introducing these sequence spaces we would like to present some remarks. Malkowsky and Savas [10] have defined the sequence spaces $\mathrm{Z}(\mathrm{u}, \mathrm{v}, \mathrm{X})$ which consists of all sequences whose $\mathrm{G}(\mathrm{u}, \mathrm{v})$ transforms are in $X \in\left\{l_{\infty}, c, c_{0}, l(p)\right\}$ where $u, v \in U$. Chaudhary B. and Mishra S.K. [6] have defined the sequence space $\overline{l(p)}$ which consists of all sequences whose S- transforms are in $l(p)$;where $S=\left(s_{n k}\right)$ is defined by $s_{n k}=\left\{\begin{array}{lr}1 ; & 0 \leq k \leq n \\ 0 ; & k>n\end{array}\right.$
Moreover I.J. Maddox [1] introduced the sequence space $w(p), w_{0}(p)$ and $w_{\infty}(p)$ which consists of all strongly summable, strongly summable to zero and bounded sequences respectively whose Ctransforms are in the spaces $l(p), c_{0}(p)$ and $l_{\infty}(p)$ respectively ; where $C=\left(c_{n k}\right)=\left\{\begin{array}{lr}\frac{1}{n} ; & 1 \leq k \leq n \\ 0 ; & k>n\end{array}\right.$
and $C=\left(c_{n k}\right)$ is called the Ceasaro matrix of order 1 or the matrix of arithmetic mean.
The matrix domain X_{A} of an infinite matrix A in a sequence space X is defined by
$X_{A}=\left\{x=\left(x_{k}\right) \in \omega: A x \in X\right\}$
(2.1)
, which is a sequence space.

With the notation as in (2.1), we can have the following representations:
$X(u, v, p)=[X]_{Z}, \quad$ for $X \in\left\{l_{\infty}, c, c_{0}, l(p)\right\}$
$\overline{l(p)}=[l(p)]_{S}$.
Following the works of the authors $[1,6,9,10]$, for $p=\left\{p_{k}\right\}$ is a bounded sequence of a strictly positive real numbers, we now define the new sequence spaces $\mu(u, v ; p)$ for $\mu \in\left\{w(p), w_{0}(p), w_{\infty}(p)\right\}$ by
$\mu(u, v ; p)=\left\{x=\left(x_{k}\right) \in \omega:\left(\sum_{k=1}^{n} u_{n} v_{k} x_{k}\right) \in \mu\right\}$
(2.2)

We may write, using (2.1), $\mu(u, v ; p)=[\mu]_{G(u, v)}$; for $\mu \in\left\{w(p), w_{0}(p), w_{\infty}(p)\right\}$
If $p_{k}=1$ for all $k \in \square$, we write $\mu(u, v)$ instead of $\mu(u, v ; p)$
We shall first establish following some simple properties.

Proposition 2.1

The sequence spaces $\mu(u, v ; p)$ are complete paranorm space paramormed by
$h(x)=\sup _{n \in \square}\left\{\frac{1}{n} \sum_{k=1}^{n}\left|u_{n} v_{k} x_{k}\right|^{p_{k}}\right\}^{\frac{1}{M}} ;$ or equivalently $g(x)=\sup _{r}\left(2^{-r} \sum_{r}\left|u_{n} v_{k} x_{k}\right|^{p_{k}}\right)^{\frac{1}{M}}$
where \sum_{r} is the sum over r in the range $2^{r} \leq k<2^{r+1}$. For the space $w_{\infty}(u, v ; p), h(x)$ is a paranorm if and only if $0<\inf p_{k} \leq \sup p_{k}<\infty$.
Proof: The proof of this proposition follows from the similar arguments as in the theorems 5,6 in [4] and theorem 2.1 in [9]. If $\left\{x^{n}\right\}$ is a Cauchy sequence in $\mu(u, v ; p)$; then $\left\{G(u, v) x^{n}\right\}$ is a Cauchy sequence in μ. Now it is a routine work to show $\mu(u, v ; p)$ is complete paranorm space under the usual paranorm.

