Pien

Subramanya.R

(2207, $6^{\text {th }}$ main, Srirampura, $3^{\text {nd }}$ stage, Karnataka. Mysore-570 023,)

Abstract

Spectrum of pi is broadened in this article and made to be applicable to regular polygons. By this, several equations of area and volumes are generalized. Also, a new method is suggested to find the value of arc trigonometric functions like arcsin.

Keywords: apothem, arcsin, cylinder, pi, pyramid,volume.

I. Introduction

Angles are defined with a little new view in the II nd section. The words apothem and hypotenuse are newly included into the family of radius. An advanced definition is furnished for pi. Equations for perimeter and areas of regular polygons formed at this section resembles the equations of circle for perimeter and area.

Several triangles come into mind while studying the trigonometric functions w.r.t a circle which leads to confusion to the students. To avoid such confusion, required triangle for trigonometric functions is designated as determinant triangle in section III.

Horizon of trigonometric function is expanded in the IVth section. In this section trigonometric functions are derived for equilateral triangle. Sine graph is drawn at section V w.r.t the sine function of equilateral triangle.

And at sections VI and VII cosine function is derived and corresponding graph is drawn for equilateral triangle.
Validity of trigonometric function for negative values is checked at section VIII.
At sections IX and X expressions for tangent function and its graph are derived and drawn.
A generalized proof for trigonometric identities are furnished at sections XI and XII.
Trigonometric functions are derived w.r.t square at section XIII. Here pi-en takes an integral value i.e., 4.
And the corresponding graph is also drawn.
General equations are derived for sides of the determinant triangles of regular polygons.
A new method is proposed at section XV to find the value of arc trigonometric functions.

II. Identical lines in a regular polygon.

In a regular polygon of n number of sides, infinite number of lines can be drawn from its centre to the perimeter. All regular polygons are dividable into congruent triangles w.r.t the sides of the regular polygon, Fig (1). And each such triangle is further dividable into two congruent right triangles. i.e., Line $\mathrm{OP}_{1}, \mathrm{OP}_{2}, \mathrm{OP}_{3} \cdots$ divide the triangle $\mathrm{AOB}, \mathrm{BOC}, \mathrm{COD} \cdots$, each into two right congruent triangles $\mathrm{AOP}_{1}, \mathrm{BOP}_{2}, \mathrm{COP}_{3} \cdots$. In the right triangle $P_{1} O B, O B$ which is the line joining the centre and a vertex is the longest hypotenuse among all hypotenuses that can be drawn from O to the neighborhood of apothem OP_{1}. In the triangle $\mathrm{AOB}, \mathrm{OP}_{1}$ is apothem and $P_{1} B$ is half of the side $A B$ and $O B$ is largest hypotenuse. All lines within this right triangle are unique in length. Also all lines formed by joining O and up to the neighborhood of apothem are hypotenuses. Further, all hypotenuses and apothems are collectively called as radii.

Fig.(1): Showing the corresponding or equivalent lines

Among all lines of these right triangles three border lines are significant lines. They are longest hypotenuse, apothem and half of a side. For example opposite side of the right triangle $\mathrm{P}_{1} \mathrm{OB}$ is one of such lines. Also, all lines have corresponding lines in other triangles. For example, $\mathrm{OA}=\mathrm{OB}=\mathrm{OC}=\cdots$ and $\mathrm{OP}_{1}=\mathrm{OP}_{2}=\mathrm{OP}_{3}=\cdots$ and so on.
i.e., $O A$ corresponds to $O B, O C$, etc and $O B$ corresponds to $O A, O C$ etc and so on.

Generally, all radii can be denoted by R_{i}^{θ} and all apothem can be denoted by R_{a} and hypotenuses by R_{h}^{θ}, where i denotes a radius in the set of radii and θ defines the positional uniqueness also h designates the line as hypotenuse.
Mathematically magnitute of , $\mathrm{R}_{\mathrm{h}}^{\theta}=\frac{\text { Apothem }}{\cos \theta}$

$$
=\frac{\mathrm{R}_{\mathrm{a}}}{\cos \theta}---------(1)
$$

Generally, limit of variation of θ can be shown by the inequality as, $\left(0<\theta \leq \frac{\pi}{n}\right]$
For example, in an equilateral triangle, angle varies as, $\left(0<\theta \leq \frac{\pi}{3}\right]$, and if $\theta=\frac{\pi}{3}$, we have,
$R_{i}^{\theta}=\frac{R_{a}}{\cos \left(\frac{\pi}{n}\right)}-----(2)=\frac{R_{a}}{\cos \left(\frac{\pi}{3}\right)}=2 R_{a}$
And for a square, $R_{h}^{\frac{\pi}{4}}=\sqrt{2} R_{a}$
And so on.
Further, $\lim _{\theta \rightarrow 0} R_{h}^{\theta}=\lim _{\theta \rightarrow 0} \frac{R_{a}}{\cos \theta}$

$$
=\mathrm{R}_{\mathrm{a}} ; \text { since } \cos 0=1
$$

Therefore, $\mathrm{R}_{\mathrm{i}}^{\theta} \in\left\{\mathrm{R}_{\mathrm{h}}, \mathrm{R}_{\mathrm{a}}\right\}$

2.0.1.Definitions of significant lines in a regular polygon.

Radii: Unique Lines w.r.t angle, drawn from centre of a regular polygon to the perimeter of the polygon are radii. Actually, said lines from a vertex to the centre of the side are unique only in a chosen right triangle and rest are corresponding radii.
A set of unique hypotenuses and apothem, is furnished below
Mathematically, $\mathrm{R}_{\mathrm{i}}^{\theta} \in\left\{\right.$ unique $\left.\mathrm{R}_{\mathrm{h}}\right\}$; Where, $\left(0<\theta \leq \frac{\pi}{n}\right.$]

$$
\in\left\{\text { unique } \mathrm{R}_{\mathrm{h}}^{\theta}\right\} \quad \in\left\{\text { unique }\left(\frac{\mathrm{R}_{\mathrm{a}}}{\cos \theta}\right)\right\} \text { Also, } \lim _{\theta \rightarrow 0} \mathrm{R}_{\mathrm{h}}=\mathrm{R}_{\mathrm{a}}
$$

For example when regular polygon is a square, $\operatorname{Fig}(2)$ and $n=4, \theta$ will be $=\frac{\pi}{4}$,
In the $\Delta \mathrm{OP}_{1} \mathrm{~B}$ unique radii of square are all unique lines from OB to OP_{1}, among them OB and OP_{1} are significant lines which are largest hypotenuse and apothem.
$R_{i}^{\theta} \in\left\{\right.$ unique $\left(\frac{R_{a}}{\cos \theta}\right)$ and $\left.R_{a}\right\} ;$ Here, $\left[0 \leq \theta \leq \frac{\pi}{3}\right]------(3)$
All such lines in the remaining right triangles are corresponding radii.

Fig.(2): radii in a square from B to P_{1}

2.0.2. Apothem-

It is known that apothem is the line joining the centre of a regular polygon to the midpoint of its side. Or it is the perpendicular drawn from the center of the regular polygon, on to one of its sides. Also it is the perpendicular bisector of a side and the corresponding angle subtended by the side at the centre of the regular polygon. It is denoted by R_{a}.

2.0.3.Di-apothem-

Di-apothem is any two apothems of a regular polygon. They are identifiable by their angle.
If di - apothem is denoted by D_{a}^{θ}, then Length of Di - apothem, $D_{a}^{\theta}=2 R_{a}$
Angle between apothems of diapothem are variable from 0 to π, w. r.t regular polygon.
considering from clockwise and anticlockwise direction whichever is least, is the angle of di - apothem.
Apothems that are immediately adjecent to one another will have least angle between them,
i. e., The least angles between apothems of diapothem can be given by , $\angle D_{a n}^{1}=\frac{2 \pi}{n}$; fig: (2)

Least angle of the apothen is equal to the angle subtended by a side at the centre.

