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Abstract: The unsteady, two dimensional, mixed convection flow of an viscous incompressible electrically 

conducting micropolar fluid over a vertical and impermeable stretching surface in the presence of Heat 

source/sink and radiation when the buoyancy force assists and opposes the flow has been studied. Using the 

similarity transformations, the governing equations have been transformed into a system of ordinary differential 

equations. These differential equations are highly nonlinear which cannot be solved analytically. Therefore, 

forth order Runge-Kutta method along with shooting technique has been used for solving it. Numerical results 

are obtained for the skin-friction coefficient, the couple wall stress and the local Nusselt number as well as the 

velocity, microrotation and temperature profiles for different values of the governing parameters, namely, 

material parameter, unsteadiness parameter, heat source/sink parameter, radiation parameter and Eckert 

number.  
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I. Introduction 

The theory of micropolar fluids has received great attention during the recent years, because the 

traditional Newtonian fluids cannot precisely describe the characteristic of fluid with suspended particles. A 

micropolar fluid obeys the constitutive equations of the considered non-Newtonian fluid model. In the 

micropolar fluid model, apart from the classical velocity field, a microrotation vector and a gyration parameter 

are introduced in order to investigate the kinematics of microrotation. Such fluid model may be applied to 

explain the flow of colloidal solutions, liquid crystals, fluids with additives, suspension solutions, animal blood, 

etc. The presence of dust or smoke particular in a gas may also be modeled using micropolar fluid dynamics. 

Unlike the other fluids, micropolar fluids are fluids with microstructure belonging to a class of fluids with non-

symmetrical stress tensor. Physically, they represent fluids consisting of randomly oriented particles suspended 

in a viscous medium. The theory of micropolar fluids, first proposed by Eringen [1, 2] is capable of describing 

such fluids. In this theory the local effects arising from the microstructure and the intrinsic motion of the fluid 

elements are taken into account. This is a kind of continuum mechanics, and many classical flows are being re-

examined to determine the effects of fluid microstructure [3-5]. Early studies along these lines may be found in 

the review article by Peddieson and McNitt [6], and in the recent books by Lukaszewicz [7] and Eringen [8]. 

The boundary layer flow and heat transfer in a quiescent Newtonian and non- Newtonian fluid driven by a 

continuous stretching sheet is of significance in a number of industrial engineering processes, such as the 

drawing of a polymer sheet or filaments extruded continuously from a die, the cooling of a metallic plate in a 

bath, the aerodynamic extrusion of plastic sheets, the continuous casting, rolling, annealing and tinning of 

copper wires, the wire and fiber coating, etc. During the processes, mechanical properties are greatly dependent 

upon the rate of cooling.  

The heat source/sink effects in thermal convection, are significant where there may exist a high 

temperature differences between the surface (e.g. space craft body) and the ambient fluid. Heat generation is 

also important in the context of exothermic or endothermic chemical reactions. Postelnicu et al. [9] investigated 

the effect of variable viscosity on forced convection over a horizontal flat plate in a porous medium with 

internal heat generation.  Molla et al. [10] studied natural convection flow along a vertical wavy surface with 

uniform surface temperature in presence of heat generation/absorption. MHD heat and mass transfer free 

convection flow along a vertical stretching sheet in presence of magnetic field with heat generation are studied 

by Samad et al. [11]. Alam et al [12] analyzed the study of the combined free - forced convection and mass 

transfer flow past a vertical porous plate in a porous medium with heat generation and thermal diffusion. 

Recently, Rahman et al. [13] investigated the thermophoresis effect on MHD forced convection on a fluid over a 

continuous linear stretching sheet in presence of heat generation and Power-Law wall temperature 
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Dissipation is the process of converting mechanical energy of downward-flowing water into thermal and 

acoustical energy. Various devices are designed in streambeds to reduce the kinetic energy of flowing waters, 

reducing their erosive potential on banks and river bottoms. Vajravelu and Hadjinicalaou [14] analyzed the heat 

transfer characteristics over a stretching surface with viscous dissipation in the presence of internal heat 

generation or absorption. Gebhart [15] has shown the importance of viscous dissipative heat in free convection 

flow in the case of isothermal and constant heat flux at the plate. Gebhart and Mollendorf [16] considered the 

effects of viscous dissipation for external natural convection flow over a surface. Recently, Abd El-Aziz [17] 

studied the mixed convection flow of a micropolar fluid from an unsteady stretching surface with viscous 

dissipation. 

