Edge Sum Number of Jahangir Graphs

${ }^{1}$ D. S. T. Ramesh, ${ }^{2}$ I. Gnanaselvi, ${ }^{3}$ S. Alice Pappa
${ }^{l}$ Department of Mathematics, Margoschis College,Nazareth-628617, Tamil Nadu,India.
${ }^{2}$ Department of Mathematics, Jayaraj Annapackiam CSI College of Engineering, Nazareth-628617,Tamil Nadu,India.
${ }^{3}$ Department of Mathematics, Margoschis College,Nazareth-628617, Tamil Nadu, India.

Abstract

A graph is said to be an edge sum graph if the edges of G can be labeled with distinct positive integers such that the sum of all the labels incident on a vertex is again an edge label of G and if the sum of any collection of edges is a label of an edge in G, then they are incident on a vertex. The edge sum number $\sigma_{\mathrm{E}}(\mathrm{G})$ of a graph G is the smallest number r of edges which added to G result in an edge sum graph. In this paper, we prove that $\sigma_{\mathrm{E}}\left(\mathrm{J}_{3,4}\right)=3$.

Keywords: Sum graph, edge sum graph, sum number, edge sum number.

I. Introduction

All terms not defined here can be found in Harary [4]. Throughout this paper, we consider only finite undirected graphs without loops. By a graph $\mathrm{G}(\mathrm{V}, \mathrm{E})$ we mean a graph with vertex set V and edge set E . Jahangir graphs $J_{n, m}$ for $m \geq 3$ is a graph on $n m+1$ vertices that is a graph consisting of a cycle $C_{n m}$ with one more vertex which is adjacent to m vertices of C_{nm} at distance n to each on C_{nm}.

Harary [5] introduced the concept of sum graph and sum number. A graph G is called a sum graph if the vertices of G can be labeled with distinct positive integers so that $e=u v$ is an edge of G if and only if the sum of the labels u and v equals a label of some vertex w in G. If G is not a sum graph, adding a finite number of isolated vertices to it always yields a sum graph and the sum number of G is the smallest number of isolated vertices so added. T. Hao [3] proved an existence theorem for sum graphs and M. N. Elingham [2] proved that the sum number of any tree is just one. Several results on sum graphs and sum number of various graphs are [$1,6,7,10$]. D. S. T. Ramesh et. al. [8,9] defined edge sum graph, the edge analogue of sum graph and edge sum number which we denote by σ_{E}. In this paper, we prove that $\sigma_{E}\left(\mathbf{J}_{3,4}\right)=3$.
1.1 Definition Let $G(V, E)$ be a graph. Let S be a set of positive integers. An edge labeling of G by elements of S is a bijection $f: E \rightarrow S$. It induces a vertex labeling F of positive integers defined by $F(v)=\sum\{f(e): e$ is incident on $v\}$ for every $v \in V$. We call f an edge function of G and F an edge sum function of G induced by f.
1.2 Definition G is said to be an edge sum graph if there exists an edge function
$f: E \rightarrow S$ such that f and its corresponding edge sum function F on V satisfying the following conditions:

1. $\quad F$ is into S. That is, $F(v) \in S$ for every $v \in V$.
2. For any collection of edges $e_{1}, e_{2}, \ldots, e_{n} \in E$ such that $f\left(e_{1}\right)+f\left(e_{2}\right)+\ldots+f\left(e_{n}\right) \in S$, then e_{1}, e_{2}, \ldots, e_{n} are incident on a vertex.
1.3 Definition Let $G(V, E)$ be an edge sum graph. Let $e_{1}, e_{2}, \ldots, e_{m}$ where $m>1$ be a collection of edges incident on a vertex w (say). Let $\mathrm{ww}_{\mathrm{i}}=\mathrm{e}_{\mathrm{i}}$ for $1 \leq \mathrm{i} \leq \mathrm{m}$. If there exists an edge $\mathrm{e}=\mathrm{uv}$ such that $f\left(e_{1}\right)+f\left(e_{2}\right)+\ldots+f\left(e_{m}\right) \in f(e)$ and if $\operatorname{deg}(u) \geq 2$, then u is adjacent to w. Similarly, for v.

