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Abstract: In this Paper we are studding the polynomial approximation of entire functions of two complex 

variables in Banach spaces; concept is depend on index-pair. The characterizations of (   )  order of entire 

functions of two complex variables have been studied in terms of approximation errors. The results can be 

extended to m-variables but to reduce the mechanical labour we have considered only two variables.  
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I. Introduction: 

 Let  (     )  ∑ {      
(  

     
  )} 

        be a function of the complex variables 1z  and 2z , regular 

for  |  |              If    and   can be taken arbitrarily large, then  (     ) represents an entire function of 

complex variables 1z  and 2z . Following Bose and Sharma [1] we define the maximum modulus of  (     ) as  

 

  (     )     |  |   
| (     )|          

 

The order   of the entire function  (     ) is defined as [1];  

                 
   

       (     )

   (     )
                       

 Bose and Sharma [1], obtained the following characterizations for order of entire functions of two complex 

variables. 

 

Theorem 1.1. The entire function  (     )  ∑ {      
(  

     
  )} 

        is of finite order if and only if  
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is finite and then the order   of   (     ) is equal to  . 

 Let        denote the space of functions  (     ) analytic in the unit bi-disc  

     {        |  |    |  |   } 
 
Such that  ‖ ‖
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Where  
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  ⁄

  and let     
     denote the space of 

functions  (     ) analytic in   and satisfying the condition  

          ‖ ‖
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  ∫ ∫ | (     )|
              |  |  |  |  
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  ⁄

   

Set 

‖ ‖     {| (     )|         } 

    and     
  are Banach spaces for     In analogy with spaces of functions of one variable, we 

call    and      
  the Hardy and Bergman spaces respectively. 

 Following the Vakarchuk and Zhir [4] we say that the function  (     ) analytic in    belongs to the 

space (     ) where         and       if  

    ‖ ‖      8∫ ∫ *(    )(    )+
 .
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    ‖ ‖         8*(    )(    )+
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/
  

  (       )          9    

The space  (     ) is a Banach space for     and       otherwise it is a Frechet space. Further, we have 
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   .

 

 
    /       .                                 (1.1) 

 

Let Y is a Banach space and let       
(   ) be the best approximation of a function  (     )    by elements of 

the space   that consists of algebraic polynomials of degree        in two complex variables.  

      
(   )     *‖   ‖     +   

 

Recently, Ganti and Srivastava [2] characterized the order and type in terms of the approximation errors 

      (   (     )) and       
(    )  But their results leave to study a big class of entire functions such as slow 

growth and fast growth. To bridge this gap in this chapter we pick up the concept of (   )   order introduced 

by Juneja et al. [3] and consider it for entire functions of two variables. Roughly speaking, this concept is a 

modification of the classical definition of order obtained by replacing logarithms by iterated logarithms, where 

the degrees of iteration are determined by p and q. 

 To the best of our knowledge, characterizations for the (   )  order of entire functions of two 

complex variables in Banach spaces have not been obtained so far. We define the ),( qp order of an 

entire function  (     ) by  

(   )                
     (     )

    (     )
                     (1.3) 

 

Where p and q are integers such that      . 

 

Notations: We are using the following notations in this paper. 

(i)    , -     ,  -      (   ,   - )      (   , (   )- )               

Provided that     ,   -            , -     , -   . 

 

(ii)  
 

 ⁄ 0(   )     .
 

 
 

 

 
/1   (        ) 

            
 

 ⁄ 0(   )     .
 

 
 

 

 
/1   (       ) 

            
 

 ⁄ 0(   )     .
 

 
 

 

 
/1   (       ) 

           
 

 ⁄ 0(   )     .
 

 
 

 

 
/1   (       ) 

 

II. Basic results: 
In this section we have given some lemmas as basic results, which have been used in the sequel. 
 

Lemma 2.1. If  (     )  ∑ {      
(  

     
  )} 

         be an entire function and for a pair of integers 

(   )           (   )  be defined by (1.3) then 

 (   )   ( (   )) 

Where  

                       (   )     
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III. Main Results: In this section we prove our main results. 