Ghaly [18] considered the thermal radiation effect on a steady flow, whereas Rapits and Massalas [19] 

and El-Aziz [20] analyzed the unsteady case. Sattar and Alam [21] presented unsteady free convection and mass 

transfer flow of a viscous, incompressible, and electrically conducting fluid past a moving infinite vertical 

porous plate with thermal diffusion effect. Na and Pop [22] analyzed an unsteady flow due to a stretching sheet. 

In the case of unsteady boundary-layer flow, Singh et al. [23] investigated the thermal radiation and magnetic 

field effects on an unsteady stretching permeable sheet in the presence of free stream velocity.  Recently, Khan 

et al. [24] studied the unsteady MHD free convection boundary-layer flow of a nanofluid along a stretching 

sheet with thermal radiation and viscous dissipation effects. 

The present study investigates the unsteady mixed convection flow of a viscous incompressible 

electrically conducting micropolar fluid on a vertical and impermeable stretching sheet in the presence of heat 

generation or absorption and radiation. Using the similarity transformations, the governing equations have been 

transformed into a set of ordinary differential equations, which are nonlinear and cannot be solved analytically, 

therefore, fourth order Runge-Kutta method along with shooting technique has been used for solving it. The 

results for velocity, microrotation and temperature functions are carried out for the wide range of important 

parameters namely, material parameter, radiation parameter, Eckert number, unsteadiness parameter and heat 

source/sink parameter. The skin friction, the couple wall stress and the rate of heat transfer have also been 

computed. 

 

II. Mathematical Formulation 
Consider an unsteady two dimensional, mixed convection boundary layer flow of a viscous 

incompressible and radiating micropolar fluid over an elastic, vertical and impermeable stretching sheet which 

emerges vertically in the upward direction from a narrow slot with velocity [22] 

( , )
1
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                         (2.1) 

where both a and α are positive constants with dimension per time. The positive x coordinate is 

measured along the stretching sheet with the slot as the origin and the positive y coordinate is measured normal 

to the sheet in the outward direction toward the fluid. The surface temperature Tw of the stretching sheet varies 

with the distance x from the slot and time t as  
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where b is constant with dimension temperature and concentration over length and υ is the kinematic 

viscosity of the ambient fluid. It is apt to note here that, the expressions for Uw(x, t) and Tw(x, t) in Eqs. (2.1) and 

(2.2) are valid only for time 1t   unless 0  . Expression (2.1) for the velocity of the sheet Uw(x, t) 

reflects that the elastic sheet which is fixed at the origin is stretched by applying a force in the positive x - 

direction and the effective stretching rate 
 1

a

t
 increases with time. With the same analogy the expression 

for the surface temperature Tw(x, t) is given by Eq. (2.2) represents a situation in which the sheet temperature 

increases (reduces) if b is positive (negative) from T at the slot in proportion to x and such that the amount of 

temperature increase (reduction) along the sheet increases with time. It is assumed that the Dufour effects are 

neglected in the energy equation. It is further assumed that the fluid properties are taken to be constant except 

for the density variation with the temperature in the buoyancy term. Under the usual boundary layer 

approximation, the governing equations are    

 

Continuity equation 

0
u v

x y

 
 

 
                                                                                                   (2.3) 

Linear momentum equation 
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Momentum equation 
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Energy equation 
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           (2.6) 

The boundary conditions for the velocity, angular velocity and temperature fields are   

, 0, 0,w wu U v N T T           at    0y       

0, 0,u N T T          as   y                                (2.7) 

Where u and v are the velocity components in the x - and y - directions, respectively, T is the fluid 

temperature in the boundary layer, N is the component of the microrotation vector normal to the x-y plane, σ is 

the spin-gradient viscosity and 0( / )pk c   is the thermal diffusivity with k is the fluid thermal conductivity,
 

rq  is the heat flux, Q0 is the heat generation coefficient, pc  is the heat capacity pressure, respectively.  

