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Abstract:An iterative technique based on the generalized Cauchy integral formula has been developed for the 

numerical evaluation of the derivatives of a real valued function 𝑔(𝑥) such that the function 𝑧 ↦ 𝑔(𝑧)is 

analytic in a domain which intersects the real axis. The transformed Gauss-Legendre rules meant for the 

numerical quadrature of analytic function along directed line segments has been employed for the computation 

of the derivatives. 
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I. INTRODUCTION 

Numerical differentiation of a function is more difficult than numerical integration. This is because the later 

process requires only good continuity properties of the function, while for the former, the function is required to 

satisfy more complicated properties such as Lipschitzclasses. As a result of this, the process of numerical 

integration is relatively more stable than the process of numerical differentiation. However, there are many 

application in different branches of science and engineering and also in economics where the numerical 

evaluation of derivatives of a function becomes quite essential. The methods meant for the numerical 

differentiation of functions available in standardtextsare based on forward, backward and central differences or 

the theory of polynomial interpolation and Richardson extrapolation technique. These methods are sensitive to 

errors in the function values especially if  these errors are not sufficiently small compared to the step size used 

in the differentiation formula. 

In view of wide applications of numerical differentiation substantial research work has been undertaken for 

devising quite efficient methods. Some of the methods for numerical evaluation of derivatives of real as well as 

complex valued functions are due to Calio,Frontini and Milovanovic[1], Cullum[2], Hunter[3], Lyness and 

Moler[4], Micchelli [5], Tosic[6], and others. 

Our aim in this paper is to formulate a method for the numerical evaluation of derivatives of a real valued 

function which is based on the generalized Cauchy integral formula of complex analysis. The method is an 

iterative one and makes use of the transformed Gauss-Legendre quadrature  rules. It is noteworthy that the 

method can be extended for the numerical determination of the derivatives of complex valued analytic functions 

by suitably choosing the contour of integration in the generalized Cauchy integral formula. 

 

II. FORMULATION OF THE METHOD 

The generalized Cauchy integral formula concerning an analytic function 𝑔(𝑧)is statedbelow: 

                                                          𝑔 𝑛  𝑧0 =
𝑛!

2𝜋𝑖
 

𝑔(𝑧)

(𝑧 − 𝑧0)𝑛+1
𝑑𝑧                                                                (1)

Γ

 

where𝑧 = 𝑥 + 𝑖𝑦,Γ is a closed contour lying inside the domain of analyticity of  the function 𝑔(𝑧) surrounding  

the point 𝑧0 and described in the positive sense.Let the contour Γ be a square with vertices  

    𝑧𝑗 = 𝑥0 + 𝑠 1 + 𝑖 𝑖𝑗+1 , 𝑗 = 1 1 4                                                                 (2) 

and𝑥0 is a point on the x-axis where the values of the derivatives of the function 𝑔(𝑧) are sought and s is a non-

zero real numberwhich is small in magnitude such that the point 𝑥0 is the centre of the square contour. Then 

setting 𝑧0 = 𝑥0 in equation (1), we have the following: 
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                                  𝑔 𝑛  𝑥0 =
𝑛!

2𝜋𝑖
  

𝑔(𝑧)

(𝑧 − 𝑥0)𝑛+1
𝑑𝑧

𝐿𝑗

                                                                               (3)

4

𝑗=1

 

where𝐿𝑗  is a directed line segment from the point 𝑧𝑗  to the point 𝑧𝑗+1 and 𝑧5 = 𝑧1. The contour integral along 

𝐿𝑗 under the summation sign in equation (3) which is denoted as 𝐽𝑗can be represented in the following symmetric 

form: 

                            𝐽𝑗 =  
𝑔(𝑧)

(𝑧 − 𝑥0)𝑛+1
𝑑𝑧                                                                                                         (4)

𝑧0𝑗+ℎ𝑗

𝑧0𝑗−ℎ𝑗

 

where  𝑧0𝑗 =  𝑧𝑗+1 + 𝑧𝑗  2  and  ℎ𝑗 = (𝑧𝑗+1 − 𝑧𝑗 ) 2 . 

For the numerical evaluation of the complex integral in the right hand side of equation (4) a number of methods 

have been devised (cf. Milovanovic [7]). From the point of view of accuracy amongst these methods the most 

preferable one is the transformed Gauss-Legendre rule proposed by Lether [8]. In general the m-point 

transformed Gauss-Legendre rule meant for the integral of an analytic function 𝜑(𝑧) along a directed line 

segment from the point𝑧0 −𝐻 to 𝑧0 + 𝐻 is given by the following: 

 𝜑 𝑧 𝑑𝑧 ≈ 𝐻 𝑐𝑘𝜑 𝑧0 + 𝐻𝜂𝑘                                                                                               (5) 

𝑚

𝑘=1

𝑧0 +ℎ

𝑧0−ℎ

 

where 𝜂𝑘’s are the zeros of the Legendre polynomial of degree m and  𝑐𝑘’s are the associated coefficients in the 

m-point Gauss-Legendre quadrature rule(cf. Abramowitz and Stegun[9]).  