Fig(3): showing the angle of di-apothem
When n is an odd number angle of di apothems, $\angle \mathrm{D}_{\text {an }}^{\left(1 \text { to } \frac{(\mathrm{n}-1)}{2}\right)}$ will be,
$1 \times \frac{2 \pi}{\mathrm{n}}, 2 \times \frac{2 \pi}{\mathrm{n}}, 3 \times \frac{\pi}{\mathrm{n}}, \cdots, \frac{(\mathrm{n}-1)}{2} \times \frac{2 \pi}{\mathrm{n}}$
Here, angle of maximum angled di - apothem of odd number of sides is, $\angle \mathrm{D}_{\mathrm{a}}^{\left(\frac{\mathrm{n}-1}{2}\right)}=\frac{(\mathrm{n}-1)}{2} \times \frac{2 \pi}{\mathrm{n}}<\pi$ Instead it will approximately be equal to π when $n \rightarrow \infty$,
i. e. $\lim _{n \rightarrow \infty} \angle D_{a}^{\left(\frac{n-1}{2}\right)}=\lim _{n \rightarrow \infty} \frac{(n-1)}{2} \times \frac{2 \pi}{n}=\pi$

And when n is an even number, angles of diapothems, $\angle D_{a}^{\left(1 \text { to } \frac{n}{2}\right)}$ will be, $1 \times \frac{2 \pi}{n}, 2 \times \frac{2 \pi}{n}, 3 \times \frac{\pi}{n}, \cdots, \frac{n}{2} \times \frac{2 \pi}{n}$
By the above expression it is clear that angle of maximum angled di-apothem of regular polygon having even number of sides will always be equal to π
i. e, angle of maximum angled diapothem, $\angle D_{a}^{\left(\frac{n}{2}\right)}=\pi$, when n is an even number.

2.0.4.Specific angle Di -apothems-

Di-apothems that possess maximum angle, minimum angle or any identical or remarkable angle are called Specific angle Di-apothems.

2.0.5. Maximum angled Di-apothem -

This is one of the Specific Di-apothems that has maximum angle between the two apothems. Also, it is denoted by $D_{a}^{\max }$. The length of $D_{a}^{\max }=2 R_{a}$
And, Angle of $D_{a}^{\text {max }}$ when n is even number is $=\angle D_{a}^{\left(\frac{n}{2}\right)}=\pi$
Also, Angle of $D_{a}^{\max }$ when n is odd number is $=\angle D_{a}^{\left(\frac{n-1}{2}\right)}=\frac{(n-1)}{2} \times \frac{2 \pi}{n}=\frac{\pi(n-1)}{n}$

2.0.6. Minimum angled Di-Apothem-

Two apothems that have least angle between them are called Minimum angled Di-Apothem. Immediately adjacent apothems will have least angle between them.

Although, here Maximum angled Di-apothem is taken to relate it with diameter of a circle. Each apothem can be designated w.r.t its corresponding side. Corresponding side is the side from which corresponding apothem is drawn.

Apothem is one of the significant reference lines which is helpful in finding the relation between perimeter and the line within the regular polygon.
When, the number of sides of the regular polygon tends to infinity, then the apothem becomes conventional radius of the circle i.e., all lines from Maximum angled hypotenuse to apothem merge with apothem. And the angle of Maximum angled Di-apothem will be equal to a straight angle.

2.0.7. Di-angle bisectors or Hypotenuse of maximum-length or angle -

The line joining the centre and the vertex divides the interior angle at the vertices of a regular polygon and also divide the angle formed by the apothems that are immediately adjacent lines on both sides. Hence they divide two angles. Also, it divides the angle between corresponding hypotenuses on either side of it. Therefore they can be called as di-angle bisectors. Here OB is a di-angle-bisector. it bisects the angles B and $\mathrm{P}_{1} \mathrm{OP}_{2} \mathrm{Fig}(1)$. The apothems that are immediately adjacent on both sides are $\mathrm{P}_{1} \mathrm{O}$ and $\mathrm{P}_{2} \mathrm{O}$. Also it divides the angles of corresponding hypotenuses adjacent on either sides. This di-angle bisector can also be called as hypotenuse of maximum length or angle, because they have maximum angle and hence they are longest hypotenuses.

2.0.8. Duo-di-angle bisectors or Duo-Di-Hypotenuse of maximum-length or angle

Two di-angle bisectors or Di-Hypotenuse of maximum-length or angle in a regular polygon can be called as Duo-di-angle bisector or Duo-Di-Hypotenuse of maximum-length or angle.
Out of these Duo-di-angle bisectors, specific Duo-di-angle bisectors are isolatable.
Maximum angled Duo-di-angle bisectors are sub set of specific Duo-di-angle bisectors.And these Duo-di-angle bisectors are nothing but longest di-hypotenuses with maximum angles.
This can be denoted by $\mathrm{D}_{\text {max }}^{\mathrm{h}}$
In Fig.(2), BOD is a Duo di-angle bisector or duo di-hypotenuse of maximum length or angle. Also this line is conventionally called as diagonal.

Fig.4. Showing the different kinds of lines.
Further, it can also be called as diameter of maximum length
When the sides of a regular polygon are increased indefinitely or when the sides of a polygon tends to a point, all hypotenuses and the apothem fuse to form the conventional radius which is equal to apothem.

Diameters:

Diameters are lines in a figure which are very helpful in understanding the figure. In that sense diradius with maximum angles are diameters or regular polygons. And it can be denoted by $\mathrm{D}_{\mathrm{n}}^{\theta}$
Angle between the radii of a diameter, $D_{n}^{\theta_{1}}=\frac{n}{2} \times \frac{2 \pi}{n}$
when n is an even number $D_{n}^{\theta_{1}}$ will be equal to π
Conversely, any two radii that have an angle equal to π, in a regular polygon of even number of sides, are diameters.

Angle between the radii when n is an odd number is $D_{n}^{\theta_{2}}=\frac{(n-1)}{2} \times \frac{2 \pi}{n}$
Conversely, all radii that have an angle equal to $\frac{(n-1)}{2} \times \frac{2 \pi}{n}$, in a regular polygon of odd number of sides, are diameters.
The diameters that have maximum length are di-hypotenuse or duo di-angle bisectors. And the diameters that have minimum length are di-apothems.

Moreover, When n tends to infinity, the consequent figure will be a circle, hence all diameters merge to form a conventional diameter which is always equal to di - apothem.
Mathematically, $\lim _{n \rightarrow \infty} \frac{\pi(n-1)}{n}=\pi$
And the length of diameter $\lim _{\mathrm{n} \rightarrow \infty} D_{\mathrm{n}}^{\theta}=\lim _{\mathrm{n} \rightarrow \infty} \frac{2 \mathrm{R}_{\mathrm{a}}}{[\cos \theta]}$; here absolute value of $\cos \theta$ is considered.
$=\frac{2 \mathrm{R}_{\mathrm{a}}}{\left[\lim _{\mathrm{n} \rightarrow \infty} \cos \theta\right]}$
As n tends to infinity θ tends to π,
$=\frac{2 \mathrm{R}_{\mathrm{a}}}{[\cos \pi]}$
$=2 \mathrm{R}_{\mathrm{a}}$
$=$ Twice the radius
2.0.9. Definition of angle of a regular polygon (Two dimensional):- The angle is the measure of rotation of a given ray about its initial point. Here Initial side is positive side of X -axis and vertex of the angle is the origin of the co-ordinate axis.

The angle can also be defined as the space subtended by the segment of the perimeter of a regular polygon, up to its in-center limited between the two radii. It is usually measured from anti-clockwise direction. The measurement of an angle is conventional as in degrees and scientific as in radians. The measurement of an angle does not comply with the concept of angle because length and amount of space bounded by the specified limits of angle are immaterial to the measurement of an angle. Hence radius of angle of a circle used for representation of an angle will always be a constant.

As usual, all regular polygons in this case are considered as a set of concentric regular polygons. Its corresponding radii of each polygons are equal and constants. Whereas, in case of a circle, all radii and diameters are equal and constant. Hence hands of the angle will also be equal. In case of a regular polygons other than a circle, hands of the angle may be different and periodically equal.
Also, angle subtended by equal segments of a perimeter in a regular polygon are not equal always, except in case of a circle.

