Solving n power class (Q) operators using MATLAB

Dr. T. Veluchamy, K.M.Manikanadan, T.Ramesh

Dept. of Mathematics, Dr.SNS Rajalakshmi college of Arts & Science , Coimbatore-49, TamilNadu, India

Abstract: In this paper we investigate the charactisation of n power class (Q) operators on Hilbert space using MATLAB. Mathematics Subject Classification: 47B99, 47B15

Key words: Normal operator, class (Q) operator, n power class (Q) operator, Hilbert space, Hadamard matrices ,MATLAB R2008a.

I. INTRODUCTION

Let H be a Hilbert space and L(H) is the algebra of allbounded linear operators acting on H. An operator T in L(H) is called normal if $T^*T = TT^*$, $class(Q)ifT^{*^2}T^2 = (T^*T)^2$, n power class (Q) if $T^{*^2}T^{2n} = (T^*T^n)^2$. In general an power class(Q)operator need not be a normal operator. Existence of Operators on 2 power class (Q) and 3 power class

(Q) are verified by using MATLAB R2008a version.

Program no. 1

Consider the operators $S = \begin{pmatrix} i & 1 \\ 0 & -i \end{pmatrix} T = \begin{pmatrix} i & 0 \\ 1 & -i \end{pmatrix}$ These two operators are 2 power class (Q) operators on the complex Hilbert space. S+T is 2 power class (Q)But S+T is not normal.

 $S = [i \ 1; 0 \ -i]$ $T = [i \ 0; 1 \ -i]$ Sum = S+T ConjSum = conj(Sum) ConjSumsq = ConjSum*ConjSum $Sumpow4 = Sum^{4}$ L = ConjSumsq*Sumpow4.....(1) $Sumpow2 = Sum^{2}$ M = ConjSum* Sumpow2.....(2) N = M*M.....(3) k = Sum*ConjSum.....(4) v = ConjSum*Sum

On executing this program, equations (1) and (2) are same. From the output we can verify that $(S + T)^{*^2}(S + T)^4 = ((S + T)^*(S + T)^2)^2$. Hence S+T is 2 power class (Q), Equations (3) and (4) are not equal. Hence S+T is not normal.

Definition: Hadamard matrices are matrices of 1's and -1's whose columns are orthogonal,

H'*H = n*I where [n n]=size(H) and I = eye(n,n).

An $n \times n$ Hadamard matrix with n > 2 exists only if rem(n,4) = 0. This function handles only the cases where n, n/12, or n/20 is a power of 2.

Examples

The command hadamard (4) produces the 4-by-4 matrix:

1 1 1 1 1 -1 1 -1 1 1 -1 -1 1 -1 -1 1

Program No.2

Consider Hadamard matrix of order 40. Here n = 40 and $\frac{40}{20} = 2 = 2^1$ (power of 2). We verify this matrix of order 40belongs to 40power Class (Q)

V = S * S(2)

On executing this program, equations (1)and (2) are same. From the output we can verify that $T^{*2}T^{80} = (T^*T^{40})^2$. Hence Hardamard matrix of order 40 belongs to 40 power class Q.

Program no: 03

Consider Hadamard matrix of order 48. Here n = 48 and $\frac{48}{12} = 4 = 2^2$ (power of 2). We verify this matrix of order 48 belongs to 48 power Class (Q)

t = hadamard(48); tstar = t; tstarsq = tstar*tstar; $tpow96=t^{96};$ K = tstarsq*tpow96(1) $tpow48=t^{48};$ M = tstar*tpow48;N = M*M(2)

On executing this program, equations (1) and (2) are same. From the output we can verify that $T^{*^2}T^{96} = (T^*T^{48})^2$. Hence Hardamard matrix of order 40 belongs to 40 power class Q.

Definition:

Hilbert matrix is an \times n matrix with elements (h_{ij})where h_{ij} = $\frac{1}{i+j-1} 1 \le i, j \le n$

Program No 04

Let T = $\begin{pmatrix} 1 & \frac{1}{2} & \frac{1}{3} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\ \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \end{pmatrix}$ be an operator acting on 3 dimensional Hilbert space. Then T is 2 power class (Q), the

matrix of T is a Hilbert matrix of order 3. T is 2 power class (Q) if it satisfies $T^{*^2}T^4 = (T^*T^2)^2$. We can also verify T is 2 normal if $T^*T^2 = T^2T^*$ T = [1 1/2 1/3;1/2 1/3 1/4;1/3 1/4 1/5] ConjT = conj(T)

ConjTsq = ConjT*ConjT Tpow4 = T^4 L = ConjTsq*Tpow4(1) Tpow2 = T^2 M = ConjT*Tpow2 N = M*M(2) On executing this program, equations (1) and (2) are same. From the output we can verify that $T^{*2}T^4 = (T^*T^2)^2$

// Hilbert matrix of order 3 is 2 normal//

O = ConjT*Tpow2(3)

P = Tpow2*ConjT....(4)