The first, second and third derivatives (n=1, 2, 3) have been computed by applying the transformed Gauss-

Legendre m-point rule given by equation (5). It is noteworthy that the central point 𝑧0𝑗  of the path 𝐿𝑗  is nearest 

to the singularity 𝑥0 if 𝑚 is odd. So for the purpose of computation of the integral 𝐽𝑗  we consider only even 

values of 𝑚and set𝑚 = 12, 14, 16.Taking 𝑥0 = 1.0 , 𝑠 = 0.2 the four integrals 𝐽𝑗 , 𝑗 = 1(1)4 in equation (3) 

have been computed replacing𝜑(𝑧)by𝑔 𝑧 /(𝑧 − 𝑥0)𝑛+1 and assigning appropriate values to 𝑧0 and Hin 

equation (5). Let the numerical approximations obtained for the nth derivatives(n=1,2,3) for different functions 

𝑔 𝑧 be denoted as𝑄𝑚
𝐺𝐿(𝑔 𝑛 ) and  the absolute errors be denoted as  𝑄𝑚

𝐺𝐿 𝑔 𝑛  − 𝑔(𝑛) whichare appended in 

Table-I. 

Table-I 

𝑔(𝑧) m  𝑄𝑚
𝐺𝐿 𝑔 1  − 𝑔(1)   𝑄𝑚

𝐺𝐿 𝑔 2  − 𝑔(2)   𝑄𝑚
𝐺𝐿 𝑔 3  − 𝑔(3)  

 

𝑙𝑜𝑔(1 + 𝑧) 

14 1.56 (e-11) 7.83 (e-12) 7.85 (e-12) 

16 4.62 (e-13) 2.37 (e-13) 1.96 (e-13) 

20 4.44 (e-16) 4.80 (e-15) 2.83 (e-15) 

 

𝑒𝑧  

14 8.52 (e-11) 8.52 (e-11) 8.52 (e-11) 

16 2.51 (e-12) 2.49 (e-12) 2.37 (e-12) 

20 2.66 (e-15) 3.99 (e-15) 2.53 (e-14) 

 

𝑠𝑖𝑛(𝑧) 

14 1.69 (e-11) 2.63 (e-11) 1.69 (e-11) 

16 4.99 (e-13) 7.81 (e-13) 5.26 (e-13) 

20 4.44 (e-16) 4.32              4.32(e-15) 1.12(e-14) 

 

III. THE ITERATIVE SCHEME FOR DIFFERENTIATION 

 In this section we consider first   the numerical evaluation of the first derivative of the function  𝑔(𝑧) by 

making n=1 in equation (3)for the sake of simplicity. 

For obtaining a fair accuracy of more than ten decimal places, m (the number of nodes in the transformed 

Gauss-Legendre rule) has been assigned relatively large values in the previous section. To reduce the number of 

nodes the principal part arising due to the singularity 𝑥0(which is a pole of order two) should be subtracted out 

from the integrand given by equation (3) before the application of the transformed Gauss-Legendre rules.The 

principal part of the integrand when n=1 in the neighborhood of 𝑥0 is given by  

                         𝑝1 𝑧 = 𝑔 𝑥0 +  𝑧 − 𝑥0 𝑔
 1  𝑥0 .                                                                                            (6) 

Replacing the function 𝑔(𝑧) in the integral in equation (3) by 𝑔 𝑧 − 𝑝1 𝑧 , we have the following equation: 
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1

2𝜋𝑖
 

𝑔(𝑧)

(𝑧 − 𝑥0)2
𝑑𝑧 =

Γ

1

2𝜋𝑖
 
𝑔 𝑧 − 𝑝1 𝑧 

(𝑧 − 𝑥0)2
𝑑𝑧 + 𝑔 1 (𝑥0)

Γ

                                                    (7) 

Decomposing the contour Γ as  𝐿𝑗
4
𝑗=1  and applying the m-point transformed Gauss-Legendre rule to the 

integral in the right hand side of equation  (7) we obtain the approximation for the integral in the left hand sideof 

(7) which represents the first derivative 𝑔 1 (𝑥0). Hence  

𝑔 1  𝑥0 =
1

2𝜋𝑖
 

𝑔 𝑧 

 𝑧 − 𝑥0 
2
𝑑𝑧

Γ

 

                       ≈
1

2𝜋𝑖
 ℎ𝑗  

𝑐𝜇
(𝜃𝑗𝜇 − 𝑥0)2

𝑚

𝜇=1

 𝑔(𝜃𝑗𝜇 ) 
4

𝑗=1

 −𝑔 𝑥0 −  𝜃𝑗𝜇 − 𝑥0 𝑔
 1 (𝑥0) + 𝑔 1  𝑥0                      (8) 

where  𝜃𝑗𝜇 = 𝑧0𝑗 + ℎ𝑗𝜂𝜇 .Denoting the unknown quantity 𝑔 1  𝑥0 appearing in the right hand side of the 

approximate equation (8) as 𝐷(1)(𝜈) we have the following iteration scheme from the approximate equation (8). 

