Generalized Metrizable Spaces, the D-Property And Mappings

a] P.Rajendran b] R.Ragavendran c] Dr.K.Vijayalakshmi

[a]Saveetha School of Engineering, Saveetha University, Chennai, India [b] Saveetha School of Engineering, Saveetha University, Chennai, India [c]Saveetha School of Engineering, Saveetha University, Chennai, India

Abstract: The basic properties of D-spaces are discussed and a generalized left separated space is introduced with D-space. Generalized metric spaces that are D-spaces and the behavior of the D-property with respect to the mappings is discussed in this paper.

I. Introduction

E.K.Van Douwen and W.F.Pfeffer has introduced the concepts of *D*-spaces in 1979. In this paper we show that spaces with additional structure such as a base property or generalized metric property are *D*-spaces. **Definition 1.1.[1]**A neighbourhood assignment for a topological space (X, τ) is a function $N: X \to \tau$ such that $x \in N(x)$ for each $x \in X$. X is said to be a *D*-space if for every neighbourhood assignment N, there is a closed discrete subset D of X such that $N(x) \setminus x \in D$ covers X.

Definition 1.2.[2]We say that the positive cardinality of a family γ of sets in Xdoes not exceed a cardinal number τ , if for each x the cardinality of the collection of all members of γ containing x, does not exceed τ . If the pointwise cardinality of a family does not exceed \aleph_0 , the family is said to be point countable.

Theorem 1.3. Every space X with a point-countable base B is a D -space.

Proof: Let φ be any arbitrary neighbourhood assignment on . Since *B* is a base for *X*, for each $x \in X$ we can fix $\psi(x) \in B$ such that $x \in \psi(x) \subset \varphi(x)$. Then ψ is also a neighbourhood assignment on *X*. The family $\psi(x)$ is point countable, since $\psi(x)$ is contained in *B*. By lemma(2.3), there exists a locally finite subset *A* of *X* such that $\psi(A)$ covers X. Hence $\varphi(A)$ also covers X. Therefore *X* is a *D*-space.

Recall that for topological spaces $X, Yf : X \rightarrow Y$ is said to be an *s*-mapping if fibers of *f* are seperable.

Corollary1.4. Open continuous *s* – image of a metrizable space is a *D* – space.

Proof: Since open continuous s –image of a metrizable space is a space with a point countable base from theorem(2.4) we have the statement proved.

Corollary1.5.Metrizable spaces are *D* –spaces.

Proof: The Nagata-Smirnov metrization theorem states that "A space X is a metrizable if and only if X is regular and has a countably locally finite basis". Any countably locally finite basis is point countable. Hence by theorem (2.4) X is a D -space.

Definition 1.6.[2] Let X be a topological space. A sequence of open covers $\{G_n\}_{n < \omega}$ is a development for X if G_{i+1} is a refinement for G_i and if x is a point in X, U is an open set in X containing x, then there is a $k < \omega$ such that $st(x, G_k) \subset U$ where $st(x, G_k) = \bigcup \{G \in G_k | x \in G\}$. A topological space X with a development is called a developable space.

Definition 1.7.[4] A Moore space is a regular developable space.

Definition 1.8.[4] A family neighbourhoods η of a point $x \in X$ is said to be a neighbourhood base at x if for each neighbourhood U of x, there is a V in η such that $V \subset U$.

Definition 1.9.[5] Let X be a topological space. A distance function $\rho: X \times X \to [0, \infty)$ is said to be a semimetric if whenever $x, y \in X$

- 1. $\rho(x, y) \ge 0$
- 2. $\rho(x, y) = 0$ if and only if x = y
- 3. $\rho(x, y) = \rho(y, x).$

If ρ is a semimertic on X such that $\{S_{\epsilon}(x)/\epsilon > 0\}$, where $S_{\epsilon}(x) = \{y \in X/\rho(x, y) < \epsilon\}$ is a neighbourhood base at each $x \in X$ then X is called a semimetrizable space.