By using the Rosseland approximation the radiative heat flux rq is given by 

4
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Where 
1 is the Stefan -Boltzmann constant and *k  is the mean absorption coefficient. It should be 

noted that by using the Rosseland approximation, the present analysis is limited to optically thick fluids. If 

temperature differences within the flow are significantly small, then equation (2.6) can be linearised by 

expanding 
4T into the Taylor series aboutT

, which after neglect higher order terms takes the form: 
4 3 44 3T T T T  

                                                  (2.9)
 

In view of equations (2.8) and (2.9), eqn. (2.6) reduces to 
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                            (2.10) 

The continuity equation (2.3) is satisfied by the Cauchy Riemann equations 

u
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where ( , )x y  is the stream function.
 

In order to transform equations (2.4), (2.5) and (2.10) into a set of ordinary differential equations, the following 

similarity transformations and dimensionless variables are introduced. 
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where ( )f  is the dimensionless stream function, θ is the dimensionless temperature, η is the 

similarity variable, A is the unsteadiness parameter, Ec is the Eckert number, Q is the heat source parameter,
 

xGr  is the thermal Grashof number,
 
  is the thermal buoyancy parameter,

 0 , B  are the dimensionless 
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parameters,
 
Rex

 is the local Reynolds number, R is the radiation parameter and Pr is the Prandtl number. 

       

In view of equations (2.11) and (2.12), the equations (2.4), (2.5) and (2.10) transform into  

   
2

(1 ) ' ' 2 ' '' 0
2

A
K f ff f Kh f f                                                          (2.13) 

 0 '' ' ' (2 '') 3 ' 0
2

A
h fh f h KB h f h h       

   
                       (2.14) 

      
21

1 " ' ' 4 ' 1 '' 0
Pr 2

A
R f f Q Ec K f                              (2.15)  

The corresponding boundary conditions are 

0, ' 1, 0, 1f f h                  at           0                          

' 0f h                           as                                                                             (2.16) 

where the primes denote differentiation with respect to 
 

The physical quantities of interest are the skin friction coefficient fxC , the local couple wall stress wxM  and the 

local Nusselt number xNu  which are defined as 
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Our main aim is to investigate how the values of f ′′ (0),
 

'(0)h  and '(0)  vary in terms of the 

various parameters. 

 

III. Solution Of The Problem 
The set of coupled non-linear governing boundary layer equations (2.13) - (2.15) together with the 

boundary conditions (2.16) are solved numerically by using Runge-Kutta fourth order technique along with 

shooting method. First of all, higher order non-linear differential Equations (2.13) - (2.15) are converted into 

simultaneous linear differential equations of first order and they are further transformed into initial value 

problem by applying the shooting technique (Jain et al.[25]). The resultant initial value problem is solved by 

employing Runge-Kutta fourth order technique. The step size  =0.05 is used to obtain the numerical solution 

with five decimal place accuracy as the criterion of convergence. From the process of numerical computation, 

the skin-friction coefficient, wall couple stress and the Nusselt number which are respectively proportional to 

''(0), '(0) '(0)f h and   are also sorted out and their numerical values are presented in a tabular form. 

  

IV. Results And Discussion 
 The governing equations (2.13) - (2.15) subject to the boundary conditions (2.16) are integrated as 

described in section 3. In order to get a clear insight of the physical problem, the velocity, angular velocity and 

temperature have been discussed by assigning numerical values to the parameters encountered in the problem.  

Physically ξ > 0 means heating of the fluid or cooling of the surface (assisting flow), ξ< 0 means 

cooling of the fluid or heating of the surface (opposing flow) and ξ = 0 means the absence of free convection 

currents (forced convection flow).  Figs. 1-3 illustrate the axial velocity, angular velocity and temperature fields 

for different values of the buoyancy and unsteadiness parameters ξ and A, respectively. For assisting flow, 

namely for positive value of ξ, it is seen from Fig. 1 that increasing of ξ have tendency to induce more flow in 

the boundary layer for both values of A. For the opposing flows (ξ < 0), on the other hand, the effect of 

buoyancy is to reduce the velocity compared to those for pure forced convection     (ξ = 0). This is due to the 

fact that a positive ξ induces a favorable pressure gradient that enhances the fluid flow in the boundary layer, 

while a negative ξ produces an adverse pressure gradient that slows down the fluid motion. Also, it is observed 

that for large values of the buoyancy parameter (ξ = 10) the velocity overshoots near the wall over the moving 

speed of the sheet. From Fig. 1 it is noticed that the least effect of A on the axial velocity  'f   occurs in the 
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case of forced convection flow (ξ = 0) while greatest one occurs in the case of free convection flow (ξ =10). 

