Solving n power class (Q) operators using MATLAB

Dr. T. Veluchamy, K.M.Manikanadan, T.Ramesh
Dept. of Mathematics, Dr.SNS Rajalakshmi college of Arts \&Science ,Coimbatore-49, TamilNadu,India

```
Abstract: In this paper we investigate the charactisation of n power class ( \(Q\) ) operators on Hilbert space using MATLAB.
Mathematics Subject Classification: 47B99, 47B15
Key words: Normal operator, class (Q) operator, n power class (Q) operator, Hilbert space, Hadamard matrices ,MATLAB R2008a.
```


I. INTRODUCTION

Let H be a Hilbert space and $L(H)$ is the algebra of allbounded linear operators acting on H. An operator T in $\mathrm{L}(\mathrm{H})$ is called normal if $\mathrm{T}^{*} \mathrm{~T}=\mathrm{TT}^{*}$, $\operatorname{class}(\mathrm{Q})$ ifT ${ }^{* 2} \mathrm{~T}^{2}=\left(\mathrm{T}^{*} \mathrm{~T}\right)^{2}$, n power class (Q) if $\mathrm{T}^{*^{2}} \mathrm{~T}^{2 n}=$ $\left(T^{*} T^{n}\right)^{2}$. In general an power class(Q)operator need not be a normal operator. Existence of Operators on 2 power class (Q) and 3 power class
(Q) are verified by using MATLAB R2008a version.

Program no. 1

Consider the operators $S=\left(\begin{array}{cc}i & 1 \\ 0 & -i\end{array}\right) T=\left(\begin{array}{cc}i & 0 \\ 1 & -i\end{array}\right)$ These two operators are 2 power class (Q) operators on the complex Hilbert space. $\mathrm{S}+\mathrm{T}$ is 2 power class $(\mathrm{Q}) \mathrm{But} \mathrm{S}+\mathrm{T}$ is not normal.
$\mathrm{S}=[\mathrm{i} 1 ; 0-\mathrm{i}]$
$\mathrm{T}=[\mathrm{i} 0 ; 1-\mathrm{i}]$
Sum $=\mathrm{S}+\mathrm{T}$
ConjSum $=$ conj(Sum)
ConjSumsq $=$ ConjSum*ConjSum
Sumpow4 = Sum^4
L = ConjSumsq*Sumpow4
Sumpow2 $=$ Sum^2
M = ConjSum* Sumpow
$\mathrm{N}=\mathrm{M}^{*} \mathrm{M}$
$\mathrm{k}=$ Sum*ConjSum
v = ConjSum*Sum
On executing this program, equations (1) and (2) are same. From the output we can verify that $(S+T)^{*^{2}}(S+$ $T)^{4}=\left((S+T)^{*}(S+T)^{2}\right)^{2}$. Hence $S+T$ is 2 power class (Q), Equations (3) and (4) are not equal.. Hence $S+T$ is not normal.
Definition:Hadamard matrices are matrices of 1's and -1's whose columns are orthogonal,
$H^{\prime} * \mathrm{H}=\mathrm{n} * \mathrm{I}$ where $[\mathrm{n} \mathrm{n}]=\operatorname{size}(\mathrm{H})$ and $\mathrm{I}=\operatorname{eye}(\mathrm{n}, \mathrm{n})$.
An $n \times n$ Hadamard matrix with $n>2$ exists only if rem $(\mathrm{n}, 4)=0$. This function handles only the cases where n , $\mathrm{n} / 12$, or $\mathrm{n} / 20$ is a power of 2 .

Examples

The command hadamard (4) produces the 4-by-4 matrix:
$\begin{array}{llll}1 & 1 & 1 & 1\end{array}$
$\begin{array}{llll}1 & -1 & 1 & -1\end{array}$
$1 \begin{array}{llll}1 & -1 & -1\end{array}$
$\begin{array}{llll}1 & -1 & -1 & 1\end{array}$

Program No. 2

Consider Hadamard matrix of order 40 . Here $n=40$ and $\frac{40}{20}=2=2^{1}$ (power of 2). We verify this matrix of order 40belongs to 40power Class (Q)
$\mathrm{t}=$ hadamard(40);
tstar $=\mathrm{t}$;
tstarsq $=$ tstar ${ }^{*}$ tstar;
tpow80=t^80;
$\mathrm{L}=$ tstarsq*tpow80
tpow40=t^40;
$\mathrm{S}=\mathrm{tstar} *$ tpow 40 ;
$V=S * S$
(2)

On executing this program, equations (1)and (2) are same. From the output we can verify that $T^{* 2} T^{80}=$ $\left(T^{*} T^{40}\right)^{2}$. Hence Hardamard matrix of order 40 belongs to 40 power class Q .