For example, the angle subtended by some segment at the vertex which includes both the adjacent sides of the vertex will not be equal to the same length on other side of the vertex.
Segment (arc) of circumference of a regular polygon has variable radii except the segment of (arc) a circle. Hence radius of curvature of segment of circumference is variable whereas the radius of curvature of segment of a circle is equal w.r.t the corresponding circle.

Therefore, angle of a regular polygon is measured from the positive X -axis in anti-clockwise direction.
Circular and polygonal angle are denotable as shown in Fig (5)

Fig. 5
2.1.0. The relation between apothem and perimeter of a regular polygon.

Till now conventional π is used as the unit of angle. In this section an effort is made for generalized representation of the angle.

Let $\mathrm{ABCD} \ldots$ be a regular polygon of n number of sides $\mathrm{Fig}(6), \mathrm{O}$ be its center, OP_{1} be its apothem drawn on to the side. Let l be the length of each side.

Here, OP_{1} is the apothem of the corresponding side AB , and R_{a} is its length. Also let l be the length of each side.
$A, B, C \cdots$ denote vertices and $\angle A, \angle B, \angle C \cdots$ denote the corresponding interior angles at the vertices of the regular polygon.
The angle subtended by the side at the centre of the regular polygon is $\theta_{\mathrm{n}}, \mathrm{n}$ indicates the number of sides.
by which total angle is divided by to get the angle. i. e., $\angle O A B=\frac{2 \pi}{n}=\theta_{n}$
And, $\angle \mathrm{P}_{1} O B=\frac{\theta_{\mathrm{n}}}{2}$, which is the angle between apothem and largest hypotenuse.

Fig.(6): A typical regular polygon of \mathbf{n} number of sides
i.e., $\angle A O B=\angle B O C=\angle C O D=\cdots=\frac{\text { Total angle of the circle }}{\text { number of sides of the regular polygon }}$
$=\frac{\text { Total angle of the circle }}{\text { number of sides of the regular polygon }}$
$=\frac{2 \pi}{n}$ or $\frac{360^{\circ}}{n}$ or $\frac{400 \mathrm{grd}}{n}$
If $\frac{2 \pi}{n}$ or $\frac{360^{\circ}}{n}$ or $\frac{400 \mathrm{grd}}{n}$ is denoted by θ_{n}
Then $\theta_{n}=\frac{2 \pi}{n}$ or $\frac{360^{\circ}}{n}$ or $\frac{400 \mathrm{grd}}{n}$
Further $\frac{1}{2} \angle A O B=P_{1} O B$
Accordingly, $\frac{\theta_{n}}{2}=\frac{\pi}{n}$ or $\frac{180}{n}$ or $\frac{200 \mathrm{grd}}{n}$
Further, $\angle O P_{1} B=\angle O P_{2} C=\angle O P_{3} D=\cdots=\angle O P_{n} Z=$ A right angle

2.1.1.Theorem-1

The ratio of perimeter of a plane convex regular polygon to its maximum angled Di -apothem is a constant. This universal constant can be called as PIEN (pi,en) and symbolically it can be written as $\boldsymbol{\pi}_{\boldsymbol{n}}^{a}$ Note- The ratio of perimeter of a regular polygon to its Apothem or to its Di-apothem is also constant.
Here, superscript a implies that π_{n} is derived w.r.t apothem and n indicates the number of sides of the regular polygon to which pi refers to. For example, when the regular polygon is an equilateral triangle π_{n}^{a} is written as π_{3}^{a}, for a square π_{4}^{a}, and so on. Also, n which denotes the number of sides of a regular polygon is $\in N \geq 3$, which is the set $=\{3,4,5, \cdots, n\}$
and θ_{n} is the angle subtended by a side of the regular polygon. Here also the subscript n indicates the number of sides of the regular polygon. n starts from 3 because the minimum number of sides required to make a closed plane figure is 3 . The reason for retaining the subscript n of θ is to recognize the divisor of the total angle of the circle from which θ is obtained.

2.1.2. Derivation of mathematical expression for π_{n}^{a}

Since apothems are perpendiculars drawn on the sides of the regular polygon from its centre, the angles $\angle O P_{1} A, \angle O P_{1} B, \angle O P_{2} B, \angle O P_{2} C \ldots$ are right angles Fig. 6.
Let P be the perimeter of a plane convex regular polygon of n number of sides.
Then. $\mathrm{P}=n l----------(4)$
With reference to the Fig.(1), the angle between the side and apothem is a right angle.
Then length of a side, $l=2\left(R_{a} \tan \left(\frac{\theta_{n}}{2}\right)\right)$; a general equation w.r.t.the triangle $O A B$,
above equation can be written as
$l=2\left(R_{a} \tan \left(\frac{\theta_{n}}{2}\right)\right)$
Substituting this relation of l in (4) we have
$P=n\left(2 R_{a}\right) \tan \left(\frac{\theta_{n}}{2}\right)$
Since $2 R_{a}$ is equal to the Di-apothem of maximum angle, which is denoted by $D_{\text {max }}^{a}$, above equation can be written as
$P=n D_{\text {max }}^{a} \tan \left(\frac{\theta_{n}}{2}\right)$
According to the theorem 1.
$\pi_{n}^{a}=\frac{\text { Perimeter of regular polygon }}{\text { Maximum angled Diapothem }}$
$=\frac{n D_{\text {max }}^{a} \tan \left(\frac{\theta_{n}}{2}\right)}{D_{\text {max }}^{a}} \pi_{n}^{a}=n \tan \left(\frac{\theta_{n}}{2}\right)$
When the unit of angle is π, (5) will be, $\pi_{n}^{a}=n \tan \left(\frac{\pi}{n}\right)$
When the unit of angle is expressed in degrees, $\pi_{n}^{a}=n \tan \left(\frac{180}{n}\right)$
And so on
Thus derived.
Table-1:
Table showing the different values of π_{n}^{a} for different values of n

n	$n \tan \left(\frac{\theta_{n}}{2}\right)$	$\frac{n \tan \left(\frac{\theta_{n}}{2}\right)}{\pi}$
1	2	3
3	5.196152423	1.653986686
4	4	1.273239545
5	3.632712640	1.156328347
6	3.464101615	1.102657791
7	3.371022332	1.073029735
8	3.313708499	1.054786175
9	3.275732108	1.042697915
10	3.249196962	1.034251515
10^{2}	3.142626604	1.000329117
10^{3}	3.141602989	1.00000329
10^{4}	3.141592757	1.000000033
10^{5}	3.141592655	
\vdots		
10^{n}		Value tend to 1

It is true that as the number sides of a regular polygon increase indefinitely, the regular polygon approximates to a circle. Hence the value of π_{n}^{a} tends to conventional π.
Mathematically, $\quad \lim _{n \rightarrow \infty} n$ tan $\left(\frac{\theta_{n}}{2}\right)=$ conventional π
Note: Conventional π means the present value of π.
Therefore, conventional $\pi=\pi_{\infty}^{a}$
Note: The symbol π when written without superscript and subscript may be considered as conventional pi.
2.1.3.The relation between Di-hypotenuse of maximum angle or length (Maximum angled Duo-di-angle bisectors) and perimeter of a regular polygon.