Proposition 2.2

The sequence spaces $\mu(u, v ; p)$ are linearly isomorphic to $\mu \in\left\{w(p), w_{0}(p), w_{\infty}(p)\right\}$.
Proof: We define the transformation
$T: \mu(u, v ; p) \rightarrow \mu$ by,
$x \mapsto y=T(x)$. Linearity of T is obvious. Further, if $T x=\theta$, then $x=\theta$. Hence T is injective. Now, let $y \in \mu$ and define the sequence $x=\left(x_{k}\right)$ by $x_{k}=\frac{1}{v_{k}}\left\{\frac{y_{k}}{u_{k}}-\frac{y_{k-1}}{u_{k-1}}\right\} ; k \in \square$.
Then, $h(x)=\sup _{n \in \square}\left\{\frac{1}{n} \sum_{k=1}^{n}\left|u_{n} v_{k} x_{k}\right|^{p_{k}}\right\}^{\frac{1}{M}}$
$=\sup _{n \in \square}\left\{\frac{1}{n} \sum_{k=1}^{n}\left|y_{k}\right|^{p_{k}}\right\}^{\frac{1}{M}}$
$=g(y)$
$<\infty$.
Thus, we deduce that $x \in \mu(u, v ; p)$ and as a consequence we conclude that T is surjective and is a paranorm preserving. Hence T is a linear bijection and showing that the sequence spaces $\mu(u, v ; p)$ are linearly isomorphic to μ.

III. Duals

In this section we find β-dual of $w(u . v ; p)$. If X be a sequence space, we define β-dual of X as:
$X^{\beta}=\left\{a=\left(a_{k}\right): \sum_{k=1}^{\infty} a_{k} x_{k}\right.$ is convergent for each $\left.x \in X\right\}$.

Theorem 3.1

Let $0<p_{k} \leq 1$ for every $k \in \square$. Then $w^{\beta}(u . v ; p)=\Gamma$ where
$\Gamma=\left\{a=\left(a_{k}\right): \sum_{r} a_{k}\left[\frac{1}{v_{k}}\left[\frac{\left(2^{r} N^{-1}\right)^{\frac{1}{p_{k}}}}{u_{k}}-\frac{\left(2^{r} N^{-1}\right)^{\frac{1}{p_{k-1}}}}{u_{k-1}}\right]\right]\right.$ convrges and $\left.\lim _{m \rightarrow \infty}\left(2^{r} N^{-1}\right)^{\frac{1}{p_{m}}} \frac{a_{m}}{u_{m} v_{m}}=O(1)\right\}$

Proof : We first assume that the conditions hold. Let $a \in \Gamma$ and $x \in w(u, v ; p)$.Then for $y \in w(p)$, there exists a positive integer $N>1$ Such that
$\frac{1}{n} \sum_{k=1}^{n}\left|y_{k}\right|^{p_{k}}<\infty$
or equivalently $\frac{1}{2^{r}} \sum_{r}\left|y_{k}\right|^{p_{k}}<\infty$, where sum over r runs from $2^{r} \leq k<2^{r+1}$. It follows that,

$$
\begin{aligned}
&\left|y_{k}\right| \leq\left(2^{r} N^{-1}\right)^{\frac{1}{p_{k}}} . \text { Now, } \\
&\left|\sum_{k=1}^{m} a_{k} x_{k}\right|=\left|\sum_{k=1}^{m-1} a_{k}\left[\frac{1}{v_{k}}\left(\frac{y_{k}}{u_{k}}-\frac{y_{k-1}}{u_{k-1}}\right)\right]+\frac{a_{m} y_{m}}{u_{m} v_{m}}\right| \\
& \leq\left|\sum_{k=1}^{m-1} \frac{a_{k}}{v_{k}}\left(\frac{y_{k}}{u_{k}}-\frac{y_{k-1}}{u_{k-1}}\right)\right|+\left|\frac{a_{m}}{u_{m} v_{m}}\right|\left|y_{m}\right| \\
& \leq \sum_{r} \frac{a_{k}}{v_{k}}\left|\frac{\left(2^{r} N^{-1}\right)^{\frac{1}{p_{k}}}}{u_{k}}-\frac{\left(2^{r} N^{-1}\right)^{\frac{1}{p_{k-1}}}}{u_{k-1}}\right|+\left|\frac{a_{m}}{u_{m} v_{m}}\right|\left(2^{r} N^{-1}\right)^{\frac{1}{p_{m}}} \\
&<\infty .
\end{aligned}
$$

