Some Results Concerning Memomorphic Matrix Valued Functions.

¹Subhas S. Bhoosnurmath, ²K.S.L.N.Prasad

¹Department of Mathematics, Karnatak University, Dharwad-580003-INDIA ²Associate Professor, Department of Mathematics, Karnatak Arts College, Dharwad-580001, INDIA

Abstract: In this paper we have extended some basic results of Nevanlinna theory to Matrix valued meromorphic functions.

Key words: Nevanlinna theory, Matrix valued meromorphic functions.

I. Preliminaries:

By a meromorphic function we shall always mean a transcendental meromorphic function in the plane. If f is a meromorphic function, $a \in \overline{C}$ and r > 0, we use the following notations of frequent use in Nevanlinna

theory with their usual meaning:
$$m(r,a,f) = m \left(r \frac{1}{f-a} \right), \quad n(r,a,f) = n \left(r, \frac{1}{f-a} \right),$$

$$\overline{n}(r,a,f)$$
, $N(r,a,f)$, $\overline{N}(r,a,f)$, $T(r,f)$

$$\delta(a, f), \Delta(a, f), \Theta(a, f)$$
 etc..as in [2]

As usual, if $a = \infty$, then by a zero of f-a, we mean a pole of f.

We define a meromorphic matrix valued function as in [1].

By a matrix valued meromorphic function A(z) we mean a matrix all of whose entries are meromorphic on the whole (finite) complex plane.

A complex number z is called a pole of A(z) if it is a pole of one of the entries of A(z), and z is called a zero of A(z) if it is a pole of $\left[A(z)\right]^{-1}$.

For a meromorphic $m \times m$ matrix valued function A(z),

let
$$m(r, A) = \frac{1}{2\pi} \int_{0}^{2\pi} \log ||A(re^{i\theta})|| d\theta$$
 (1)

where A has no poles on the circle |z| = r.

Here,
$$\|A(z)\| = Max \|x\| = 1$$

$$x \in \mathbb{C}^n$$

Set
$$N(r, A) = \int_{0}^{r} \frac{n(t, A)}{t} dt$$
 (2)

where n(t, A) denotes the number of poles of A in the disk $\left\{z:\left|z\right|\leq t\right\}$, counting multiplicities.

Let T(r, A) = m(r, A) + N(r, A)

Definition: Let $A = \begin{bmatrix} a_{ij} \end{bmatrix}_{i=1}^{m}$ be a memomorphic matrix valued function of finite order. Let $a \in C$.

$$\text{Let } \delta(a_{ij}) = \delta(a, a_{ij}) = \lim_{r \to \infty} \frac{m(r, a)}{T(r, a_{ij})} = \overline{\lim_{r \to \infty}} \frac{N(r, a)}{T(r, a_{ij})}$$

$$\label{eq:and_theta} \text{And } \theta(a_{ij}) = \theta(a,a_{ij}) = 1 - \overline{\lim_{r \to \infty}} \, \frac{N(r,a)}{T(r,a_{ij})}$$

Also, Let
$$\delta(a, A) = \underset{1 \le i, j \le m}{Max} \delta(a_{ij}) = \underset{1 \le i, j \le m}{Max} \delta(a, a_{ij})$$

and
$$\theta(a,A) = \underset{1 \leq i,j \leq m}{Max} \, \theta(a_{ij}) = \underset{1 \leq i,j \leq m}{Max} \, \theta(a,a_{ij})$$

We wish to prove the following results.

Theorem 1 : Let $A = \begin{bmatrix} a_{ij} \end{bmatrix}_{i,j=1}^m$ be a meromorphic matrix valued functions of finite order. If a1, a2, a3, a_q are distinct numbers, then $\forall 1 \le i, j \le m$.

$$\sum_{k=1}^{q} m(r, a_{k,} a_{ij}) + N\left(r, \frac{1}{a_{ij}}\right) \le T(r, a_{ij}) + S(r, a_{k,} a_{ij})$$

Where $S(r, a_k, a_{ij}) = S(r, a_{ij}) = 0 \{ T(r, a_{ij}) \} r \rightarrow \infty$ through all values of a_{ij} .