Theorem-2:
The ratio of perimeter of a plane convex regular polygon to its longest di-hypotenuse (Maximum angled Duo-di-angle bisectors) is a constant.
This universal constant can be called as PIEN H-MAX (pi,en, ā ch max) and symbolically it can be written as $\pi_{n}^{h-m a x}$
Derivation of mathematical expression for $\boldsymbol{\pi}_{\boldsymbol{n}}^{\boldsymbol{h}-\boldsymbol{m a x}}$:
Let P be the perimeter of a regular polygon of n number of sides
Then the mathematical equation for the perimeter of regular polygon will be , $P=n l$
$\triangle A O B$ is an isosceles triangle. Fig(2) here OA and OB are typical longest hypotenuses
Then, $l=2 R_{h} \sin \left(\frac{\theta_{n}}{2}\right)$
Then (5) can be written as
$P=n\left(2 R_{h}\right) \sin \left(\frac{\theta_{n}}{2}\right)$
Now, according to the theorem 2.
$\pi_{n}^{h-\max }=\frac{\text { Perimeter of regular polygon }}{\text { longest di }- \text { hypotenuse }}$
$=\frac{n D_{\max }^{h} \sin \left(\frac{\theta_{n}}{2}\right)}{D_{\max }^{h}}$
$\pi_{n}^{h-\max }=n \sin \left(\frac{\theta_{n}}{2}\right)------(6)$
When the unit of angle is π, (6) will be, $\pi_{n}^{h-\max }=n \sin \left(\frac{\pi}{n}\right)$
When the unit of angle is degree, $\pi_{n}^{h-\max }=n \sin \left(\frac{180}{n}\right)$

Table2: Table showing the different values of $\pi_{n}^{h-\max }$ for different values of n

n	$n \sin \left(\frac{\theta_{n}}{2}\right)$	$\frac{n \sin \left(\frac{\theta_{n}}{2}\right)}{\pi}$
1	2	3
3	2.598076211	0.826993343
4	2.828427125	0.900316316
5	2.938926261	0.935489284
6	3	0.954929659
7	3.037186174	0.966766385
8	3.061467459	0.974495358
9	3.07818129	0.979815536
10	0.983631643	0.983631643
10^{2}	3.141075908	0.999835515
10^{3}	3.141587486	0.999998355
10^{4}	3.141592602	0.999999984
10^{5}	3.141592653	
\vdots		
10^{n}		Value tend to 1

2.1.4.Theorem -3: A general theorem

The ratios of perimeters of a plane convex regular polygons to their diameters are constants.
This can be denoted by $\pi_{n}^{R_{i}}$. It can also be written as π_{n}^{θ}, since θ is a significant value that is required to find the length of the required lines and represents the uniqueness of its position. Mathematical description for the above theorem.

We already know that the length of the unique line in a right triangle in a regular polygon is,
$R_{i}=\frac{R_{a}}{\cos \theta}$
Then opposite side of the triangle is, $l_{i}=R_{i} \times \sin \theta$
$=\frac{R_{a}}{\cos \theta} \times \sin \theta$
$l_{i}=R_{a} \times \tan \theta$
Then, $\frac{l}{2}=l_{i}+\left(\frac{l}{2}-l_{i}\right)$
Accordingly, $\frac{l}{2}=R_{a} \tan \theta+\left\{R_{a} \tan \left(\frac{\theta_{n}}{2}\right)-R_{a} \tan \theta\right\} \quad \frac{l}{2}=R_{a} \tan \left(\frac{\theta_{n}}{2}\right)$ And, l

$$
=2 R_{a} \tan \left(\frac{\theta_{n}}{2}\right)
$$

As usual, Perimeter of a regular polygon, $P=n l$
Substituting the expression for l in the above equation we have,
$P=2 n R_{a} \tan \left(\frac{\theta_{n}}{2}\right)$
We know that, $D_{n}^{\theta}=\frac{2 R_{a}}{\cos \theta}$
In view of theorem 3 we have,
$\frac{P}{D_{n}^{\theta}}=\frac{2 n R_{a} \tan \left(\frac{\theta_{n}}{2}\right)}{\frac{2 R_{a}}{\cos \theta}}$
$\frac{P}{D_{n}^{\theta}}=n \tan \left(\frac{\theta_{n}}{2}\right)(\cos \theta)$
Since $\frac{P}{D_{n}^{\theta}}=\boldsymbol{\pi}_{\boldsymbol{n}}^{\boldsymbol{\theta}}$, above equation can be written as,
$\boldsymbol{\pi}_{\boldsymbol{n}}^{\boldsymbol{\theta}}=n \tan \left(\frac{\theta_{n}}{2}\right)(\cos \theta)$
We know that, $n \tan \left(\frac{\theta_{n}}{2}\right)=\pi_{n}^{a}$
Then, $\boldsymbol{\pi}_{\boldsymbol{n}}^{\boldsymbol{\theta}}=n \tan \left(\frac{\theta_{n}}{2}\right)(\cos \theta)-------(7)$
$\pi_{n}^{\theta}=\pi_{n}^{a}(\cos \theta)-------(8)$
When $\theta=0$; i.e., for lower bound of θ
$\boldsymbol{\pi}_{\boldsymbol{n}}^{\boldsymbol{\theta}}=\pi_{n}^{a}(\cos \theta)$
$\boldsymbol{\pi}_{\boldsymbol{n}}^{\boldsymbol{\theta}}=\pi_{n}^{a}$
And, when $\theta=\left(\frac{\theta_{n}}{2}\right)$ or $\left(\frac{\pi}{n}\right)$,i.e., for upper bound of θ
$\boldsymbol{\pi}_{\boldsymbol{n}}^{\boldsymbol{\theta}}=n\left(\sin \left(\frac{\theta_{n}}{2}\right)\right)$
Case Study:

1. When $n=3, \quad$ it is an equlateral triangle; and let $\theta=0$

Then, $\pi_{n}^{\theta}=n \tan \left(\frac{\theta_{n}}{2}\right)(\cos \theta)$
When $\theta=0 ; \pi_{n}^{\theta}$ will be $=\pi_{n}^{a}$
Also, by substituting the value of θ and the value of $\frac{\theta_{n}}{2}$ in radians, in the above equation we get,
$\pi_{n}^{0}=3 \tan \left(\frac{\pi}{3}\right)(\cos 0)$
$\pi_{3}^{0}=3 \sqrt{3}$
2. When $n=3$; and let $\theta=30^{\circ}$
$\pi_{n}^{\theta}=n \tan \left(\frac{\theta_{n}}{2}\right)(\cos \theta)$
$=3 \tan \left(\frac{180}{3}\right)(\cos 30)$
$=3 \sqrt{3}\left(\frac{\sqrt{3}}{2}\right)$
$\pi_{n}^{30^{\circ}}=4.5$
This means that the length of the perimeter of this triangle i.e., equal to 4.5 times that of hypotenuse that can be drawn at 30°.
2. Let, $n=3$; and $\theta=45^{\circ}$

Then, $\boldsymbol{\pi}_{\boldsymbol{n}}^{\boldsymbol{\theta}}=n \tan \left(\frac{\theta_{n}}{2}\right)(\cos \theta)$
$=3 \tan \left(\frac{180}{3}\right)(\cos 45)$
$=\frac{3}{\sqrt{2}}$
3. When $n=3$; and let $\theta=60^{\circ}$

Then, $\pi_{n}^{60^{\circ}}=3 \tan \left(\frac{180}{3}\right)(\cos 60)$
$=\pi_{3}^{0}\left(\frac{1}{2}\right)$
$=3 \sqrt{3}\left(\frac{1}{2}\right)$
$=\frac{3 \sqrt{3}}{2}$
$=3 \sin 60$
This result is also obtainable directly from (8) as following
$\boldsymbol{\pi}_{\boldsymbol{n}}^{60^{\circ}}=3 \tan \left(\frac{180}{3}\right)(\cos 60)$
$=3\left(\frac{\sin 60}{\cos 60}\right)(\cos 60)$
$=3 \sin 60$
$=2.598076$
When $n=3$, the value of π_{n}^{θ} varies from $3 \sqrt{3}$ to $\frac{3 \sqrt{3}}{2}$ for $\left[\frac{\pi}{4} \geq \theta \geq 0\right]$

1. For example, when $n=4$ and $\theta=0$, the value of semiperimeter will be
$\pi_{n}^{\theta}=n \tan \left(\frac{\theta_{n}}{2}\right)(\cos \theta)$
$=n \tan \left(\frac{\theta_{n}}{2}\right)$
$=\pi_{n}^{a}$
$\pi_{n}^{a}=n \tan \left(\frac{\theta_{n}}{2}\right)$
$=n \tan \left(\frac{\pi}{4}\right)$
$\pi_{4}^{a}=n$
$=4$
2. When $n=4 ; \theta=30^{\circ}$
$\boldsymbol{\pi}_{\boldsymbol{n}}^{\boldsymbol{\theta}}=n \tan \left(\frac{\theta_{n}}{2}\right)(\cos \theta)$
$=n \cos 30$
$=4 \times 0.866025$
$=3.464102$
3. When $n=4 ; \theta=45^{\circ}$