Hence, if $\mathrm{F}(\mathrm{w})=\mathrm{f}(\mathrm{uv})$ and $\{\mathrm{u}, \mathrm{v}\}$ is not a K_{2} component of G then in G either $\{\mathrm{u}, \mathrm{v}, \mathrm{w}\}$ form a triangle or one of $\{u, v\}$ is adjacent to w and the other is a pendent vertex.
1.4 Definition Let $\sigma_{E}(G)=r$. An edge function $f: E \rightarrow S$ and its corresponding edge sum function F that makes $\mathrm{G} \cup \mathrm{rK}_{2}$ an edge sum graph are respectively called an optimal edge function and an optimal edge sum function of G. For a graph G with $\sigma_{E}(G)=r$, there can be many optimal edge functions. Let E_{1} be the edge set of G and E_{2} be that of $r K_{2}$.Then, $\sigma_{E}(G)=$ Cardinality of the set $\left\{F(v): v \in V ; F(v) \notin f\left(E_{1}\right)\right\} . F$ is said to be an outer edge sum function if $F(V) \cap f\left(E_{1}\right)=\phi$ and an inner edge sum function if $\mathrm{F}(\mathrm{V}) \cap \mathrm{f}\left(\mathrm{E}_{1}\right) \neq \phi$. The range of F has at least r elements. It has exactly r elements if and only if F is an outer edge sum function.
1.5 Theorem: Let $\mathrm{f}: \mathrm{E} \rightarrow \mathrm{S}$ be an optimal edge function. If G has no pendent vertex and is triangle free, then F is an outer edge sum function.
Proof: Let E_{1} be the edge set of G and E_{2} that of $r K_{2}$. Let $u \in V$. Since $F(u) \in S$, there is an edge vw such that $F(u)=f(v w)$. If $v w \in E_{1}$, then $\langle u, v, w\rangle$ is K_{3} or P_{2} or P_{1} with v or w as a pendent vertex which is a contradiction. Hence $v w \in E_{2}$ so that F is an outer edge sum function.
4.2 Remark: It is easily seen that every optimal edge sum function F of a graph G is inner if G has a pendent vertex and is outer if G contains no pendent vertex and triangle free. If G has no pendent vertex but contains a triangle then F can be either inner (See Figure 1.1(a)) or outer (See Figure 1.1(b)). Here we show that $\sigma_{\mathrm{E}}\left(\mathrm{W}_{4}\right)=1$.

II. Edge Sum Number of Jahangir graphs

2.1 Definition: Jahangir graphs $J_{n, m}$ for $m \geq 3$ is a graph on $n m+1$ vertices that is a graph consisting of a cycle C_{nm} with one additional vertex which is adjacent to m vertices of C_{nm} at distance n to each on C_{nm}.

2.1 Theorem $\sigma_{E}\left(\mathrm{~J}_{3,4}\right)=3$.

Proof: Let $\mathrm{G}=\mathrm{J}_{3,4}$ where $\mathrm{V}(\mathrm{G})=\{\mathrm{v}\} \cup\left\{\mathrm{v}_{\mathrm{i}, \mathrm{j}}: 1 \leq \mathrm{i} \leq 4 ; 1 \leq \mathrm{j} \leq 3\right\}$ and $\mathrm{E}(\mathrm{G})=$

$$
\left\{v_{i, j} v_{i, j+1}: 1 \leq i \leq 4 ; 1 \leq j \leq 2\right\} \cup\left\{v_{i, 3} v_{i+1,1}: 1 \leq i \leq 3\right\} \cup\left\{v_{4,3} v_{1,1}\right\} \cup\left\{v_{i, 1}: 1 \leq i \leq 4\right\}
$$

First let us prove that $\sigma_{\mathrm{E}}(\mathrm{G})>1$.
Suppose $\sigma_{\mathrm{E}}(\mathrm{G})=1$.
Then there exists an optimal edge function f and its corresponding edge sum function F such that $G \cup K_{2}$ is an edge sum graph. Let $w_{1} w_{2}$ be the K_{2} component of $G \cup K_{2}$. Since G is triangle free and has no pendent vertex; F is an outer edge sum function.
That is, $\mathrm{F}(\mathrm{u})=\mathrm{f}\left(\mathrm{w}_{1} \mathrm{w}_{2}\right)=\mathrm{a}$ (say) for all $\mathrm{u} \in \mathrm{V}$

$$
\begin{array}{ll}
\mathrm{F}\left(\mathrm{v}_{1,2}\right) & =\mathrm{f}\left(\mathrm{v}_{1,1} \mathrm{v}_{1,2}\right)+\mathrm{f}\left(\mathrm{v}_{1,2} \mathrm{v}_{1,3}\right)=\mathrm{a} \\
\mathrm{~F}\left(\mathrm{v}_{1,3}\right) & =\mathrm{f}\left(\mathrm{v}_{1,2} \mathrm{v}_{1,3}\right)+\mathrm{f}\left(\mathrm{v}_{1,3} \mathrm{v}_{2,1}\right)=\mathrm{a}
\end{array}
$$