Theorem 1.10. Every developable space is semimetrizable.

define be a developable space with a development $\{U_n\}_{n < \omega}$. Then **Proof:**X ρby $\rho(x, y) = inf\{1/n/y \in st(x, U_n)\}$. By definition of $st(x, U_n)$, if $y \in st(x, U_n)$, then $x \in st(y, U_n)$. Hence $\rho(x, y) = \rho(y, x)$. Also $\rho(x, y) \ge 0$ whenever $x \ne y$. $\rho(x, x) = inf\{1/n/x \in st(x, U_n)\} \rightarrow 0$ as $x \in U_n$ for semimetric eachn. Sop а .For is on any $x \in X$, $s_{\epsilon}(x) = \{y \in X/\rho(x, y) < \epsilon\} = \{y \in X/\inf\{1/n/y \in st(x, U_n)\} < \epsilon\}$. i.e., $s_{\epsilon}(x)$ consists precisely those $y \in st(x, U_n)$ with $\{inf\{1/n/y \in st(x, U_n)\} < \epsilon\}$. Hence for any neighbourhood $U \circ fx$ there exists $\epsilon > 0$,

such that $s_{\epsilon}(x) \subset U$. Hence $\{s_{\epsilon}(x)/\epsilon > 0\}$ is a neighbourhood base at each $x \in X$. Hence X is a semimetrizable space.

Definition 1.11.[5] A topological space X is said to be semisttratifiable if for each open set $U \subset X$ one can assign a countable sequence $\{U_n\}_{n < \omega}$ of closed subsets of X such that

1. $\bigcup_{n < \omega} U_n = U$.

2. $U_n \subset V_n$ whenever $U \subset V$, where $\{V_n\}_{n < \omega}$ is the sequence assigned to V.

Equivalently another definition of a semistratifiable space can be stated as follows: A topological space X is said to be semistratifiable if for each closed set $H \subset X$ One can assign a countable sequence $\{U(n, H)\}_{n < \omega}$ of open subsets of X such that

1. $\bigcap_{n < \omega} U(n, H) = H$

2. If *K* is closed with $H \subseteq K$ then $U(n, H) \subseteq U(n, K)$ for all $n < \omega$.

Theorem 1.12. Every semimetrizable space is semistratifiable.

Proof. Let X be a semimetrizable space with semimetric ρ . Let H be a closed subset of X and $U(n, H) = \bigcup \{S_{1/2^n}(x)^{\circ}/x \in H\}$. Then $\{U(n, H)\}_{n < \omega}$ is a countable sequence of open sets in X.For any $y \in H, y \in S_{1/2^n}(y)^{\circ}$ for each $n < \omega$. Hence $y \in U(n, H)$ for each $n < \omega$. Hence $y \in \cap \{U(n, H)/n < \omega\}$. Therefore $H \subseteq \cap \{U(n, H)/n < \omega\}$. Similarly $\cap \{U(n, H)/n < \omega\} \subseteq H$. Also if K is any closed set with $\subseteq K$, then $U(n, H) \subseteq U(n, K)$ for all $n < \omega$. Hence X is a semistratifiable space.

Theorem 1.13. Semistratifiable spaces are *D*-spaces.

Proof. Let (X, τ) be a semistratifiable space. To each $W \in \tau$ we can assign a sequence $\{F(W, n)\}_{n < \omega}$ of closed subsets of X such that $W = \bigcup_{n < \omega} F(W, n)$ and $F(W, n) \subset F(V, n)$ whenever $\subset V$. Let $U: X \to \tau$ be a neighbourhood assignment in X with range space $\{U_x / x \in X\}$. Let $U_n = \{U_x / x \in F(U_x, n)\}$ and $X_n = \{x \in X / U_x \in U_n\}$. Note that $X = \bigcup_{j < \omega} X_j$. Let j_0 be the smallest element $< \omega$ such that U_{j_0} and $X_{j_0} \neq \emptyset$. By transfinite induction pick $U_{x_{\alpha}} \in U_{j_0}, \alpha < \gamma_0$ such that

1. $\alpha < \beta < \gamma_0$ implies $x_\beta \notin U_{x_\alpha}$.

2.
$$X_{i_0} \subset \bigcup_{\alpha < \gamma_0} U_{x_\alpha}$$

Let $D_0 = \{x_{\alpha}/\alpha < \gamma_0\}$. D_0 is a closed discrete subset of X. Pick $z \in \overline{D_0}$ note that $z \in \bigcup_{\alpha < \gamma_0} U_{x_\alpha}$ because $D_0 \subset F(\bigcup_{\alpha < \gamma_0} U_{x_\alpha}, j_0) \subset \bigcup_{\alpha < \gamma_0} U_{x_\alpha}$. Let α_0 be the smallest element $< \gamma_0$ such that $z \in U_{x_{\alpha_0}}$. Then $V = U_{x_{\alpha_0}} \setminus F(\bigcup_{\alpha < \gamma_0} U_{x_\alpha}, j_0)$ is a neighbourhood of z such that $V \cap D_0 = \{x_{\alpha_0}\}$. This shows that D_0 is closed and discrete. Let $X'_0 = \bigcup_{\alpha < \gamma_0} U_{x_\alpha}$ and j_1 be the smallest element $< \omega$ such that $X_{j_1} \setminus X'_0 \neq \emptyset$. Then $\operatorname{let} U'_{j_1} = \{U_x \in U_{j_1}/x \in X_{j_1} \setminus X'_0\}$. Again by transfinite induction, pick $U_{x_\alpha} \in U'_{j_1}, \alpha < \gamma_1$ such that