When θ_{n} will be $=90^{\circ}$; since θ_{n} is the angle subtended by a side at the center.
$\boldsymbol{\pi}_{\boldsymbol{n}}^{\boldsymbol{\theta}}=n \tan \left(\frac{\theta_{n}}{2}\right)(\cos \theta)$
$=\frac{4}{\sqrt{2}}$
$=2 \sqrt{2}$
When $n=4$, the value of π_{n}^{θ} varies from $2 \sqrt{2}$ to 4 for $\left[\frac{\pi}{4} \geq \theta \geq 0\right]$
Similarly, value of π_{n}^{θ} can be found for subsequent values of n

2.1.5. Applications of $\pi_{n}^{\boldsymbol{\theta}}$:

To find the perimeter of a regular polygon:
If the perimeter of a regular polygon is denoted by P_{n} where n denotes the number of sides of the polygon.
Then, $P_{n}=2 \pi_{n}^{\theta} R_{i}^{\theta}-----$-(9)
Proof: Given, $P_{n}=2 \pi_{n}^{\theta} R_{i}^{\theta}$
$=2 n \tan \left(\frac{\theta_{n}}{2}\right)(\cos \theta) R_{i}^{\theta}$
$=n\left[\frac{2\left(\frac{l}{2}\right)}{R_{a}}\right](\cos \theta) R_{i}^{\theta}$
$=n\left(\frac{l}{R_{a}}\right) \times \frac{R_{a}}{R_{i}^{\theta}} \times R_{i}^{\theta}$
$=n l$
Thus proved.
At simplified terms and w.r.t apothem perimeter of a regular polygon can be written as
$P_{n}=2 \pi_{n}^{a} R_{a}------(10)$

2.1.6. To find the area of a regular polygon.

If the area of a regular polygon is denoted by A_{n}, then $A_{n}=\pi_{n}^{\theta}(\cos \theta)\left(R_{i}^{\theta}\right)^{2}--------(11)$
Proof:
Given, $A_{n}=\pi_{n}^{\theta}(\cos \theta)\left(R_{i}^{\theta}\right)^{2}$
$=\left[n \tan \left(\frac{\theta_{n}}{2}\right)(\cos \theta)\right](\cos \theta)\left(R_{i}^{\theta}\right)^{2}$
$=\left[n\left(\frac{l}{2 R_{a}}\right)\left(\frac{R_{a}}{R_{i}^{\theta}}\right)\right](\cos \theta)\left(R_{i}^{\theta}\right)^{2}$
$=\frac{n l(\cos \theta) R_{i}^{\theta}}{2}$
$=\frac{n l R_{a}(\cos \theta)}{2(\cos \theta)} ;$ since $R_{i}^{\theta}=\frac{R_{a}}{\cos \theta}$
$=\frac{n l R_{a}}{2}$
$\frac{l}{2}$
$\frac{l}{2}$ is half of the base of the isosceles triangle formed when two closest vertices are joined to the center, also it is half of a side of the regular polygon and R_{a} will be the height of this triangle, Hence $\frac{l}{2} R_{a}$ is the area of this triangle. Further , n is the numberof sides which is also equal to number of isosceles triangles in a regular polygon.
Consequently, product of n and $\left(\frac{l}{2} R_{a}\right)$ will be the area of the regular polygon.
$=n\left[\left(\frac{l}{2}\right) R_{a}\right]$
$A_{n}=n \times$ area of the triangle formed by the sides of the regular polygon with the centre
Thus proved.
At simplified terms (11) can be written as $A_{n}=\pi_{n}^{a} R_{a}^{2}-------$ (12)
Example1: Apothem of an equilateral triangle is 1 m find the perimeter, area, also find perimeter and area w.r.t
the radius $R_{i}^{\theta}=R_{i}^{30}, R_{i}^{45}, R_{i}^{60}$
Data: $R_{a}=1 \mathrm{~m}$
$\frac{\theta_{n}}{2}=\frac{\pi}{3}$, since figure is an equilateral triangle. and $\theta=0$
Perimeter of the triangle can be found by using (9):
i.e., $P_{n}=2 \pi_{n}^{\theta} R_{i}^{\theta}$
$P_{3}=2 \pi_{3}^{a} R_{a} ;$ since radius is an apothem and $n=3$.
$=2 \times 3 \tan \left(\frac{\pi}{3}\right)$
$=10.3923 \mathrm{~m}$
Area of the triangle can be found by using (11) :
i.e, $A_{n}=\pi_{n}^{\theta}(\cos \theta)\left(R_{i}^{\theta}\right)^{2}$

Since given radius is an apothem, θ will be $=0$
Cosequently, above equation will be, $A_{n}=\pi_{n}^{a}\left(R_{a}\right)^{2}$
Also, given that $R_{a}=1 \mathrm{~m}$
Hence, $A_{n}=\pi_{n}^{a}$
$=n \tan \left(\frac{\pi}{3}\right) m^{2}$
$=5.196 \mathrm{~m}^{2}$
Further magnitude of $R_{i}^{30}=\frac{R_{a}}{\cos \theta}$
$=\frac{1}{\cos 30}$
$R_{i}^{30}=1.1547 \mathrm{~m}$
Then, $A_{n}=\pi_{n}^{\theta}(\cos \theta)\left(R_{i}^{\theta}\right)^{2}$
$=\pi_{3}^{30}(\cos 30)\left(R_{i}^{30}\right)^{2}$
$=3 \tan \left(\frac{\pi}{3}\right)(\cos \theta)^{2}\left(R_{i}^{30}\right)^{2}$
$=3 \times(1.732) \times(0.866)^{2} \times(1.1547)^{2}$
$=5.196 \mathrm{~m}^{2}$
Similarly, we get the same result for $R_{i}^{\theta}=R_{i}^{45}$ and R_{i}^{60}
Example 2:
Find the perimeter and area of the pentagon whose line joining the centre and the vertex is 2 cm .
Given that, $\theta_{n}=\frac{\pi}{5}$; since it is the line joining the centre and the vertex. Also, $R_{i}^{\theta}=2 \mathrm{~cm}$ and it is a
largest radius.
$=2 \pi_{n}^{h-\max } R_{i}^{\max }$
$=2 \times 5 \times \sin \left(\frac{\pi}{5}\right) \times 2$
$=11.75571$
Or
$R_{i}^{\theta}=\frac{R_{a}}{\cos \theta}$
$R_{a}=R_{i}^{\theta} \cos \theta$
$=2 \cos \left(\frac{\pi}{5}\right)$
$=1.618034$
$P_{3}=2 \pi_{5}^{a} R_{a}$
$=2 \times 3.632713 \times 1.618034$
$=11.75571$
Similarly, area and perimeter can be found for all regular polygons.

2.1.7. Equation for the area of a circle

Area of a regular polygon is generally given by $A_{n}=\pi_{n}^{a}\left(R_{a}\right)^{2}$
as $n \rightarrow \infty, \pi_{n}^{a}$ will be $=\pi, R_{a}=r$
consequently, area of the circle will be $=\pi r^{2}$

2.1.8.Perimeter of a regular polygon exceeding the perimeter of the in-circle.