That is, $f\left(v_{1,1} v_{1,3}\right)=f\left(v_{1,3} v_{2,1}\right)$
This is not possible as f is a bijection. Hence $\sigma_{E}(G)>1$.
Suppose $\sigma_{E}(G)=2$.
Then there exists an optimal edge function f and an optimal edge sum function F such that $\mathrm{G} \cup 2 \mathrm{~K}_{2}$ is an edge sum graph. Let $\mathrm{w}_{1} \mathrm{w}_{2}$ and $\mathrm{w}_{3} \mathrm{w}_{4}$ be the edges of the K_{2} component of $\mathrm{G} \cup 2 \mathrm{~K}_{2}$. Let $\mathrm{f}\left(\mathrm{w}_{1} \mathrm{w}_{2}\right)=\mathrm{z}$ and $\mathrm{f}\left(\mathrm{w}_{3} \mathrm{w}_{4}\right)=\mathrm{y} \quad$ where $\mathrm{z}=2 \mathrm{x}$.
Let $\mathrm{f}\left(\mathrm{v}_{1,1} \mathrm{v}_{1,2}\right)=\mathrm{x}-\mathrm{b}_{1} \Rightarrow \mathrm{f}\left(\mathrm{v}_{1,2} \mathrm{v}_{1,3}\right)=\mathrm{x}+\mathrm{b}_{1}$
$\mathrm{f}\left(\mathrm{v}_{1,2} \mathrm{v}_{1,3}\right)=\mathrm{x}+\mathrm{b}_{1} \Rightarrow \mathrm{f}\left(\mathrm{v}_{1,3} \mathrm{v}_{2,1}\right)=\mathrm{y}-\mathrm{x}-\mathrm{b}_{1}$
$\mathrm{f}\left(\mathrm{v}_{2,2} \mathrm{v}_{2,3}\right)=\mathrm{x}-\mathrm{b}_{2} \Rightarrow \mathrm{f}\left(\mathrm{v}_{2,3} \mathrm{v}_{3,1}\right)=\mathrm{x}+\mathrm{b}_{2}$
$\mathrm{f}\left(\mathrm{v}_{2,2} \mathrm{v}_{2,3}\right)=\mathrm{x}-\mathrm{b}_{2} \Rightarrow \mathrm{f}\left(\mathrm{v}_{2,1} \mathrm{v}_{2,2}\right)=\mathrm{y}-\mathrm{x}+\mathrm{b}_{2}$
$\mathrm{f}\left(\mathrm{v}_{3,1} \mathrm{v}_{3,2}\right)=\mathrm{x}-\mathrm{b}_{3} \Rightarrow \mathrm{f}\left(\mathrm{v}_{3,2} \mathrm{v}_{3,3}\right)=\mathrm{x}+\mathrm{b}_{3}$
$\mathrm{f}\left(\mathrm{v}_{3,2} \mathrm{v}_{3,3}\right)=\mathrm{x}+\mathrm{b}_{3} \Rightarrow \mathrm{f}\left(\mathrm{v}_{3,3} \mathrm{v}_{4,1}\right)=\mathrm{y}-\mathrm{x}-\mathrm{b}_{3}$
$\mathrm{f}\left(\mathrm{v}_{4,2} \mathrm{v}_{4,3}\right)=\mathrm{x}-\mathrm{b}_{4} \Rightarrow \mathrm{f}\left(\mathrm{v}_{4,3} \mathrm{v}_{1,1}\right)=\mathrm{x}+\mathrm{b}_{4}$
$\mathrm{f}\left(\mathrm{v}_{4,2} \mathrm{v}_{4,3}\right)=\mathrm{x}-\mathrm{b}_{4} \Rightarrow \mathrm{f}\left(\mathrm{v}_{4,1} \mathrm{v}_{4,2}\right)=\mathrm{y}-\mathrm{x}+\mathrm{b}_{4}$
Let $\mathrm{f}\left(\mathrm{VV}_{1,1}\right)=\mathrm{X}_{1}$
$\mathrm{f}\left(\mathrm{Vv}_{2,1}\right) \quad=\mathrm{x}_{2}$
$\mathrm{f}\left(\mathrm{Vv}_{3,1}\right)=\mathrm{X}_{3}$
$f\left(\mathrm{vv}_{4,1}\right)=\mathrm{x}_{4}$
Suppose