Theorem3.1: If  (     )  ∑ {      
(  

     
  )} 

        be an entire function and for a pair of integers 

(   )             be defined by (1.3) then 

 (   )    .  (   )/  where 

 

  (   )               
   ,   -2(     )      3

   ,   -{
 

     
   0      (   (     ))1

  
}
           (3.1) 

 

 

Proof. We prove the above result in two steps, first we consider the space   (     )                
          and     .Let  (     )   (     )  be of (   ) order  (   ) From (2.1), for any    
  there exists a natural number      ( ) such that  

|      
|  6   ,   - 2   ,   -{(     )      

}3

 

  (   )  7

 (     )

            (3.2) 

Now first we show that  (   )   .  (   )/ If   (   )     then  (   )    or else  (     ) is not an 

entire function. If   (   )     (   )   .  (   )/  since  (   ) is nonnegative then we have     

  (   )     
 

 

We denote the partial sum of the Taylor series of a function  (     ) by  

      
(        )  ∑ ∑       

  

    

  

    

  
     

   

and 
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Since        are bounded and          therefore (3.3) becomes 
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Therefore 

      
(   (     ))     (        ) (        ) 2∑ ∑ |      

|
  

       
 
       3

 

 
       (3.4) 

where   is a constant and  (   )(   )     denotes the beta function.  

In view of (3.2), we have  
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Using the above inequality in (3.4) we get  

      
(   (     ))       (        ) (        ) 

                                              6   ,   -{   ,   -(       )}
 

  (   )  7

 (       )

  (   ) 

The result for has been obtained by Ganti and Srivastava [2]. 

Now consider for (    )  (    ) 
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Since 
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Now proceeding to limits, we get  
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Now for (    )  (   )     (   )  we have from (3.5) that  
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Taking (3.6) into account, we get  
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Proceeding to limits, we obtain 

  (   )               
   ,   -(     )

   , -0      (   (     ))1

  
(     )

                 (   )  

9. 

 

Combining other results for (    )  (   )     (   ) with (3.8) we get 

 (    )    .  (   )/                                            (   )  

 

To prove reverse inequality consider (eq.2.4 [2]) which gives  
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Again (3.6) taking into account in above inequality, we obtain  
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Now using Lemma (2.1), since  (    )            the inequality for        gives  

 (    )     .    (   )/ 

and for     it gives  

 (    )    (   )               (    ) 

Hence combining above results we get  (    )   .  (   )/ 

This is the proof of first step.  

Now we consider the space  (     )    we have  
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Where     is constant and  (       ) is Euler’s integral of the first kind. By using (3.2) we have  
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using this inequality in (3.12), we get  
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For (   )  (   )  the result has been proved by Ganti and Srivastava [2] . 
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Therefore from above inequality, we get  
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Proceeding to limits, immediately we get  
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To prove reverse inequality taking (3.12) into account this gives   
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In view of lemma (2.1), we obtain  
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  (   )     (   )                  (    ) 
 

Since  (   )             the inequality for      
 
gives  (   )     .    (   )/ and for       it 

gives  
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Combining (3.15), (3.16), (3.17) and (3.18) the proof of second step is immediate. 

Now consider the third step. Let         and        
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In view of (3.19), (3.20) and Lemma 2.1, we get the required result. This is complete proof of the theorem. 

Theorem 3.2. If  (     )  ∑ {      
(  

     
  )} 

        be an entire function, then for a pair of 

integers (   )           the function  (     )    is of (   )  order  (   ) if and only if        (   )  

 (   (   ))        
where 
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}

   ,   - {
 

(     )
    [      

(    )]
  

}
            (    ) 

Proof. Let  (     )  ∑ {      
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           be an entire transcendental function. Since  
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entire, we have  
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and  (     )   (     )                 (   ) we have 
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where K is a constant independent of       and    In the case of space     
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using (3.24) we prove inequality (3.25) for the case      
For the reverse inequality, we have 
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Proceeding to limits we get  
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In the consequence of Theorem 3.1 with (3.25) and (3.26) we obtain the result immediately. 

Now to prove sufficiency, assume that the condition (3.21) is satisfied. Then it follows that  

   6
 

       
(    )

7

 
(     )

                   

 

It gives  
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This relation and the estimate|      
( )|         

(    ) yield the relation (3.22). It follows that  (     )  

   is an entire transcendental function. 

Hence the proof is completed.  
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