Perimeter of a regular polygon is, $P_{n}=2 \pi_{n}^{\theta} R_{i}^{\theta}$
$=2 n \tan \left(\frac{\theta_{n}}{2}\right)(\cos \theta) R_{i}^{\theta}$
And, perimeter of a circle is $P=2 \pi R_{a}$
Total perimeter of regular polygon exceeding the perimeter of a circle is,$P_{n}-P$
If this difference is denoted $P_{(n-\infty)}$ we have, $P_{(n-\infty)}=P_{n}-P$
$P_{(n-\infty)}=2 \pi_{n}^{\theta} R_{i}^{\theta}-2 \pi R_{a}$
$=2 R_{a}\left(\frac{\pi_{n}^{\theta}}{\cos \theta}-\pi\right)$
$=2 R_{a}\left[\left(n \tan \left(\frac{\theta_{n}}{2}\right)\right)-\pi\right]$
$P_{(n-\infty)}=2\left(\pi_{n}^{a}-\pi\right) R_{a}-----------$ (13)
Example: side of a square is 2 units and radius of a circle is 1 units find the difference of their perimeters.
Solution- $P_{(n-\infty)}=2\left(\pi_{n}^{a}-\pi\right) R_{a}$
$=2(4-3.1416)$
$=1.7168$ units

2.1.9.Area of a regular polygon exceeding the area of the in-circle.

Area of a regular polygon is, $A_{n}=\pi_{n}^{\theta}(\cos \theta)\left(R_{i}^{\theta}\right)^{2}$
$=\pi_{n}^{a}\left(R_{a}\right)^{2}$; when θ of cosine in the equation is cosidered as 0
And area of incircle is, $A_{\infty}=\pi\left(R_{a}\right)^{2}$
Then, $A_{n}-A_{\infty}=\pi_{n}^{a}\left(R_{a}\right)^{2}-\pi\left(R_{a}\right)^{2}$
$A_{n}-A_{\infty}=\left(\pi_{n}^{a}-\pi\right)\left(R_{a}\right)^{2}$
Also, $\lim _{n \rightarrow \infty}\left(\pi_{n}^{a}-\pi\right)\left(R_{a}\right)^{2}=0$
Example: Consider a square with apothem R_{a} and circle inscribed in it. Then the area of the shaded part is.

Fig 7: Area bounded between the circle and the square
$A_{s}=\pi_{4}^{a}\left(R_{a}\right)^{2}-\pi\left(R_{a}\right)^{2}$; If this area is denoted by , A_{s}
$=\left(\pi_{4}^{a}-\pi\right)\left(R_{a}\right)^{2}$
$=(4-\pi)\left(R_{a}\right)^{2}$
$\approx 0.858\left(R_{a}\right)^{2}$

1.2.0. Volume and surface area of a Isogonic tetrahedron (regular tetrahedron):

Regular tetrahedron can be considered as a pyramid or as semi-conics with a base of equilateral triangle.
$a-$ Edge length of the tetrahedron, Fig(8).
h - Height of the tetrahedron
r-Radius of the insphere that is tangent to the face
O - Incentre of this insphere
R_{a} - apothem of the base triangle.
A_{3} - area of the base triangle.

Fig 8: Tetrahedron shown with its different elements.

Known mathematical data ; $h=\frac{\sqrt{6} a}{3} ; \quad r=\frac{a}{\sqrt{24}}$
Ratio of r and h is, $\frac{r}{h}=\frac{\frac{a}{\sqrt{24}}}{\frac{\sqrt{6} a}{3}}$
$=\frac{1}{4}$
Cosequently, $r: h=1: 4$
Then Area of the base can be given by the equation , $A_{3}=\pi_{3}^{a}\left(R_{a}\right)^{2}-----(15)$
It is known that volume a pyramid is equal to the product of area of the base by the altitude.
Accordingly, volume of this pyramid will be,$V_{3}=\frac{1}{3} \pi_{3}^{a}\left(R_{a}\right)^{2} h------(15 a)$
And, Volume of this tetrahedron can also be written as ,
$V_{3}=\frac{4}{3} \pi_{3}^{a}\left(R_{a}\right)^{2} r$; since $h=4 r-----(16)$
For further simplification, relation between r and R_{a} is found as following.
Radius of the incircle that is tangential to the face is, $r=\frac{a}{\sqrt{24}}$

Fig. 9
And, $R_{a}=\frac{a}{2} \tan \frac{\pi}{6}$
$R_{a}=\frac{a}{2 \sqrt{3}}$
Consequently, $r: R_{a}=\left(\frac{\frac{a}{\sqrt{24}}}{\frac{a}{2 \sqrt{3}}}\right)$
$r: R_{a}=1: \sqrt{2}$
Hence, $R_{a}=\sqrt{2} r$
Volume of this tetrahedron, $V_{3}=\frac{4}{3} \pi_{3}^{a}\left(R_{a}\right)^{2} r$
$=\frac{4}{3} \pi_{3}^{a}(\sqrt{2} r)^{2} r$
$=\frac{8}{3} \pi_{3}^{a} r^{3}$
$=\frac{8}{3} \times 3 \sqrt{3} r^{3}$
$V_{3}=8 \sqrt{3} r^{3}------(17)$
Example.1: If radius of in-sphere of a regular tetrahedron is 1 units find the volume of the tetrahedron.
Solution $-V_{3}=8 \sqrt{3} r^{3}$
given, $r=1$
Then,$V_{3}=8 \sqrt{3}$
Also, $\frac{R_{a}}{h}=\frac{\frac{a}{2 \sqrt{3}}}{\frac{\sqrt{6} a}{3}}$
$\frac{R_{a}}{h}=\frac{1}{2 \sqrt{2}}$
$h=2 \sqrt{2} R_{a}-------(18)$
When (18) is replaced in (15a),
i.e., $V_{3}=\frac{1}{3} \pi_{3}^{a}\left(R_{a}\right)^{2} h$
$=\frac{1}{3} \pi_{3}^{a}\left(R_{a}\right)^{2}\left(2 \sqrt{2} R_{a}\right)$
$=\frac{2 \sqrt{2}}{3} \pi_{3}^{a}\left(R_{a}\right)^{3}$
$=\frac{2 \sqrt{2}}{3} \times 3 \sqrt{3}\left(R_{a}\right)^{3}$
$=2 \sqrt{6}\left(R_{a}\right)^{3}----(19)$

2.2.1. The ratio of volume of Regular tetrahedron and its in-sphere

Volume of insphere is $V_{s}=\frac{4}{3} \pi r^{3}$
Volume of tetrahedron that circumscribe the sphere and touch the surface at its centroid is
$V_{t}=8 \sqrt{3} r^{3}$
$\frac{V_{t}}{V_{s}}=\frac{\frac{8}{3} \pi_{3}^{a} r^{3}}{\frac{4}{3} \pi r^{3}}$
$=\frac{2 \pi_{3}^{a}}{\pi}$
$=3.308$
Example.1: If the radius of the in-sphere of an isogonic tetrahedron is 1 cm find the volume of the said tetrahedron.
Solution: By (17) we have volume of the isogonic tetrahedron is, $V_{3}=8 \sqrt{3} r^{3}$
$=8 \sqrt{3}$ cubic units
Example.2: If the slant edge length of the isogonic tetrahedron is $\sqrt{24}$ units find its volume and the volume of the in-sphere.
Solution: Given $a=\sqrt{24}, r=\frac{a}{\sqrt{24}}=\frac{\sqrt{24}}{\sqrt{24}}=1$
Then the volume of the in sphere is $=\frac{4}{3} \pi$ cubic units
Consequantly, $V_{3}=8 \sqrt{3} r^{3}$
$=8 \sqrt{3}$ cubic units
This is also solvable as following by using (19)
Given that slant edge is $\sqrt{24}$ units
Then the perimeter of the triangle of the faces will be $=3 \sqrt{24}$
Then the apothem R_{a} will be $=\frac{3 \sqrt{24}}{3 \sqrt{3}}$, since $3 \sqrt{3}=\pi_{3}^{a}$
Consequantly, $R_{a}=\sqrt{2}$
Given that, $V_{3}=2 \sqrt{6}\left(R_{a}\right)^{3}$
When the value of R_{a} is substiutted in the given equation we have
$V_{3}=8 \sqrt{3}$ cubic units
2.2.2. Surface area and volume of a closed cylinder of regular polygonal base and of height h.
a) General equation for the surface area of a closed cylinder of a regular polygonal base is

derived as following

Area of the 2 bases that are on either end of the polygonal cylinder is, $=2 \pi_{n}^{a}\left(R_{a}\right)^{2}$
Area of cylindrical surface is $=$ perimeter of the base \times height
Mathematically, Area of cylindrical surface is $=\left(2 \pi_{n}^{a} R_{a}\right) \times h$
Total surface area of such cylinder is $=2 \pi_{n}^{a}\left(R_{a}\right)^{2}+2 \pi_{n}^{a} R_{a} h$
If surface area of a cylinder of regular base is denoted by A_{n}^{c}, we have
$A_{n}^{c}=2 \pi_{n}^{a} R_{a}\left(R_{a}+h\right)-----(20)$
b) Volume of the closed cylinder with regular polygonal base