$$
\mathrm{F}\left(\mathrm{v}_{1,2}\right)=\mathrm{F}\left(\mathrm{v}_{2,1}\right)=\mathrm{F}\left(\mathrm{v}_{2,3}\right)=\mathrm{F}\left(\mathrm{v}_{3,2}\right)=\mathrm{F}\left(\mathrm{v}_{4,1}\right)=\mathrm{F}\left(\mathrm{v}_{4,3}\right)=2 \mathrm{x} \text { and }
$$

$$
\mathrm{F}\left(\mathrm{v}_{1,1}\right)=\mathrm{F}\left(\mathrm{v}_{1,3}\right)=\mathrm{F}\left(\mathrm{v}_{2,2}\right)=\mathrm{F}\left(\mathrm{v}_{3,1}\right)=\mathrm{F}\left(\mathrm{v}_{3,3}\right)=\mathrm{F}\left(\mathrm{v}_{4,2}\right)=\mathrm{y}
$$

$$
\mathrm{F}\left(\mathrm{v}_{1,1}\right)=\mathrm{f}\left(\mathrm{vv}_{1,1}\right)+\mathrm{f}\left(\mathrm{v}_{4,3} \mathrm{v}_{1,1}\right)+\mathrm{f}\left(\mathrm{v}_{1,1} \mathrm{v}_{1,2}\right)=\mathrm{y}
$$

$$
\Rightarrow \mathrm{x}_{1}+2 \mathrm{x}-\mathrm{b}_{1}+\mathrm{b}_{4}=\mathrm{y}
$$

$$
\Rightarrow x_{1}=y-2 x+b_{1}-b_{4}
$$

$$
\mathrm{F}\left(\mathrm{v}_{2,1}\right)=\mathrm{f}\left(\mathrm{vv}_{2,1}\right)+\mathrm{f}\left(\mathrm{v}_{1,3} \mathrm{v}_{2,1}\right)+\left(\mathrm{v}_{2,1} \mathrm{v}_{2,2}\right)=2 \mathrm{x}
$$

$$
\Rightarrow x_{2}+2 y-2 x-b_{1}+b_{2}=2 x
$$

$$
\Rightarrow x_{2}=4 x-2 y+b_{1}-b_{2}
$$

$$
\mathrm{F}\left(\mathrm{v}_{3,1}\right)=\mathrm{f}\left(\mathrm{vv}_{3,1}\right)+\mathrm{f}\left(\mathrm{v}_{2,3} \mathrm{v}_{3,1}\right)+\mathrm{f}\left(\mathrm{v}_{3,1} \mathrm{v}_{3,2}\right)=\mathrm{y}
$$

$$
\Rightarrow \mathrm{x}_{3}+2 \mathrm{x}+\mathrm{b}_{2}-\mathrm{b}_{3}=\mathrm{y}
$$

$$
\Rightarrow x_{3}=y-2 x+b_{3}-b_{2}
$$

$$
\mathrm{F}\left(\mathrm{v}_{4,1}\right)=\mathrm{f}\left(\mathrm{vv}_{4,1}\right)+\mathrm{f}\left(\mathrm{v}_{3,3} \mathrm{v}_{4,1}\right)+\mathrm{f}\left(\mathrm{v}_{4,1} \mathrm{v}_{4,2}\right)=2 \mathrm{x}
$$

$$
\Rightarrow x_{4}+2 y-2 x-b_{3}+b_{4}=2 x
$$

$$
\begin{aligned}
& \Rightarrow x_{4}=4 x-2 y+b_{3}-b_{4} \\
F(v) & =f\left(v_{1,1}\right)+f\left(v_{2,1}\right)+f\left(v v_{3,1}\right)+f\left(v_{4,1}\right) \\
& =x_{1}+x_{2}+x_{3}+x_{4}
\end{aligned}
$$