1. $\alpha < \beta < \gamma_1$ implies $x_\beta \notin U_{x_\alpha}$

2. $X_{j_1} \setminus X'_0 \subset \bigcup_{\alpha < \gamma_1} U_{x_\alpha}$

Again we get $D_1 = \{x_{\alpha} | \alpha < \gamma_1\}$ is a closed discrete subset of X and letting $X'_1 = \bigcup_{\alpha < \gamma_1} U_{x_{\alpha}}$ we get that $X_{j_1} \subset X'_0 \cup X'_1$. Hence by ordinary induction we can find integers j < 1, j < 2, ... and closed discrete subsets $D_i \subset X_{j_i}, i < \omega$ such that

1. Each $X_{j_i} \subset \bigcup \{ U_x / x \in \bigcup_{k=0}^{\prime} D_k \}$.

2. Each $D_{i+1} \cap (\bigcup \{ U_x / x \in \bigcup_{k=0}^{'} D_k \}) = \emptyset$.

Now letting $D = \bigcup_{i < \omega} D_i$. we see that $\{U_x/x \in D\}$ covers X due to (1). To show that D is closed discrete subset of . Pick $z \in X$ and let n be the smallest integer such that z is in some U_{x_α} with $x_\alpha \in D_n$. Then $V = (U_{x_\alpha}/U_{k=0}^n D_k) \cup \{x_\alpha\}$ is a neighbourhood of z such that $V \cap D = \{x_\alpha\}$ which shows that D is closed and discrete. Since D is closed and discrete and $\{U_x/x \in D\}$ covers X, X is a D-space.

Definition 1.14.[5] Suppose X is a topological and $d: X \times X \to [0, \infty)$ such that for all $(x, y) \in X \times X$,

• d(x, y) = d(y, x)and

• d(x, y) = 0 if and only if x = y.

The function *d* is said to be symmetric for *X* provided for all non-empty $A \subseteq X$, *A* is closed in *X* if and only if $\inf \{d(x, z)/z \in A\} > 0$ for every $x \in X \setminus A$ and *X* is said to be symmetrizable with symmetric *d*. Notation 1.15. For $x \in X$ and $n \in N$, let $B(x, 1/n) = \{z \in X / d(x, z) < 1/n\}$.

Claim 1. $D \subseteq X$.

Claim 2. $W = \{U(x)/x \in D\}$ covers X.

Proof. For any $y \in X$ find $m \in N$ such that $\in I(m)$. If $y \in J(m)$ then $\in U(y) \subseteq \bigcup W$. If $y \notin J(m)$ then $y \in (\bigcup \{U(x)/i < m, x \in J(i)\}) \cup (\bigcup \{U(x)/x \in J(m), x < y\}) \subseteq \bigcup W$

Claim 3. *D* is a closed discrete set in $\bigcup W$ and hence in *X*.

Proof: This follows if we show that for any $t \in D$, $D \setminus \{t\}$ is closed. To this end we may assume $Z = \bigcup W$ and let $x \in Z \setminus (D \setminus \{t\})$. It suffices to find a weak neighbourhood *V* of *x* such that $V \cap (D \setminus \{t\}) = \emptyset$. Let *m* be the first element of \mathbb{N} such that there is a first element *y* of J(m) where $x \in U(y)$. Now for all $z \in D$ with y < z we have, $z \notin U(y)$. Also for all $z \in D$ with z < y we have, $B(z, 1/m) \subseteq B(x, 1/k_2) \subseteq U(z)$ and $x \notin U(z)$, so $z \notin B(x, 1/m)$. That is, $U(y) \cap B(x, 1/m)$ is a weak neighbourhood of *x* with $U(y) \cap B(x, 1/m) \cap (D \setminus \{y\}) = \emptyset$. If t = y claim 3 stands proved. If $\neq y$, then since $y \in D$ we know $x \neq y$ and there is $j \in \mathbb{N}$ such that $y \notin B(x, 1/j)$. This gives $V = B(x, 1/j) \cap U(y) \cap B(x, 1/m)$ as the weak neighbourhood of *x* with $V \cap (D \setminus \{t\}) = \emptyset$. Hence *D* is closed and discrete in . Therefore *X* is a *D*-space.