Further, for ξ = 10, the axial velocity  'f  decreases as A increases near the sheet where 
00 2.7   

whereas for
0  , it rises slightly before it dies out at the end of the boundary layer. Moreover, the effect of A 

on the axial velocity  'f   in the case of opposing flow (ξ <0) is insensible for 1   but  'f  increases 

with an increase in the boundary layer thickness as A increases for 1  .  

For assisting flow, Fig. 2 shows for both values of A that close to the sheet surface and at the last part 

of the boundary layer, an increase in the values of ξ leads to the decrease in the values of the angular velocity 

( )h  while for middle part of the boundary layer at a fixed   position the angular velocity ( )h  increases with 

the increase of the buoyancy parameter ξ. For the opposing flows 0  , on the other hand, the angular velocity 

( )h  increases greatly near the sheet where 
00 1.6    whereas for

0  , it reduces with a decrease in 

thickness of the angular momentum boundary layer. Also, for assisting flows, increasing values of the buoyancy 

parameter   move the location of the maximum value of the angular velocity away from the surface while the 

opposite trend is noticed for opposing flow. From Fig 2 it is noteworthy that the direction of the angular velocity 

is negative very close to the sheet for large values of buoyancy parameter 10  and both values of A which 

may be a direct result to the velocity overshoot of  'f  near the sheet for 10  . 

Fig. 3 shows that for both values of the unsteadiness parameter A the effect of buoyancy parameter   is to 

decrease the temperature    in the case of assisting flow and increases it in the opposing flow. Also, it is 

clear from Fig. 3 that the thermal boundary layer thickness decreases as   increases. In addition, the effect of 

buoyancy parameter   demonstrates a more pronounced influence on the temperature distribution of a steady 

flow (A= 0) than that of an unsteady one (A =0.4). For given ξ, further, it is noticed from Fig. 3 that the effect of 

A on the temperature    is found to be more noticeable in the case of opposing flow than that of the assisting 

flow.  

Representative axial velocity, angular velocity and temperature profiles in the case of assisting and 

opposing flows and various values of the micropolar parameter   are presented in Figs. 4-6. It is found for both 

positive (assisting flow) and negative (opposing flow)   that the axial velocity  'f   and angular velocity 

 h   increase while the temperature    decreases with an increase in the micropolar parameter   but the 

effect of   on the velocity and temperature fields is more pronounced in the case of opposing flow. When 

0   (Newtonian fluid), and as   increases, the angular velocity is greatly induced. Further, the micropolar 

parameter   demonstrates a more pronounced influence on the axial and angular velocities  'f   
and  h   

respectively, than that on the temperature    . Moreover, it is seen from Figs. 4 and 5 that the smaller the  , 

the thinner the momentum and angular momentum boundary layer thickness while the opposite trend is true for 

the thermal boundary layer as obvious from Fig. 6. 

Figs. 7-9 are the plot of the velocity, microrotation and temperature distribution with   for various 

values of Eckert number Ec in the case of assisting and opposing flows. It is known that the viscous dissipation 

produces heat due to drag between the fluid particles and this extra heat causes an increase of the initial fluid 

temperature (see Fig. 9). This increase of temperature causes an increase of the buoyant force. Also, there is a 

continuous interaction between the viscous heating and the buoyant force. This mechanism produces different 

results in the assisting (upward) and opposing (downward) flow. In the assisting (opposing) flow, the increase in 

the values of positive (negative) Ec will increase the buoyant force in the upward (downward) direction which 

results in an increase in the fluid velocity as shown in Fig. 7. The positive (Ec > 0) and negative (Ec < 0) Eckert 

numbers assists the upward (ξ> 0 and hence Ec >0) and downward (ξ < 0 and hence Ec < 0) flow, respectively 

as shown in Fig. 7. It is noted from Fig. 8 that the angular velocity  h  first decreases near the sheet surface 

where 
00    where 

0 1.75  in the case of assisting flow and 1.8   in the case of opposing flow but 

the situation is completely reversed in the other part of the boundary layer where 
0  .  

