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Abstract: In this paper we study the existence of a unique continuous function y=y(x) on I=(a, a+h] solution 

for the fractional differential equationy
()

(x)=λ f(y(x)) and y
(-1)

(a)=,  is some constant, 0<≤1, using Banach 

fixed point theorem. 
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I. Introduction 
Differential equations of fractional orderoccur more frequently in different research such as physics, 

control of dynamical systems, engineering, chemistry etc. Recently, many researchers paid attention to existence 

results of solution of fractional differential equations (see([1]…[5]). In this study we used Banach fixed point 

theorem to prove that there is a continuous function y(x) on  

I=(a,a+h] solution for the fractional differential equation  

y
()

(x)=λ f(y(x)) and y
(-1)

(a)=,  is some constant, 0<≤1. 

 

II. Preliminaries 
In this section we introduce notations, definitions and preliminary facts which are used throughout this 

paper. 

Definition (2-1)([6]): Let M1={g:g is a real valued function and continuous on the interval [a,b]}. Let the norm 

||||o on M1be defined as: 

‖ ‖            {|    |} 

Lemma (2-1)([6]):The space (M1, ||||o) is a Banach space, where M1 is defined in definition (2-1). 

Lemma (2-2)([7]):Let 0<≤1 and f,g be continuous functions on (a, ), where aR and such that 
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for all 

x>a,  is some constant. Then f c(a,).  

Lemma (2-3)([7]): Let us define F(x) = (x-a)
1-

f(x) on (a,), where fdefine in lemma (2-2) and 0<≤1.Then 

F c[a,]. 

Definition (2-2)([8]):Let p, q >0 the ∫      

 
           exists and is define for the Beta function as follows 

       ∫    

 

 

           

Definition (2-3)([9]): Let (G, ||||o) is a normed space, then a mapping T:G→G is said to be a constraction on G 

if there exists a constant k with 0≤ k<1 such that‖    -    ‖  ‖   ‖              . 

 

Lemma (2-4)([10]): [Banach fixed point] 

If (G, ||||o)is a complete normed space T:G→G is a constraction on mapping, then T has one and only one fixed 

point in G. 

 

Definition (2-4)([11]):Let f be Lebesque- measurable function defined a.e on [a, b], if >0 then we define 

dttbtff
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a

b
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provided the integral (Lebesque) exists. 

 

Lemma (2-5)([6]):Let ,  R, > -1. If x>a then 
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Lemma (2-6) ([7]):If 0<≤1 and f(x) is continuous on (a,b], |f(x)| ≤M for all x(a,b] (where MR
+
, M>0). 

Then 

 b].(a, xallfor )(ffII  x
x

a

x

a



 
 

Definition (2-5) ([11]): If R, f is defined a.e on the interval [a, b], we define 

b](a,x all forI)(   fxf
dx

fd x

a







 

provided that f
x

a

I  exists. 

 

Theorem (2-1)([11]):Let 0<≤1 and  be positive constant. Let g(x)=(g1(x), g2(x), …, gn(x))
T
, x[a,), where 

gi are continuous on [a,), i= 1, 2, …, n and |    |  (∑   
  

   )
 
  and |g(x)|≤x+c, where c is positive constant. 

Let fi=(f1, f2, …, fn)
T
 such that fi[a,) and sup{|f(x)|: x[a, )}=M<. Choose λ such that    (  (

 

 
)

 

)
  

. 

Then there exists continuous vector function y(x)=(y1(x), y2(x), …, yn(x))
T
, x(a,) such that y

()
(x)=λf(y(x)), 

x(a,) with y
(-1)

(a)=, where =(1, 2, …, n)
T
 is some constant vector and satisfied  

|y(x)|<exp (c
-1

|x|).constant. 

 

III. Main Results 
In this section we prove the existence of a unique continuous function y(x) on I=(a, a+h] solution for the 

fractional differential equationy
()

(x)=λf(y(x)), and y
(-1)

(a)=, where  is some constant, , 0<≤1, using Banach 

fixed point theorem. 

 

Theorem (3):Let 0<≤1, M, A>0 and aR and I=(a, a+h], let further the constant b, h, λ>0 and K, L, λ satisfy 

the relations  

  
          

    
   and Mhλ<K(+1). 

Let D be a region in the x, y plane which contains the set 

C={(x, y): xI, |(x-a)
1-

y- b| ≤ k}, let f(x, y) be a continuous function on D  

such that |f(x, y)| ≤M for all (x, y)  D and |f(x,y1)-f(x,y2)|≤A|y1-y2|  

for all (x,y1),(x,y2)D.Then there exists a unique continuous function y=y(x) on I which is solution for the 

differential equation y
()

(x)=λ f(y(x)) and 

 y
(-1)

(a)=, where  is some constant. 