Program no: 03

Consider Hadamard matrix of order 48. Here $n=48$ and $\frac{48}{12}=4=2^{2}$ (power of 2). We verify this matrix of order 48 belongs to 48 power Class (Q)
$\mathrm{t}=$ hadamard(48);
tstar $=\mathrm{t}$;
tstarsq $=$ tstar $*$ tstar;
tpow96=t^96;
K = tstarsq*tpow96
tpow48=t^48;
M = tstar*tpow48;
$\mathrm{N}=\mathrm{M} * \mathrm{M}$
On executing this program, equations (1) and (2) are same. From the output we can verify that $T^{*^{2}} T^{96}=$ $\left(T^{*} T^{48}\right)^{2}$. Hence Hardamard matrix of order 40 belongs to 40 power class Q.

Definition:

Hilbert matrix is an $\times \mathrm{n}$ matrix with elements $\left(\mathrm{h}_{\mathrm{ij}}\right)$ where $\mathrm{h}_{\mathrm{ij}}=\frac{1}{i+j-1} 1 \leq i, j \leq n$

Program No 04

Let $\mathrm{T}=\left(\begin{array}{ccc}1 & \frac{1}{2} & \frac{1}{3} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\ \frac{1}{3} & \frac{1}{4} & \frac{1}{5}\end{array}\right)$ be an operator acting on 3 dimensional Hilbert space. Then T is 2 power class (Q), the
matrix of T is a Hilbert matrix of order 3. T is 2 power class (Q) if it satisfies $T^{*^{2}} T^{4}=\left(T^{*} T^{2}\right)^{2}$. We can also
verify T is 2 normal if $T^{*} T^{2}=T^{2} T^{*}$
$\mathrm{T}=\left[\begin{array}{llll}1 & 1 / 2 & 1 / 3 ; 1 / 2 & 1 / 3 \\ 1 / 4 ; 1 / 3 & 1 / 4 & 1 / 5\end{array}\right]$
$\operatorname{ConjT}=\operatorname{conj}(T)$
ConjTsq $=$ ConjT ${ }^{*}$ ConjT
Tpow4 = T^4
$\mathrm{L}=$ ConjTsq*Tpow4
Tpow2 $=\mathrm{T}^{\wedge} 2$
$\mathrm{M}=$ ConjT*Tpow2
$\mathrm{N}=\mathrm{M} * \mathrm{M}$
On executing this program, equations (1) and (2) are same. From the output we can verify that $T^{*^{2}} T^{4}=$ $\left(T^{*} T^{2}\right)^{2}$
// Hilbert matrix of order 3 is 2 normal//
O = ConjT*Tpow2
P = Tpow $2 *$ ConjT
On executing this program, equations (3) and (4) are same. From the output we can verify that $T^{*} T^{2}=T^{2} T^{*}$.

Program No 05

Let $\mathrm{T}=\left(\begin{array}{ccc}1 & \frac{1}{2} & \frac{1}{3} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\ \frac{1}{3} & \frac{1}{4} & \frac{1}{5}\end{array}\right)$ be an operator acting on 3 dimensional Hilbert space. Then T is 3 power class (Q), the matrix of T is a Hilbert matrix of order 3. T is 3 power class (Q) if it satisfies $T^{*^{2}} T^{6}=\left(T^{*} T^{3}\right)^{2}$.
Hilbert matrix of order 3 is 3 power class Q
$\mathrm{T}=\left[\begin{array}{lll}1 & 1 / 2 & 1 / 3 ; 1 / 2 \\ 1 / 3 & 1 / 4 ; 1 / 3 & 1 / 4 \\ 1 / 5\end{array}\right]$
$\operatorname{ConjT}=\operatorname{conj}(\mathrm{T})$
ConjTsq $=$ ConjT $*$ ConjT
Tpow6 = T^6
$\mathrm{L}=$ ConjTsq*Tpow6
Tpow3 $=\mathrm{T}^{\wedge}$ 3
$\mathrm{M}=\mathrm{ConjT}$ *Tpow3
$\mathrm{N}=\mathrm{M} * \mathrm{M}$

On executing this program, equations (1) and (2) are same. From the output we can verify that $T^{*^{2}} T^{6}=$ $\left(T^{*} T^{3}\right)^{2}$.

Definition:

A bounded operator T on a Hilbertspace is said to be nilpotent if $T^{n}=0$ for some n.