It follows that $\sum_{k=1}^{\infty} a_{k} x_{k}$ converges for each $x \in w(u, v ; p)$.
Hence, $\Gamma \subseteq w^{\beta}(u . v ; p)$.
On the other hand, let $a \in w^{\beta}(u, v ; p)$. Then , $\sum_{k=1}^{\infty} a_{k} x_{k}$ converges for each $x \in w(u, v ; p)$. Since,

$$
\begin{aligned}
& x=\left\{\frac{1}{v_{k}}\left(\frac{\left(2^{r} N^{-1}\right)^{\frac{1}{p_{k}}}}{u_{k}}-\frac{\left(2^{r} N^{-1}\right)^{\frac{1}{p_{k-1}}}}{u_{k-1}}\right)\right\} \in w(u, v ; p) \quad ; \text { it } \\
& \sum_{k=1}^{\infty} a_{k}\left[\frac{1}{v_{k}}\left[\frac{\left(2^{r} N^{-1}\right)^{\frac{1}{p_{k}}}}{u_{k}}-\frac{\left(2^{r} N^{-1}\right)^{\frac{1}{p_{k-1}}}}{u_{k-1}}\right]\right. \text { converges. We need to show that }
\end{aligned}
$$

$\lim _{m \rightarrow \infty}\left(2^{r} N^{-1}\right)^{\frac{1}{p_{m}}} \frac{a_{m}}{u_{m} v_{m}}=O(1)$
As a contrary let,
$\lim _{n \rightarrow \infty}\left(2^{r} N^{-1}\right)^{\frac{1}{p_{m}}} \frac{a_{m}}{u_{m} v_{m}} \neq O(1)$, which is immediately against the fact that $\sum_{k=1}^{\infty} a_{k} x_{k}$ converges for each $x \in w(u, v ; p)$ and $\sum_{k=1}^{\infty} a_{k}\left[\frac{1}{v_{k}}\left(\frac{\left(2^{r} N^{-1}\right)^{\frac{1}{p_{k}}}}{u_{k}}-\frac{\left(2^{r} N^{-1}\right)^{\frac{1}{p_{k-1}}}}{u_{k-1}}\right)\right]$ converges.
Hence we must have, $\lim _{m \rightarrow \infty}\left(2^{r} N^{-1}\right)^{\frac{1}{p_{m}}} \frac{a_{m}}{u_{m} v_{m}}=O(1)$
So, we arrive at the result $w^{\beta}(u \cdot v ; p) \subseteq \Gamma$; thereby proving $w^{\beta}(u \cdot v ; p)=\Gamma$.

IV. Matrix Transformation

In this section we give characterization for the matrix classes $\left(w(u, v ; p), l_{\infty}\right),(w(u, v ; p), c)$ and $\left(w(u, v ; p), c_{0}\right)$.

Theorem 4.1

Let $0<p_{k} \leq 1$ for every $k \in \square$. Then $A \in\left(w(u, v ; p), l_{\infty}\right)$ if and only if
i) there exists an integer $N>1$ such that
$\sup _{n} \sum_{r} \max _{r}\left[a_{n k}\left\{\frac{1}{v_{k}}\left(\frac{\left(2^{r} N^{-1}\right)^{\frac{1}{p_{k}}}}{u_{k}}-\frac{\left(2^{r} N^{-1}\right)^{\frac{1}{p_{k-1}}}}{u_{k=1}}\right)\right\} \ll \infty\right.$ and
ii) $\lim _{m \rightarrow \infty}\left\{\left(2^{r} N^{-1}\right)^{\frac{1}{p_{m}}} \frac{a_{n m}}{u_{m} v_{m}}\right\}_{n \in \square}=O(1)$