Theorem 2: Let $A = \begin{bmatrix} a_{ij} \end{bmatrix}_{i,i=1}^{m}$ be a meromorphic matrix valued function of finite order. Then,

$$\lim_{r \to \infty} \frac{T(r, A^{'})}{T(r, A)} \ge \sum_{a \in C} \theta(a, A)$$

Theorem 3 Let $A = \begin{bmatrix} a_{ij} \end{bmatrix}_{i,j=1}^{m}$ be meromorphoic matrix valued function of finite order.

Then,
$$\lim_{r\to\infty} \frac{T(r,A)}{T(r,A)} \le 2 - \theta(\infty,A)$$

Proof of theorem 1:

Without loss of generality, let us assume that for $q \ge 2$,

$$F(z) = \sum_{k=1}^q \frac{1}{a_{ii} - a_k} \,, \, 1 \leq i, j \leq m.$$

Then by a known result [Hayman, p.33], we have

$$M(r,F) \geq \sum_{k=1}^{q} m(r,a_{k,}a_{ij}) - q \log + \frac{3q}{\delta} - \log 2 \ \text{, where } \delta = \min_{k_1 \neq k_2} \Bigl| a_{k_1} - a_{k_2} \Bigr|$$

$$\begin{split} \sum_{k=1}^{q} m(r, a_{k,} a_{ij}) &\leq m(r, F) + O(1) \\ &= m \left(r, \frac{1}{a_{ij}} . F . a_{ij} \right) + O(1) \\ &\leq m \left(r, \frac{1}{a_{ij}} \right) + m(r, F . a_{ij}) + O(1) \\ &\leq m \left(r, \frac{1}{a_{ij}} \right) + m \left(r, \sum_{k=1}^{q} \frac{a_{ij}}{a_{ij} - a_{k}} \right) + O(1) \\ &\leq m \left(r, \frac{1}{a_{ij}} \right) + \sum_{k=1}^{q} m \left(r, \frac{a_{ij}}{a_{ij} - a_{k}} \right) + O(1) \\ &= m \left(r, \frac{1}{a_{ii}} \right) + S(r, a_{ij}) \end{split}$$

Thus,
$$\sum_{k=1}^{q} m(r, a_{k,} a_{ij}) + N\left(r, \frac{1}{a_{ij}}\right) \le T\left(r, \frac{1}{a_{ij}}\right) + S(r, a_{ij})$$

$$\le T\left(r, \frac{1}{a_{ij}}\right) + S(r, a_{ij})$$

Hence, the result.

Proof of theorem 2:

 $\text{Let } \left\{a_{ij}\right\}_{i=1}^{\infty} \text{ be an infinite sequence of distinct elements of } C \text{ which includes for each } a \in C, \ \theta \left(a, a_{ij}\right) > 0.$

Then,
$$\sum_{a=c}^{q} \theta(a_{i,}a_{ij}) = \sum_{a=c} \theta(a,a_{ij})$$

Let q be a positive integer. Then by previous theorem,

$$\sum_{k=1}^{q} m(r, a_{k,} a_{ij}) + N \left(r, \frac{1}{a_{ij}}\right) \le T(r, a_{ij}) + S(r, a_{k,} a_{ij})$$

Adding
$$\sum_{k=1}^{q} N(r, a_k, a_{ij})$$
 both sides, we get

$$\begin{split} \sum_{k=1}^{q} T \left(\frac{1}{a_{ij} - a_k} \right) &\leq T(r, a_{ij}^{'}) + \sum_{k=1}^{q} N(r, a_{k, a_{ij}}) - N \left(r, \frac{1}{a_{ij}^{'}}\right) + S(r, a_{ij}^{'}) \\ &= T(r, a_{ij}^{'}) + \sum_{k=1}^{q} N(r, a_{k, a_{ij}}) - N_0 \left(r, \frac{1}{a_{ii}^{'}}\right) + S(r, a_{ij}^{'}) \end{split}$$

where $N_0 \left(r, \frac{1}{a_{ij}} \right)$ is formed with the zeros of a_{ij} which are not zeros of any of $a_{ij} - a_k$.