Program No 06

Consider the following irreducible nilpotent operators acting on C_{2}.
$\mathrm{R}=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0\end{array}\right), \mathrm{S}=\left(\begin{array}{lll}0 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$ Then both S and T are normal and $\in 2$ power class (Q)
$\mathrm{R}=\left[\begin{array}{lllllllll}0 & 1 & 0 & 0 & 0 & 2 ; & 0 & 0 & 0\end{array}\right]$
$\operatorname{ConjR}=\operatorname{conj}(\mathrm{R})$
$\mathrm{K}=\mathrm{R} * \mathrm{ConjR}$
$\mathrm{V}=\mathrm{ConjR} * \mathrm{R}$
ConjRsq $=$ ConjR $*$ ConjR
Rpow4=R^4
L = ConjRsq*Rpow4
Rpow2 $=\mathrm{R}^{\wedge}$ 2
$\mathrm{M}=\mathrm{ConjR}$ *Row 2
$\mathrm{N}=\mathrm{M} * \mathrm{M}$
On executing this program, equations (1) and (2) are same. From the output we can verify that $R^{*}=R^{*} R$.
Hence R is normal. Similarly, On executing this program, equations (3) and (4) are same. From the output we can verify that $R^{*^{2}} R^{4}=\left(R^{*} R^{2}\right)^{2}$ The proof for S is similar.

Program No 7

Consider the operator $T=\left(\begin{array}{cc}-i & 0 \\ 2 & i\end{array}\right)$ acting on 2 dimensional complex
Hilbert space which is 2 powerclass (Q) but not 3 powerclass (Q).
$\mathrm{T}=[-\mathrm{i} 0 ; 2 \mathrm{i}]$
ConjT $=\operatorname{conj}(T)$
ConjTsq $=$ ConjT $*$ ConjT
Tpow4 $=\mathrm{T}^{\wedge} 4$
L = ConjTsq*Tpow4
Tpow2 $=\mathrm{T}^{\wedge} 2$
M = ConjT*Tpow2
$\mathrm{N}=\mathrm{M} * \mathrm{M}$
$\mathrm{T}=[-\mathrm{i} 0 ; 2 \mathrm{i}]$
ConjT $=\operatorname{conj}(T)$
ConjTsq $=$ ConjT $*$ ConjT
Tpow6 $=\mathrm{T}^{\wedge} 6$
L = ConjTsq*Tpow6
Tpow3 $=\mathrm{T}^{\wedge} 3$
$\mathrm{M}=\mathrm{ConjT}$ *Tpow3
$\mathrm{N}=\mathrm{M} * \mathrm{M}$
On executing this program, equations (1) and (2) are same. From the output we can verify that. $T^{*^{2}} T^{4}=$ $\left(T^{*} T^{2}\right)^{2}$. Hence T is 2 power class (Q.). Equations (3) and (4) are not same. From the output we can verify that. $T^{*^{2}} T^{6} \neq\left(T^{*} T^{3}\right)^{2}$. Hence T is not 3 power class (Q).

Program No 8

Consider the operators $T=\left(\begin{array}{cc}i & 1 \\ 0 & -i\end{array}\right) S=\left(\begin{array}{cc}i & 0 \\ 1 & -i\end{array}\right)$ acting on 2 dimensional complex
Hilbert space. Then the Product ST of 2power Class Q operators need not be 2 power class Q operator.
$\mathrm{S}=[\mathrm{i}, 1 ; 0-\mathrm{i}]$
$\mathrm{T}=[\mathrm{i}, 0 ; 1,-\mathrm{i}]$
Product $=\mathrm{S} * \mathrm{~T}$
ConjProduct $=\operatorname{conj}($ Product $)$
Conjproductsq $=$ ConjProduct $*$ ConjProduct
Productpow4 $=$ Product ${ }^{\wedge} 4$
$\mathrm{L}=$ Conjproductsq*Productpow4
Productpow2 $=$ Product^2
V = ConjProduct*Productpow2

[^0]
References

[1] S. Panayappan, N. Sivamani, Onn Power Class (Q) Operators, Int. Journal of Math. Analysis, Vol. 6, 2012, no. 31, 1513 - 1518.
[2] A.A.S .Jibril , On Operators for which $T^{*} T^{2}=\left(T^{*} T\right)^{2}$ International Mathematical Forum, 5,2010, 46, $2255-2262$
[3] KrutanRasimi, LuigjGjoka, Some remarks on N - power class (Q) operators,International journal of Pure and Applied Mathematics, Volume 89, No. 2,2013, 147 - 151.
[4] A.A.S. Jibril, On n - power normal Operators, The Arabian Journal for Science and Engineering Volume 33, Number 2A.
[5] A.A.S Jibril, On 2 - normal Operators. Dirasat, Vol. 23 , No 2(1996), 190-194.

[^0]: $\mathrm{Q}=\mathrm{V} * \mathrm{~V}$
 On executing this program, equations (1) and (2) are not same. From the output we can verify that. $(S T)^{*^{2}}(S T)^{4} \neq\left((S T)^{*}(S T)^{2}\right)^{2}$