It is known that the area of the base is $=\pi_{n}^{a}\left(R_{a}\right)^{2}$
consequantly volume of such cylinder is $=\pi_{n}^{a}\left(R_{a}\right)^{2} h$; whence h is the height of the cylinder.
Example: Find the area and volume of the prism with equilateral base with following data.
Length of side of the base $=2$ units
Height of the prism $=4$ units
Solution :
Volume of the prism $=\pi_{n}^{a}\left(R_{a}\right)^{2} h$
To find R_{a}, the relation, $P_{3}=2 \pi_{3}^{a} R_{a}$, is used,
$6=2 \times 3 \sqrt{3} \times R_{a}$; since 6 is the perimeter of the triangle by data.
$R_{a}=\frac{1}{\sqrt{3}}$
Now, the volume of the prism is $=3 \sqrt{3} \times\left(\frac{1}{\sqrt{3}}\right)^{2} \times 4$
$=4 \sqrt{3}$ cubic units
Surface area $=2 \pi_{n}^{a} R_{a}\left(R_{a}+h\right)$
$=2 \times 3 \sqrt{3} \times \frac{1}{\sqrt{3}}\left(\frac{1}{\sqrt{3}}+4\right)$
$=2 \sqrt{3}+24$ square units
Check-This prism has 3 rectangular faces of length 4 units and breadth 3 units. Also it has 2 equilateral triangular faces of side 2 units
Total surface area of the Prism is $=3 \times$ area of rectangle $+2 \times$ area of triangle
$=3 \times 4 \times 2+2 \times \frac{2}{2} \times 2 \sin \left(\frac{\pi}{3}\right)$
$=24+2 \sqrt{3}$
Thus checked.

2.2.3. Some more general examples:

Surface area of a cylinder of square base is $A_{4}^{c}=2 \pi_{4}^{a} R_{a}\left(R_{a}+h\right)$
If $h=2 R_{a}$, we have,
$=2 \pi_{4}^{a} R_{a}\left(R_{a}+2 R_{a}\right)$
$=6 \pi_{4}^{a} R_{a}{ }^{2}$
$=6 \times 4 \times\left(\frac{a}{2}\right)^{2} ;$ since $\pi_{4}^{a}=4$ and $R_{a}=\frac{a}{2}$
$=6 a^{2}----(21)$
Similarly for cylinder of pentagonal base
$A_{5}=2 \pi_{5}^{a} R_{a}\left(R_{a}+2 R_{a}\right)$
$=6 \pi_{5}^{a} R_{a}{ }^{2}------(22)$
Generally, for a base of n number of sides and the height equal to $2 R_{a}$
$A_{n}=6 \pi_{n}^{a} R_{a}^{2}------(23)$
Since $2 R_{a}=a$; side of a cube, we have
$A_{n}=6 \pi_{n}^{a}\left(\frac{a}{2}\right)^{2}$
$=\frac{3}{2} \pi_{n}^{a} a^{2}$
When $n \rightarrow \infty$, above equation will be,
$=\frac{3}{2} \pi a^{2}$
Replacing $2 R_{a}$ for a , we have
$=6 \pi R_{a}{ }^{2}$

Fig.10:surface areas of cube and inscribed cylinder in the cube
For example when radius of the incribed cylinder is 1, surface area of the cylinder will be $=6 \pi$ sq units
And the surface area of the circumscribing cube will be $=6 \pi_{4}^{a}$ sq units
Further, general equation with a base of n number and height $h=b r$, i.e., height expressed in terms of r.
$A_{n}=2(b+1) \pi_{n}^{a} r^{2}----(24)$
Further, when n tends to infinity surface area of the figure will be,
$A_{\infty}=2(b+1) \pi r^{2}$
$=2 \pi r(r+h) ;$ since $r b=h$.

2.2.4. Surface area and Volume of a regular hexahedron (cube)

This is the basic reference figure that is considered as standard for all kinds of measurements of volumes.
Here volume and surface area are expressed in the form of the equation of sphere.
a-Edge length of the cube, Fig: 5 .
h - Height of the cube
$r-$ Radius of the insphere that is tangent to the face
O - Incentre of the insphere that is tangent to the face. In this case it is also the centre of the cube.
R_{a} - apothem of the base square.
$A_{4}=$ area of the base square.

Fig.11.

A cube can also be considered as the cylinder of square base with height equal to a side.

2.2.5. Volume of a cube :

We, know that volume of a cube is $V_{4}=a^{3}$
Since, edge length $a=2 r=2 R_{a}$, above equation will be
$V_{4}=(2 r)^{3}$
$=8 r^{3}$
Also, $V_{4}=8 R_{a}^{3}-----(25)$

Fig. 12.
There are 8 number of $r^{3} s$ in a cube.
2.2.6.A general equation for the volume of a cylinder of regular polygonal base:
$V_{n}^{c}=A_{n} h$; here superscript c indicates shape of the figure i.e,cylinder.
Substituting the relation of A_{n} in the above equation we have
$V_{n}^{c}=\pi_{n}^{a}\left(R_{a}\right)^{2} h------(26)$
When $h=b R_{a}$ above equation will be ; $V_{n}^{c}=b \pi_{n}^{a}\left(R_{a}\right)^{3}-----(27)$
In a special case i.e., when $b=2$ and $n=4$; then (27)will be
$V_{4}^{c}=2 \times \pi_{4}^{a}\left(R_{a}\right)^{3}-------(28)$
$=8\left(R_{a}\right)^{3}$
It is the volume of a cube.
Example :Find the volume of a regular pentagonal cylinder of whose side of base is 1 unit and height 3 units
$V_{5}^{c}=\pi_{5}^{a}\left(R_{a}\right)^{2} h$
$=5 \times \tan \left(\frac{\pi}{5}\right) \times\left(R_{a}\right)^{2} \times 3$
$V_{5}^{c}=10.8981 \times\left(R_{a}\right)^{2}$
By using (10)we can find R_{a}.
i.e., $R_{a}=\frac{5}{2 \times 5 \times \tan \left(\frac{\pi}{5}\right)}$
$=0.6882$
And value of $5 \times \tan \left(\frac{\pi}{5}\right)=3.6327$
Then, $V_{5}^{c}=3.6327 \times(0.6882)^{2} \times 3$
$=5.1616$ cubic units
2.2.7.Volume of a regular pyramid with square base and height equal to the side of the base:
.Conventional formula for finding the volume of pyramid is
$V_{\infty}^{P}=\frac{1}{3}$ Ah; where A is the area of the base and h is the height of the pyramid.