Proof: Let the conditions be satisfied. Since,

$$
\begin{aligned}
&\left|\sum_{k=1}^{m} a_{n k} x_{k}\right|=\left|\sum_{k=1}^{m-1} a_{n k}\left[\frac{1}{v_{k}}\left(\frac{y_{k}}{u_{k}}-\frac{y_{k-1}}{u_{k-1}}\right)\right]+\frac{y_{m}}{u_{m} v_{m}} a_{n m}\right| \\
& \leq\left|\sum_{k=1}^{m-1} a_{n k}\left\{\frac{1}{v_{k}}\left(\frac{y_{k}}{u_{k}}-\frac{y_{k-1}}{u_{k-1}}\right)\right\}\right|+\left|\frac{a_{m}}{u_{m} v_{m}}\right|\left|y_{m}\right| \\
& \therefore \sum_{k=1}^{\infty}\left|a_{n k} x_{k}\right| \leq \sum_{r} \max _{r}\left|a_{n k}\left\{\frac{1}{v_{k}}\left(\frac{\left(2^{r} N^{-1}\right)^{\frac{1}{p_{k}}}}{u_{k}}-\frac{\left(2^{r} N^{-1}\right)^{\frac{1}{p_{k-1}}}}{u_{k-1}}\right)\right\}+\left|\frac{a_{n m}}{u_{m} v_{m}}\right|\left(2^{r} N^{-1}\right)^{\frac{1}{p_{m}}}\right.
\end{aligned}
$$

$$
\leq \sup _{n} \sum_{r} \max _{r}\left|a_{n k}\left\{\frac{1}{v_{k}}\left(\frac{\left(2^{r} N^{-1}\right)^{\frac{1}{p_{k}}}}{u_{k}}-\frac{\left(2^{r} N^{-1}\right)^{\frac{1}{p_{k-1}}}}{u_{k-1}}\right)\right\}\right|+\left(2^{r} N^{-1}\right)^{\frac{1}{p_{m}}}\left|\frac{a_{n m}}{u_{m} v_{m}}\right|
$$

$<\infty$, by using conditions (i) and (ii).
It follows that $A_{n} \in \Gamma$ and hence $\sum_{k=1}^{\infty} a_{n k} x_{k}=A_{n}(x)$ converges for each $x \in w(u, v ; p)$ and $n \in \square$. Thus $A x \in l_{\infty}$.
On the other hand, let $A \in\left(w(u, v ; p), l_{\infty}\right)$. Since ,
$\left\{\frac{1}{v_{k}}\left(\frac{\left(2^{r} N^{-1}\right)^{\frac{1}{p_{k}}}}{u_{k}}-\frac{\left(2^{r} N^{-1}\right)^{\frac{1}{p_{k-1}}}}{u_{k-1}}\right)\right\} \in w(u, v ; p)$, the condition (i) holds. In order to see that condition
(ii) is necessary, we assume that for $N>1$,
$\lim _{m \rightarrow \infty}\left\{\left(2^{r} N^{-1}\right)^{\frac{1}{p_{m}}} \frac{a_{n m}}{u_{m} v_{m}}\right\} \quad \neq O(1)$,
that is, $\left\{\left(2^{r} N^{-1}\right)^{\frac{1}{p_{m}}} \frac{a_{n m}}{u_{m} v_{m}}\right\}_{n \in \square} \notin l_{\infty}$.
Now, therefore, there exists a sequence $\left\{N_{r}\right\} \rightarrow \infty$ such that
$\sup _{n} \sum_{r} \max _{r}\left[a_{n k}\left\{\frac{1}{v_{k}}\left(\frac{\left(2^{r} N_{r}^{-1}\right)^{\frac{1}{p_{k}}}}{u_{k}}-\frac{\left(2^{r} N_{r}^{-1}\right)^{\frac{1}{p_{k-1}}}}{u_{k-1}}\right)\right\}\right]=o(1)$ and
$\lim _{m \rightarrow \infty}\left\{\left(2^{r} N_{r}^{-1}\right)^{\frac{1}{p_{m}}} \frac{a_{n m}}{u_{m} v_{m}}\right\}_{n \in \square}=o(1)$.
Hence, $x_{k} \mapsto o(w(u, v ; p))$ but $x_{k} \mapsto l(w(u, v ; p))$. So, we arrive at the contradiction to our assumption $A \in\left(w(u, v ; p), l_{\infty}\right)$. Thus, condition (ii) is necessary; thereby completing the proof for the theorem.
By using the arguments as in theorem (4.1) it is straight forward matter to prove the following theorems:

Theorem 4.2

Let $0<p_{k} \leq 1$ for every $k \in \square$. Then $A \in(w(u, v ; p), c)$ if and only if
i) there exists an integer $N>1$ such that
$\sup _{n} \sum_{r} \max _{r}\left[a_{n k}\left\{\frac{1}{v_{k}}\left(\frac{\left(2^{r} N^{-1}\right)^{\frac{1}{p_{k}}}}{u_{k}}-\frac{\left(2^{r} N^{-1}\right)^{\frac{1}{p_{k-1}}}}{u_{k}}\right)\right\}\right]<\infty$ and
ii) $\lim _{m \rightarrow \infty}\left\{\left(2^{r} N^{-1}\right)^{\frac{1}{p_{m}}} \frac{a_{n m}}{u_{m} v_{m}}\right\}_{n \in \square}=o(1)$
iii) $\lim _{n \rightarrow \infty} a_{n k}=\alpha_{k}$ exists for every fixed k.

Theorem 4.3

Let $0<p_{k} \leq 1$ for every $k \in \square$. Then $A \in\left(w(u, v ; p), c_{0}\right)$ if and only if
i) there exists an integer $N>1$ such that
$\sup _{n} \sum_{r} \max _{r}\left[a_{n k}\left\{\frac{1}{v_{k}}\left(\frac{\left(2^{r} N^{-1}\right)^{\frac{1}{p_{k}}}}{u_{k}}-\frac{\left(2^{r} N^{-1}\right)^{\frac{1}{p_{k-1}}}}{u_{k}}\right)\right\} \ll \infty\right.$
ii) $\lim _{m \rightarrow \infty}\left\{\left(2^{r} N^{-1}\right)^{\frac{1}{p_{m}}} \frac{a_{n m}}{u_{m} v_{m}}\right\} \quad=o(1)$ and
iii) $\lim _{n \rightarrow \infty} a_{n k}=\alpha_{k}$ with $\alpha_{k}=0$ for every fixed k .

References

[1] I.J. Maddox, Paranormed sequence spaces generated by infinite matrices, Proc. Cambridge Philos. Soc.64(1968) 335-340
[2] I.J. Maddox, Spaces of Strongly summable sequences, Quart. J. Math. Oxford 18(2) (1967) 345-355
[3] C.G. Lascarides, I.J. Maddox, Matrix transformation between some classes of sequences, Proc. Cambrige Philos. Soc. (1970) 99104
[4] I.J. Maddox, Some properties of paranormed sequence spaces, London J. Math. Soc.2, 1(1969) 316-322
[5] S. Simons, The sequence spaces $l\left(p_{v}\right)$ and $m\left(p_{v}\right)$ Proc. Lond. Math. Soc. 15 (3) (1965) 422-436
[6] B. Choudhary, S.K. Mishra, On Kothe-Toeplitz duals of certain sequence spaces and their matrix transformations, Indian J. Pure Appl. Math 24(5) (1993) 291-301
[7] B. Altay, F. Basar, Some paramormed Riesz sequence spaces of non-absolute type, Southeast Asian Bull.Math.30(2006) 591-608
[8] B. Altay, F. Basar, Some paramormed sequence spaces of non-absolute type derived by weighted mean , J. Math.Anal. Appl. 319(2006) 454-508
[9] B. Altay, F. Basar, Generalization of the sequence space $l(p)$ derived by weighted mean, J.Math. Anal. 330(2007) 174-185
[10] E. Malkowsky, Es. Savas, Matrix transformation between sequence spaces of generalized weighted means, Appl. Math. Compt. 147(2004) 333-345