Corollory 1.16. The quotient compact image of a metrizable space is a *D*-space.

Proof: Since the quotient compact image of a metrizable space *X* is symmetrizable, *X* is a *D*-space.

Definition 1.17.[3] A collection of subsets $B = \bigcup \{B_x | x \in X\}$ of a topological space X is said to be a weak base provided

- To each $x \in X$, every member of B_x contains x
- For any 2 members B_1 and B_2 of B_x there exists $B_3 \in B_x$ such that $B_3 \subset B_1 \cap B_2$
- *B* determines the topology of *X* in the following way: A set $U \subset X$ is open in *X* if and only if for all $z \in U$, there exists $B \in B_z$ with $B \subseteq U$.

Definition 1.18.[6] A space X is said to be sequential if for every non closed subset $A \subseteq X$ there exists a sequence $\{x_n\}_{n < \omega}$ in A which converges to some $z \in X \setminus A$.

Definition 1.19.[3] If X is a sequential space and $\in W \subseteq X$, we say that W is a weak neighbourhood of x if whenever $\{x_n\}_{n \le \omega}$ converges tox then $\{x_n\}_{n \le \omega}$ is eventually in W.

The next proposition says that in a sequential space the collection of weak neighbourhoods is a weak base for X. **Proposition 1.20.** If X is a sequential space then a subset $U \subseteq X$ is open if only if for all $x \in U$ there exists a weak neighbourhood W of x such that $W \subseteq U$.

Definition 1.21.[3] A collection W of subsets of a sequential space X is said to be a ω -system for the topology on X if whenever $x \in U \subseteq X$, with U open, there exists a subcollection $V \subseteq W$ such that $x \in \cap V$, $\bigcup V$ is a weak neighbouhood of x and $\bigcup V \subseteq U$.

Proposition 1.22. If $f: Z \to X$ is a quotient map from a space Z onto aT_2 sequential space X and \mathbb{B} is any base for the topology on Z then $W = \{f(B)/B \in \mathbb{B}\}$ is a ω -system for X.

Proof.Let $\subseteq X$, with U open. We need to find a subcollection $V \subseteq W$ such that $x \in \bigcap V, \bigcup V$ is a weak neighbourhood of x, and $\bigcup V \subseteq U$. In Z, let $C = \{B \in \mathbb{B}/B \cap f^{-1}(x) \neq \emptyset$ and $B \subseteq f^{-1}(U)\}$ and let $V = \{f(B)/B \in C\}$. Clearly $x \in \bigcap V$ and $\bigcup V \subseteq U$. To show that $\bigcup V$ is a weak neighbourhood of x, suppose $\{y_n\}_{n < \omega}$ converges to x; then we need to show that $\{y_n\}_{n < \omega}$ is eventually in $\bigcup V$. If this is not the case there would be a subsequence missing $\bigcup V$ completely so without loss of generality we may assume $\{y_n/n < \omega\} \cap (\bigcup V) = \emptyset$. Since X is T_2 a we see that $\{y_n/n < \omega\} \cup \{x\}$ is closed in X and $f^{-1}(\{y_n/n < \omega\} \cup \{x\})$ is closed in Z. Now $f^{-1}(x) \subseteq \bigcup C$, and $\bigcup \{f^{-1}(y_n)/n \in \omega\} \cap (\bigcup C) = \emptyset$ implies that $\bigcup \{f^{-1}(y_n)/n \in \omega\}$ is a closed saturated set in Z. This says $\{y_n/n < \omega\}$ is a closed set in X, a contradiction. Hence $W = \{f(B)/B \in \mathbb{B}\}$ is a ω -system for X. **Theorem 1.23.** A sequential space X with a point countable ω -system is a D-space.