Proof: let   
 

    
then bc[a, a+h]. 

Let (M1, ||||o) be the normed space which has been defined in definition  

(2-1), from lemma (2-1) (M1, ||||o) is a complete normed space. Define H={G: GM1, ||G-b||o ≤k}, we shall 

show that H is a closed subset of M1. For if {  }   
  is a sequence in H such that                . Then 

given >0 there exist NZ
+
 such that for all nN we have ||Gn-G||o<. Since  

||G-b||o≤||G-Gn||o+||Gn-b||o<k and  is arbitrary, it follows that ||G-b||o≤ k and this shows that GH and 

consequently H is closed. Since every closed subset of a complete space is complete, hence H is complete. Now 

consider the following equation:  

,))(()(
)(

1

)(

a)-(x
y(x) 1

1

dttyftx
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a












 





for all x(a, a+h]. 
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Then from lemma (2-2) we have yc(a,a+h], and so 

dttyftxb

x

a

))(()(
)(

a)-(x
y(x)a)-(x 1

1
1





 


 





 for all x(a, a+h] …(3.1) 

Define G(x)=(x-a)
1-

y(x) for all x(a,a+h],F(x, y(x))=(x-a)
1-

f(y(t)), 

 a≤t<x≤a+h ...(3.2) 

Then (3.1) takes the form dttyxFtxb

x

a

))(,()(
)(

1
G(x) 1





 


 for allx[a, a+h], 

Since |F(x, y(t))|=|(x-a)
1-

 f(y(t))| ≤ h
1-

M                       …(3.3) 

Therefore by lemma (2-3), the integral dttyxFtx

x

a

))(,()( 1


 

 exists for all  

x[a, a+h], thus Gc[a, a+h] and hence GM1. 

Furthermore ‖   ‖              {|    - |}   

            {|              |}    hence GH. 

Now define an operator T on H as follows.For GH 

dttyxFtxb

x

a

))(,()(
)(

TG(x) 1





 




 for all x[a, a+h],Since by lemma (2-3) the integral

dttyxFtx

x

a

))(,()( 1


 

 exists for all x[a, a+h] and bc[a, a+h], the TG(x) is well defined for all x[a, 

a+h]. 

Next we shall show that T:H→H and T is constraction mapping. 

Indeed if GH then we have 

‖    ‖              {|       |} 
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a
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Then from (3-3) we have 
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 k
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Thus TH and hence T:H→H. 

Let further G1, G2H then from (3.1) we have 

‖       ‖              {|             |} 

             {|
 

    
∫                    

 

    
∫                   

 

 

 

 

|} 
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∫        |                     |
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             {
         

    
∫        |                   |  

 

 

} 
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∫        |             |  
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∫                ||       ||   
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 ||       ||         

    
∫                   

 

 
}…(3.4) 

Let   
   

   
 then 

∫                   

 

 

∫                        

 

 

 

and its follows from definition (2-2) 

∫                   

 

 

                      

From (3.4) and (3.5) we obtain 

‖       ‖                {
         ‖     ‖                

    
} 

               {
       ||       ||        

    
} 

 
          ||       || 

    
 

  ||       ||                      …(3.6) 

It follows from definition (2-3) that in view of (3.6), it follows that T is a constraction on H. 

Hence by the Banach fixed point ((lemma (2-4)) there is one and only one GH such that T(G(x)) =G(x), for 

allx[a, a+h]. 

Thus dttyxFtxb

x

a

))(,()(
)(

G(x) 1





 




 for all x[a, a+h], 

It follows from (3.2) that 
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)()(
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and thus 
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for all x(a, a+h] 

Now by definition (2-4) we obtain 
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But from lemma (2-5) we have 0
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and by lemma(2-6) we get 

f(y(x))fII  
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for all x(a, a+h] 
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Thus f(y(x))yI  
x

a
x(a, a+h]  

Then by using definition (2-5) we get 

f(y(x))I(x)y )(    y
x

a
x(a, a+h]  

Furthermore from (3.7) we have 
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It follows from lemma (2-5) that  
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and so y1 
x

a
 exists for all x[a, a+h] 

since by definition (2-5) 

y)( 1)1(   
x

a
xy  

therefore   )a()1(y
.
 

Now from theorem (2-1) equation (3.11) we have  

|    |    | ||     | 
then from theorem (2-1) equation (3.8) we have 

|    |    | |‖ ‖ 

   

  
  | | 

   ‖ ‖  
 | | since c= 

   | |     | |  ‖ ‖    

   | |   ‖ ‖    
thus by using theorem (2-1) equation (3.3) we obtain 

|            |    | |   ‖ ‖   

    |    |    | |   ‖ ‖   
|    |    | |       ‖ ‖   

and so the solution function satisfied 

|y(x)|<exp (c
-1

|x|).constant. 
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