𝐷(1) 𝜈 + 1 =
1

2𝜋𝑖
 ℎ𝑗  

𝑐𝜇
(𝜃𝑗𝜇 − 𝑥0)2

𝑚

𝜇=1

 𝑔(𝜃𝑗𝜇 ) 
4

𝑗=1

 −𝑔 𝑥0 −  𝜃𝑗𝜇 − 𝑥0 𝐷
(1)(𝜈) + 𝐷(1) 𝜈                            (9)   

where𝜈 = 1,2,3,…To commence the iteration process given by equation (9) a starting value for𝐷 1 (1)is 

assigned as the initial guess for the first derivative 𝑔 1  𝑥0  and the successive iterations are calculated until two 

consecutive iterates agree up to a desired number of decimal places. It is noteworthy that Acharya et al [10] 

have recently devised the technique for the numerical rectification of curves where the authors have computed 

the first derivative using the Cauchy integral formula and quadrature methods. 

        So far as the computation of the  nth derivative 𝑔 𝑛  𝑥0  is concerned the iteration scheme can be 

constructed in the same vein as in case of the first derivative by subtracting out the following principal part from 

𝑔(𝑧) in the numerator of the integrand given by equation (3). 

                                             𝑝𝑛  𝑧 =  
𝑔 𝜌 (𝑥0)

𝜌!
 𝑧 − 𝑥0 

𝜌                                                                                           (10)  

𝑛

𝜌=0

 

This leads to the following iteration scheme: 

𝐷 𝑛  𝜈 + 1  

=
1

2𝜋𝑖
 ℎ𝑗  

𝑐𝜇
(𝜃𝑗𝜇 − 𝑥0)𝑛+1

𝑚

𝜇=1

 𝑔(𝜃𝑗𝜇 ) − 
𝑔 𝜌  𝑥0 

𝜌!
(𝜃𝑗𝜇 − 𝑥0)𝜌 −

𝐷 𝑛  𝜈 

𝑛!
(𝜃𝑗𝜇 − 𝑥0)𝑛

𝑛−1

𝜌=0

 + 𝐷 𝑛  𝜈 

4

𝑗=1

     (11) 

 

It is noteworthy that for the computation of the nth  derivative the derivatives of orders 1,2,. . .,n-1 are already 

computed. 

       Setting 𝑥0 = 1 and s=0.2 the derivatives of orders 1,2 and 3 have been computed using the scheme given by 

equation (11) employing the transformed Gauss-Legendre rules involving 2 and4 nodes. The computed values 

of the absolute errors have  been appended in Table-II. The quantity 𝜈 in table-II represents the minimum 

number of iterations needed for achieving the desired accuracy. 

Table:-II 
 

𝑔(𝑧) 

 

m 
1

st
 derivative 2

nd 
 derivative 3

rd
  derivative 

𝜈  𝐷 1  𝜈 − 𝑔(1)  𝜈  𝐷(𝜈) − 𝑔(2)  𝜈  𝐷(𝜈) − 𝑔(3)  

 

𝑙𝑜𝑔(1 + 𝑧) 

2 7 5.94(e-009) 7 3.67(e-009) 7 3.26(e-008) 

4 6 4.25(e-014) 6 3.89(e-014) 6 2.23(e-012) 

 

𝑒𝑧  

2 10 6.26(e-011) 9 5.84(e-011) 10 5.43(e-012) 

4 7 4.44(e-016) 7 4.44(e-016) 6 5.19(e-014) 

 

𝑠𝑖𝑛(𝑧) 

2 9 2.12(e-011) 10 4.39(e-012) 11 6.94(e-013) 

4 7 1.16(e-016) 7 5.55(e-016) 6 1.35(e-014) 

 

It is noted that the highest accuracy of fifteen decimal places can be reached by using four point rule in 

maximum seven iterations. The technique is a simple one and is capable of yielding output of high order 
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accuracy. Though computations have been made up to the third order derivative the method can be used for 

computation of derivatives of order more than three. It is further noteworthy that the iterative technique can be 

employed for evaluation of the derivatives of analytic functions of complex variables by a suitable choice of the 

contour Γ. 
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