Case (i)
If $F(v)=y$ where $y<2 x$
Let $2 \mathrm{x}-\mathrm{y}=\mathrm{a}$
Therefore, $a=2 x-y>2 x$
Now $\mathrm{x}_{1}=\mathrm{b}_{1}-\mathrm{b}_{4}-\mathrm{a} \Rightarrow \mathrm{b}_{1}>\mathrm{a}+\mathrm{b}_{4}$

$$
\Rightarrow \mathrm{b}_{1}-\mathrm{b}_{4}>\mathrm{a}
$$

$$
x_{3}=b_{3}-b_{2}-a \Rightarrow b_{3}>a+b_{2}
$$

$$
\Rightarrow \mathrm{b}_{3}-\mathrm{b}_{2}>\mathrm{a}
$$

$$
\mathrm{x}_{2}=2 \mathrm{a}+\mathrm{b}_{1}-\mathrm{b}_{2}
$$

$$
\mathrm{x}_{4}=2 \mathrm{a}+\mathrm{b}_{3}-\mathrm{b}_{4}
$$

$$
\mathrm{x}_{2}+\mathrm{x}_{4}=4 \mathrm{a}+\mathrm{b}_{1}-\mathrm{b}_{2}+\mathrm{b}_{3}-\mathrm{b}_{4}
$$

$$
=4 a+b_{1}-b_{4}+b_{3}-b_{2}
$$

$$
>4 a+a+a=6 a
$$

$x_{1}+x_{2}+x_{3}+x_{4}>x_{1}+x_{3}+6 a$ $>\mathrm{x}_{1}+\mathrm{x}_{3}+12 \mathrm{x} \quad($ since $\mathrm{a}>2 \mathrm{x})$ $>12 \mathrm{x}$
This is a contradiction.
Case (ii)
If $F(v)=2 x$ where $2 x<y$
Let $\mathrm{y}-2 \mathrm{x}=\mathrm{b}$
Therefore $b>y>2 x$

$$
\begin{aligned}
& x_{1}=b+b_{1}-b_{4} \\
& x_{3}=b+b_{3}-b_{2} \\
& x_{2}=b_{1}-b_{2}-2 b \\
& \Rightarrow b_{1}-b_{2}>2 b \\
& x_{4}=b_{3}-b_{4}-2 b \\
& \quad \Rightarrow b_{3}-b_{4}>2 b \\
& x_{1}+x_{3}=2 b+b_{1}-b_{2}+b_{3}-b_{4} \\
& \quad>2 b+2 b+2 b \\
& \quad=6 b>y>2 x
\end{aligned}
$$

This is a contradiction.
$y \geq x_{1}+x_{2}+x_{3}+x_{4}>x_{1}+x_{3}>6 b>y$
Hence $\sigma_{\mathrm{E}}(\mathrm{G})>2$.
The edge function given in Figure 2.1 shows that $\sigma_{E}\left(J_{3,4}\right)=3$.

References

[1] D. Berstrnd, F. Harary et. al. "The Sum number of a complete graph", Bull. Malaysian Math. Soc., (1989) 25-28.
[2] M. N. Elligham, "Sum graphs from trees", Ars Comb. 35 (1993), 335-349.
[3] T. Hao, "On sum graphs", J. Comb. Math. Combin. Comput. 6 (1989), 207-212.
[4] F. Harary, Graph Theory, Addison-Wesley, Reading, Mass. (1968).
[5] F. Harary, "Sum graphs and difference graphs", Cong. Number., 72, (1990), 101-108.
[6] M. Miller et. al., "The sum number of the covktail party graph", Bulletin of the Institute of Combinatorics and its applications, vol. 22 (1998), 79-90.
[7] T. Nicholas, S. Somasundaram and Vilfred, "Some results on sum graphs", Journal of Combinatorics and system sciences, vol. 26, Nos. 1-4 (2001), 135-142.
[8] D. S. T. Ramesh, J. Paulraj Joseph and S. Somasundaram, "Edge Sum Graphs", InternationalJournal of Management \& Systems, vol 18, No. 1, (2002), 71-78.
[9] D. S. T. Ramesh, J. Paulraj Joseph and S. Somasundaram, "Edge Sum Number of Graphs", InternationalJournal of Management \& Systems, vol 19, No. 1, (2003), 25-36.
[10] W. F. Smyth, "Sum graphs of small number", Colloquia Math. Soc. Janos Bolyai, 60 (1991), 669-678