On executing this program, equations (3) and (4) are same. From the output we can verify that $T^*T^2 = T^2T^*$. **Program No 05**

Let T = $\begin{pmatrix} 1 & \frac{1}{2} & \frac{1}{3} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\ \frac{1}{2} & \frac{1}{4} & \frac{1}{5} \end{pmatrix}$ be an operator acting on 3 dimensional Hilbert space. Then T is 3 power class (Q), the

matrix of T is a Hilbert matrix of order 3. T is 3 power class (Q) if it satisfies $T^{*2}T^6 = (T^*T^3)^2$. Hilbert matrix of order 3 is 3 power class Q

 $T = [1 \ 1/2 \ 1/3; 1/2 \ 1/3 \ 1/4; 1/3 \ 1/4 \ 1/5]$ ConjT = conj(T) ConjTsq = ConjT*ConjT Tpow6 = T^6 L = ConjTsq*Tpow6(1) Tpow3 = T^3 M = ConjT*Tpow3 N = M*M(2) On executing this program, equations (1) and (2) are same. From the output we can verify that $T^{*2}T^{6} = (T^{*}T^{3})^{2}$.

Definition:

A bounded operator *T* on a Hilbertspace is said to be nilpotent if $T^n = 0$ for some *n*.

Program No 06

Consider the following irreducible nilpotent operators acting on C₂.

 $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$, S = $\begin{pmatrix} 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ Then both S and T are normal and $\in 2$ power class (Q) $\mathbf{R} =$ 0 0 0/0 0 R = [0 1 0; 0 0 2; 0 0 0] $\operatorname{ConjR} = \operatorname{conj}(R)$ K = R*ConjR(1) $V = ConjR^*R$ (2) ConjRsq = ConjR*ConjR Rpow4=R^4 L = ConjRsq*Rpow4(3) $Rpow2 = R^2$ M = ConjR*Rpow2N = M M(4) On executing this program, equations (1) and (2) are same. From the output we can verify that $RR^* = R^* R$. Hence R is normal. Similarly, On executing this program, equations (3) and (4) are same. From the output we

can verify that $R^{*2}R^4 = (R^*R^2)^2$ The proof for S is similar.

Program No 7

Consider the operator $T = \begin{pmatrix} -i & 0 \\ 2 & i \end{pmatrix}$ acting on 2 dimensional complex

Hilbert space which is 2 powerclass(Q) but not 3 powerclass(Q).

 $T = [-i \ 0; 2i]$ ConjT = conj(T)ConjTsq = ConjT*ConjT $Tpow4 = T^4$(1) L = ConjTsq*Tpow4 $Tpow2 = T^2$ M = ConjT*Tpow2 $N = M^*M$(2) T = [-i 0; 2i]ConjT = conj(T)ConjTsq = ConjT*ConjT $Tpow6 = T^6$ L = ConjTsq*Tpow6.....(3) $Tpow3 = T^3$ M = ConjT*Tpow3N = M*M.....(4)

On executing this program, equations (1) and (2) are same. From the output we can verify that. $T^{*^2}T^4 = (T^*T^2)^2$. Hence T is 2 power class (Q.). Equations (3) and (4) are not same. From the output we can verify that. $T^{*^2}T^6 \neq (T^*T^3)^2$. Hence T is not 3 power class (Q).

Program No 8

Consider the operators $T = \begin{pmatrix} i & 1 \\ 0 & -i \end{pmatrix} S = \begin{pmatrix} i & 0 \\ 1 & -i \end{pmatrix}$ acting on 2 dimensional complex Hilbert space. Then the Product ST of 2power Class Q operators need not be 2 power class Q operator. S = [i,1;0-i] T = [i,0;1,-i]Product = S*T ConjProduct = conj(Product) Conjproductsq = ConjProduct*ConjProduct Productpow4 = Product^4 $L = Conjproductsq^*Productpow4$ (1) Productpow2 = Product^2 V = ConjProduct*Productpow2

$Q = V * V \dots (2)$

On executing this program, equations (1) and (2) are not same. From the output we can verify that. $(ST)^{*^{2}}(ST)^{4} \neq ((ST)^{*}(ST)^{2})^{2}$

References

- [1]
- [2] [3]
- S. Panayappan, N. Sivamani, On *Power Class (Q)* Operators, Int. Journal of Math. Analysis, Vol. 6, 2012, no. 31, 1513 1518. A.A.S. Jibril, On Operators for which $T^*T^2 = (T^*T)^2$ International Mathematical Forum, 5,2010, 46, 2255 2262. KrutanRasimi, LuigjGjoka, Some remarks on N power class (Q) operators, International journal of Pure and Applied Mathematics, Volume 89, No. 2,2013, 147 – 151.
- A.A.S. Jibril, On n power normal Operators, The Arabian Journal for Science and Engineering Volume 33, Number 2A. A.A.S. Jibril, On 2 normal Operators. Dirasat, Vol.23, No 2(1996), 190-194. [4]
- [5]