Proof. Let \mathbb{W} be a point countable ω -system for X and for each $x \in X$ let \mathbb{W}_x denote $\{W \in \mathbb{W}/x \in W\}$. Suppose $\mathbb{U} = \{U(x)/x \in X\}$ is the range space of neighbourhood assignment U for X. For every $x \in X$ pick a subcollection $\mathbb{V}_x \subseteq \mathbb{W}_x$, such that $x \in \cap \mathbb{V}_x$, and $V(x) = \bigcup \mathbb{V}_x$ is a weak neighbourhood of x and $V(x) \subseteq U(x)$. For $t \in X$, let \mathbb{H}_t denote the countable set $\{W \in \mathbb{W}/t \in W \in \bigcup_{x \in X} \mathbb{V}_x\}$. Consider \mathbb{H}_t to be well ordered with an order type as a subset of ω . Identify the centers of elements of $H \in \mathbb{H}_t$ by letting

- $c(H) = \{x \in H/H \in \mathbb{V}_x\}$
- $C(t) = \bigcup \{ c(H)/H \in \mathbb{H}_t \}.$

By a recursion process we will identify an ordinal μ , countable sets $A_{\alpha} \subseteq X, \alpha < \mu$ and open sets $O_{\alpha} = \bigcup \{U(x)/x \in A_{\alpha}\}$ so that $\bigcup_{\alpha < \mu} O_{\alpha} = X$ and $D = \bigcup_{\alpha < \mu} A_{\alpha}$ is closed and discrete in X. So $\{U(x)/x \in D\}$ would be the subcover of U satisfying D-space property.

For an ordinal β , assuming that A_{α} and O_{α} , for all $\alpha < \beta$, have been defined, continue the process as follows: If $\bigcup_{\alpha < \beta} O_{\alpha} = X$, we stop and let $\mu = \beta$.

If
$$\bigcup_{\alpha < \beta} O_{\alpha} \neq X$$
, pick some $z_{\beta} \in X \setminus \bigcup_{\alpha < \beta} O_{\alpha}$.

Next we find by induction on ω an increasing sequence $\{F_n^\beta\}_{n\in\omega}$ of finite subsets of X, with the initial $F_0^\beta = (x,y)$

$\{z_{\beta}\}$, as follows:

Given that F_n^{β} is defined and $t \in F_n^{\beta}$, let

$$R(t) = (C(t) \setminus \bigcup_{\alpha \in F_n^\beta} U(s) \setminus \bigcup_{\alpha < \beta} O_\alpha \quad , \qquad E_n^\beta = \left\{ t \in F_n^\beta / R(t) \neq \emptyset \right\}$$

For $t \in E_n^{\beta}$, let $k(t,n) = min\{n, |\{W \in \mathbb{H}_t/R(t) \cap \mathcal{C}(W) \neq \emptyset\}|\}$. Now let $W_{t,i}$, i = 1, 2, ..., k(t, n), be the first k(t, n) elements of \mathbb{H}_t such that $R(t) \cap \mathcal{C}(W) \neq \emptyset$ and pick $x(t, i) \in R(t) \cap \mathcal{C}(W_{t,i})$, for each i. We let

$$F_{n+1}^{\beta} = F_n^{\beta} \cup \Big\{ x(t,i)/t \in E_n^{\beta}, 1 \le i \le k(t,n) \Big\}.$$

If some $E_n^{\beta} = \emptyset$ then $F_n^{\beta} = F_{n+1}^{\beta} = F_{n+2}^{\beta} = \cdots$ In any case the resulting F_n^{β} , $m \in \omega$, form an increasing sequence of finite sets. Now we let $A_{\beta} = \bigcup_{n \in \omega} F_n^{\beta}$.

That concludes the recursion process which defines the countable sets $A_{\alpha} \subseteq X$, for $\alpha < \mu$, and open sets $O_{\alpha} = \bigcup \{ U(x)/x \in A_{\alpha} \}$. It is clear from the construction that $\bigcup_{\alpha < \mu} O_{\alpha} = X$. The following two observations follow from the construction above:

References

- [1]. E.K. Van Douwen, W.F. Pfeffer, Some properties of the Sorgenfrey line and related spaces, Pacific J.Math. No.2vol.81 (1979), 371-377.
- [2]. R. Buzyakova, On D-property of strong Σ -spaces, comment. Math. Univ. Car. Vol.43 (2002), 493-495.
- [3]. D.K. Bruke, Weak bases and D-spaces, Comment.MatUniv.Car.vol.48(2007), 281-289.
- [4]. G. Gruenhage, Generalized metric spaces, in the Handbook of set-theoretic topology, K. Kunen and J.E. Vaughan, eds., North-Holland, Amsterdam, 1984, 423-501.
- [5]. G. Gruenhage, A survey of D-spaces, in: L. Balinkostova, A. Caicedo, S.Geschke, M. Scheepers (Eds.), Set Theory and its Applications, Contemp. Math. (2011). 13-28.
- [6]. [J.R.Boone, On irreducible spaces, Bull. Austral. Math. Soc. Vol.12(1975), 143-148.