According to the definition of Eckert number, a positive Ec corresponds to fluid heating (heat is being 

supplied across the walls into the fluid) case  wT T so that the fluid is being heated whereas a negative Ec 

means that the fluid is being cooled. From Fig. 9 it is seen that the dimensionless temperature increases when 

the fluid is being heated (Ec >0) but decrease when the fluid is being cooled (Ec < 0). For Ec < 0 the 

dimensionless fluid temperature  decreases monotonically with , from unity at the wall towards its free-
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stream value. It is noted from the definition of   that this behaviour implies the monotonous decrease in the 

actual fluid temperature in the horizontal direction from the sheet temperature wT  to the free-stream 

temperature. On the other hand, for Ec < 0 (i.e. 
wT T ) the dimensionless fluid temperature   decreases with 

  rapidly at first, arriving at a negative minimum value, for 4Ec    and then increases more gradually to its 

free surface value. Correspondingly, the actual fluid temperature in the horizontal direction increases at first 

from the surface temperature wT  to a maximum value and then decrease to its free-stream value. It should be 

noted that for the fluid cooling case (Ec < 0) a negative   indicates the excess of actual fluid temperature T over 

that at the plate because of the viscous dissipation effect. 

The axial velocity, angular velocity and temperature profiles in the case of assisting and opposing flows 

and various values of the radiation parameter R are presented in Figs. 10-12. It is found that for both the axial 

velocity  'f   and angular velocity  h   increase in case of positive ξ (assisting flow) while decrease in 

case of negative ξ (opposing flow) and the temperature    decreases with an increase in the radiation 

parameter R but the effect of R  on the velocity and temperature fields is more pronounced in the case of 

opposing flow.  

The axial velocity, angular velocity and temperature profiles in the case of assisting and opposing flows and 

various values of the heat generation parameter Q are presented in Figs. 13-15. It is observed that for both the 

axial velocity  'f   and angular velocity  h   increase in case of positive ξ (assisting flow) while decrease 

in case of negative ξ (opposing flow) and the temperature    decreases with an increase in the heat 

generation parameter Q but the effect of Q  on the velocity and temperature fields is more pronounced in the 

case of opposing flow.  

Typical variations of the local skin friction coefficient in terms of  '' 0f , wall couple stress in terms 

of  ' 0h and the heat transfer result in terms of the dimensionless wall temperature gradient  ' 0 as a 

function of the unsteadiness parameter A for two representative material parameters, 0   (Newtonian fluid) 

and 3   (micropolar fluid) and various values of the buoyancy parameter   are presented in Figs. 16-18. As 

compared to the case of forced convection flow  0  , 

Figs. 16 and 18 demonstrate that for given A and   the local skin friction coefficient  '' 0f and the 

local Nusselt number  ' 0  increase for positive buoyant force  0  and decrease for negative buoyant 

force  0  while the opposite behavior is true in the case of couple stress  ' 0h as clear from Fig. 17. In 

addition, the effect of buoyancy parameter   on  '' 0f and  ' 0 of a Newtonian fluid  0  is more 

pronounced than that of a micropolar fluid  3  . From Fig. 16 it is noted that positive skin friction 

coefficients are obtained for 10  which are due to the velocity overshoot as one can see from Fig. 4. It is also 

observed for all A that the local skin friction coefficient  '' 0f increases with   for 0.5    (opposing 

flow), 0   (forced convection flow) and 1   (mixed convection flow) but the opposite behaviour is 

obtained for 10   (free convection flow). For given   and , Fig. 16 reveals that the local skin friction 

coefficient  '' 0f decreases as the unsteadiness parameter A increases. 

Fig. 17 reveals that for a given A the couple stress  ' 0h increases significantly with   for negative 

and lower values of the buoyancy parameter  0.5,0,1   but the opposite trend is noticed at larger values 

of  10   . These behaviours are consistent with the results of the dimensionless angular velocity profiles 

shown in Fig. 17. Further, for given , the effect of the unsteadiness parameter A on the couple stress  ' 0h is 

opposite to that of . Also, the couple stress  ' 0h is greatly decreased as   is increased for both   values 

but this behaviour is found to be more noticeable at larger values of  . For given   and , Fig. 18 reveals that 

the heat transfer is greatly enhanced as the unsteadiness parameter A is increased. 