Since
$$N_0 \left(r, \frac{1}{a_{ij}} \right) \ge 0$$
, We have

$$\sum_{k=1}^{q} T \left(r, \frac{1}{a_{ii} - a_k} \right) \le T(r, a_{ij}) + \sum_{k=1}^{q} \overline{N}(r, a_{k, a_{ij}}) + S(r, a_{ij})$$
 (*)

Now,
$$T\left(r, \frac{1}{a_{ii} - a_k}\right) \le T(r, a_{ij}) + O(\text{Log } r)$$

$$= T(r, a_{ij}) + o\{T(r, a_{ij})\}$$
 as $r \rightarrow \infty$

Thus (*) takes the form

$$q T(r, a_{ij}) < T(r, a_{ij}^{'}) + \sum_{k=1}^{q} \overline{N}(r, a_{k, a_{ij}}) + S(r, a_{ij})$$

$$\text{Hence, } q \leq \lim_{r \to \infty} \frac{T(r, a_{ij}^{'})}{T(r, a_{ii})} + \sum_{k=1}^{q} \overline{\lim_{r \to \infty}} \frac{\overline{N}(r, a_{k,} a_{ij})}{T(r, a_{ii})} + \overline{\lim_{r \to \infty}} \frac{S(r, a_{ij})}{T(r, a_{ii})}$$

Therefore,
$$q \leq \lim_{r \to \infty} \frac{T(r, a_{ij}^{'})}{T(r, a_{ii})} + \sum_{k=1}^{q} \{1 - \theta(a_k, a_{ij})\} + \overline{\lim_{r \to \infty}} \, \frac{S(r, a_{ij})}{T(r, a_{ii})}$$

Taking maximum over $1 \le i, j \le m$, we get

$$\sum_{k=1}^{q} \theta(a_k^{},A) \leq \underset{r \rightarrow \infty}{lim} \frac{T(r,A^{'})}{T(r,A)}$$

Hence the result.

Proof of theorem 3:

From [1], We know that
$$m\left(r, \frac{f'}{f}\right) = S(r, f)$$

Therefore,
$$m(r, a_{ij}^{'}) \le m(r, a_{ij}) + S(r, a_{ij})$$

Also, N(r,
$$a_{ij}^{'}$$
) = N(r, a_{ij}) + \overline{N} (r, a_{ij})

Hence,
$$T(r, a_{ij}) = T(r, a_{ij}) + \overline{N}(r, a_{ij}) + S(r, a_{ij})$$

Therefore,
$$\frac{T(r,a_{ij}^{'})}{T(r,a_{ii}^{'})} \leq 1 + \frac{\overline{N}}{N}(r,a_{ij}) + O(1)$$

Therefore,
$$\lim_{r\to\infty}\frac{T(r,a_{ij}^{'})}{T(r,a_{ij}^{'})}\leq 2-\theta(\infty,a_{ij}^{'})$$

Taking maximum over
$$1 \leq i, j \leq m$$
, we get $\lim_{r \to \infty} \frac{T(r,A')}{T(r,A)} \ 2 - \theta(\infty,A)$

References

- [1]. C. L. PRATHER and A.C.M. RAN (1987): "Factorization of a class of mermorphic matrix valued functions", Jl. of Math. Analysis, 127,413-422.
- [2]. HAYMAN W. K. (1964): Meromorphic functions, Oxford Univ. Press, London.