Also, the influence of the unsteadiness parameter A on the heat transfer coefficient  ' 0 is seen to 

be more noticeable for lower values of A. Further, for given A it is noticed from Fig. 18 that the effect of   is to 

increase the local transfer coefficient  ' 0 significantly for opposing flow  0.5   and forced 
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convection regime  0  and this effect is reduced for mixed convection regime  1  but as n increases 

more  10  , the relation between  ' 0 and   explained earlier is switched. In other words the 

micropolar fluid is better suited for effective cooling of the unsteady stretching sheet only when the flow is 

forced convective. From Fig. 18 it is clear that the heat transfer coefficient increases with   for all values of A 

and both values of   but this trend is seen to be more significant in the case of Newtonian fluid  0  . 

Variations of the local skin friction coefficient  '' 0f , wall couple stress  ' 0h and the local Nusselt number 

 ' 0 as a function of the heat generation parameter Q for various values of the buoyancy parameter   and 

radiation parameter R are presented in Figs. 19-21. It is clear from Fig. 19 that for fixed Q the skin friction 

coefficient increases as R increases for the assisting flow cases and the skin friction coefficient decrease for the 

opposing flow case. In addition, the effect of radiation on  '' 0f is more pronounced for lower values of Q. It 

is also observed that the local skin friction coefficient  '' 0f of buoyancy assisting flow is higher than that of 

buoyancy opposing flow for all values of Q and R. The effect of radiation on the wall couple stress  ' 0h  is 

completely opposite to that on the local skin friction coefficient  '' 0f as obvious from Fig. 20. Further, 

radiation demonstrates a more pronounced influence on the wall couple stress  ' 0h in the opposing flow than 

that of assisting flow. It is clear from Fig. 21 that for fixed Q the local Nusselt number decreases as R increases 

for both opposing and assisting flow cases. It is also observed that the local Nusselt number  ' 0 of 

buoyancy assisting flow is higher than that of buoyancy opposing flow for all values of Q and R. 

For validation of the numerical method used in this study, results for heat transfer rate  ' 0 of a 

Newtonian fluid  0  were compared with those of Grubka and Bobba [26] for various values of Pr in the 

absence of viscous dissipation (Ec=0), radiation (R=0) and heat generation (Q=0). The quantitative comparison 

is shown in table 1 and it is found to be in excellent agreement. 

 

V. Conclusions 
In the present prater, the unsteady mixed convection flow of a viscous incompressible electrically 

conducting micropolar fluid on a vertical and impermeable stretching surface with viscous dissipation by taking 

radiation and heat generation into account, are analyzed. The governing equations are approximated to a system 

of non-linear ordinary differential equations by similarity transformation. Numerical calculations are carried out 

for various values of the dimensionless parameters of the problem. It has been found that 

1. The velocity and angular velocity increases as well as the temperature decreases with an increase in the 

material parameter in both assisting and opposing flows. 

2. The heat generation and viscous dissipation enhances the velocity, angular velocity and temperature in both 

assisting and opposing flows. 

3. The unsteadiness parameter enhances the couple wall stress, heat transfer rates. 

4. Radiation and heat generation reduces the heat transfer rate for both assisting and opposing flows. 
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Fig.2 Angular velocity for different values of ξ and A 

 
Fig.3 Temperature for different values of ξ and A 

 
Fig.4 Velocity for different values of Δ and ξ 

 
Fig.5 Angular velocity for different values of Δ and ξ 

 
Fig.6 Temperature for different values of Δ and ξ 
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Fig.7 Velocity for different values of Ec and ξ 

 
Fig.8 Angular velocity for different values of Ec and ξ 

 
Fig.9 Temperature for different values of Ec and ξ 
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Fig.11 Angular velocity for different values of R and ξ 

 
Fig.12 Temperature for different values of R and ξ 

 
Fig.13 Velocity for different values of Q and ξ 

 
Fig.14 Angular velocity for different values of Q and ξ 
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Fig.15 Temperature for different values of Q and ξ 

 

Fig.16 skin friction  '' 0f  vs. A for different values of   and ξ 

 

Fig.17 Wall couple stress  ' 0h  vs. A for different values of   and ξ 

 

Fig.18 Local Nusselt number  ' 0  vs. A for different values of   and ξ 
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Fig.19 skin friction  '' 0f  vs. Q for different values of R  and ξ 

 

Fig.20 Wall couple stress  ' 0h  vs. Q for different values of R  and ξ 

 

Fig.21 Local Nusselt number  ' 0  vs. Q for different values of R  and ξ 
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