Substituting (12) for A in the above equation, we have, $V_{4}{ }^{p}$ $=\frac{1}{3} \pi_{n}^{a}\left(R_{a}\right)^{2} h$; subscript of V is 4 because
base is a square.
Since $h=2 R_{a}$ in a cube we have, $V_{4}^{P}=\frac{2}{3} \pi_{4}^{a}\left(R_{a}\right)^{3}$
2.2.8. Comparison of volumes of cube and regular pyramid of square base with height equal to the side of the base:
Volume of the cube is $V_{4}=A h$; since cube is a cylinder of square base with height equal to the side.
Volume of the pyramid of square base is $V_{4}^{p}=\frac{1}{3} A h$
Now the ratio of $\frac{V_{4}^{p}}{V_{4}}=\frac{\frac{1}{3} A h}{A h}$
$=\frac{\frac{2}{3} \pi_{4}^{a}\left(R_{a}\right)^{3}}{2 \pi_{4}^{a}\left(R_{a}\right)^{3}}$
$=\frac{1}{3}$
$=1: 3$
Further when n tends to infinity Pyramid will become a closed cone, $V_{\infty}^{p}=\frac{2}{3} \pi\left(R_{a}\right)^{3}---(30)$
Hence it is equal to volume of the hemisphere.
2.2.9.A general equation for the volume of a regular pyramid with a regular polygonal base: Conventional formula for the volume of pyramid is $V=\frac{1}{3} A h$; where A is the area of the base and h indicates height of the pyramid.
Formula derived for volume of pyramid in this article is , $V_{n}^{p}=\frac{1}{3} \pi_{n}^{a}\left(R_{a}\right)^{2} h------(31)$
Applying limits to (31), we get an equation to volume of cone i.e.,
$\lim _{n \rightarrow \infty} V_{n}^{p}=\lim _{n \rightarrow \infty}\left(\frac{1}{3} \pi_{n}^{a}\left(R_{a}\right)^{2} h\right)$
$=\frac{1}{3} \pi r^{2} h$

2.3.0.Surface area of a regular pyramid of polygonal base:

If surface area of the pyramid is denoted by A_{n}^{p}, then
$A_{n}^{p}=$ Area of the base + total area of the slant surfaces
$=\pi_{n}^{a}\left(R_{a}\right)^{2}+\pi_{n}^{a}\left(\sqrt{\left(R_{a}\right)^{2}+h^{2}}\right)$
$A_{n}^{p}=\pi_{n}^{a}\left(\left(R_{a}\right)^{2}+\left(\sqrt{\left(R_{a}\right)^{2}+h^{2}}\right)\right)$
Example: If side length of the base of the square pyramid is 2 units and height 3 units, find its surface area.
Solution: $A_{n}^{p}=\pi_{n}^{a}\left(\left(R_{a}\right)^{2}+\left(\sqrt{\left(R_{a}\right)^{2}+h^{2}}\right)\right)$
$8=2 \times 4 \times R_{a}$; ; here $\pi_{n}^{a}=4$
$R_{a}=1$
And, $\pi_{4}^{a}=4$
Then $A_{4}^{p}=4\left(1+\left(\sqrt{1+3^{2}}\right)\right)$
$=16.649$ sqr units

III. TRIGONOMETRIC APPLICATIONS OF π_{n}

Figure.13: Trigonometric angles w.r.t equilateral triangle.

3.0.1. Particulars, elements and required data w.r.t figure 13:

AHI - is an equilateral triangle circumscribing the circle of unit radius.
O - Is the centre of the in-circle and origin of co-ordinate axes X and Y also the centroid of the triangle AHI.
OE- Is the in-radius of in-circle and apothem of circumscribing equilateral triangle which is denoted by R_{a}. Also it is the variable radius of this triangle. In this case $O E=R_{a}=1$ unit or 1 rad. Accordingly, total length of the perimeter of the triangle is $2 \pi_{3}^{a}$ units $=6 \sqrt{3}$ units hence π_{3}^{a} units $=3 \sqrt{3}$ units or radians.
OP- is the moving radius, moving from OA in anti-clockwise direction and varying in magnitude from 2 units to 1 unit in length. Its value is absolute positive.
Determinant triangles - These are the triangles that have radii as their hypotinuses, absissas as their base and ordinate as their opposite side, for example OCP, OGP,OKP etc. are typical determinant triangles.
z - denotes the magnitude of the position of the moving radius $O P(a, b)$ w.r.t the circumferance of the equilateral triangle measured from $+X$ - axis, in the anti clockwise direction Fig(13).
$(-z)$ denotes the magnitude of the position of the moving radius from +X axis in the clockwise direction.
k - This denotes that a side is divided into k number of equal segments.
$P(a, b)$

- is a point on the circumferance, varying from A to F and its domain is definable as varying between $0 \leq z \leq \frac{4 \pi_{3}^{a}}{9}$ or $0 \leq z \leq \frac{4}{\sqrt{3}}$.
$P(-a, b)$: is a point on the circumf erance, varying from F to H, its domain is definable as varying between $\frac{4 \pi_{3}^{a}}{9} \leq z \leq \frac{2 \pi_{3}^{a}}{3}$ or $\frac{4}{\sqrt{3}} \leq z \leq 2 \sqrt{3} ;$
$P(-1, b)$: is a point on the circumference, varying from H to K, its domain is definable as varying between $\frac{2 \pi_{3}^{a}}{3} \leq z \leq \pi_{3}^{a}$ or $2 \sqrt{3} \leq z \leq 3 \sqrt{3}$; this domain belongs to II nd quadrant. Note that the points in this domain move towards X - axis perpendicularly.
$P(-1,-b)$: -is the point varying from K to I, its domain is definable as varying between $\pi_{3}^{a} \leq z$

$$
\leq \frac{4 \pi_{3}^{a}}{3}
$$

value of z varies from $3 \sqrt{3} \leq z \leq 4 \sqrt{3}$; this domain belongs to III rd quadrant and the points move away from X - axis perpendicularly towards I.k varies from

1 to $\frac{3}{4} P(-a,-b)$

$$
\text { - is the point varying from I to } N \text {, its domain is definable as varying between } \frac{4 \pi_{3}^{a}}{3}
$$

$\leq z$
$\leq \frac{14 \pi_{3}^{a}}{9}$; this domain belongs to III rd quadrant.
$P(a,-b)$ - It is the point on the circumferance varying from N to A, and this domain can be written as $\frac{14 \pi_{3}^{a}}{9} \leq z \leq 2 \pi_{3}^{a}$; This domain belongs to IV th quadrant
$O A$ - is the base of the $\triangle O A B$ and maximum radius within the triangle AHI, it's equal to $2 R_{a}$ at this position.
$\angle A O H-$ is the angle subtended by the side AH at the centre. And it is equal to $\frac{2 \pi_{3}^{a}}{3}$ rad or rad ${ }_{3}$.
$A P(\pm a, \pm b)$

- is the part of the perimeter of equilateral triangle with unit apothem,measuredfrom A and it is equal to z w.r.t.the respective quadrant and domain.
$\angle A O P(\pm a, \pm b)$ - is the angle subtended by the perimeter of the equlateral triangle at the centre of the triangle measured from OA in anti - clockwise direction. Magnitude of this angle is $\theta_{3}=z$ rad; segment of this angle is not uniform througout the perimeter of the triangle, it is defined within the limits of the domain as $\theta_{3}=z$
within the domain of $0 \leq z \leq 2 \sqrt{3}$ in the Ist quadrant.
$\angle P(a, b) A C-$ This angle is constant for all values of $P(a, b)$ and $O A$ is a constant equal to 2 .
And magnitude of angle equal to $\pi / 6$ in the conventional radian measure.

3.0.2. Opposite sides of the determinant triangles at different quadrants and domains:

Fig.14:
$\mathrm{P}(\mathrm{a}, \mathrm{b}) \mathrm{C}$ - is an opposite side of the determinant triangle $\mathrm{OCP}(\mathrm{a}, \mathrm{b})$ varying between A and F in the I st quadrant
and in the domain $0 \leq z$
$\leq \frac{4}{\sqrt{3}}$ here z takes any value from 0 to $2.3094 \ldots$, ; fig14 Then, the length of opposite side in the I st quadrant is,
$=z \sin \left(\frac{\pi}{6}\right)$
Then, $P(a, b) C=\frac{z}{2} ;$ since $\sin \left(\frac{\pi}{6}\right)=\frac{1}{2}$
$P(a, b) C=\frac{z}{2}-------(34)$
For example when $z=0 ;$ Opposite side $P(a, b) C=\frac{Z}{2}$ will be
$P(a, b) C=0$
When $z=\sqrt{3}$ value of,$P(a, b) C=\frac{z}{2}$ will be
$P(a, b) C=\frac{\sqrt{3}}{2}$
When $z=\frac{4}{\sqrt{3}}$ we have

$$
\begin{aligned}
& P(a, b) C=\frac{z}{2} \text { will be equal to } \\
& P(a, b) C=\frac{\frac{4}{\sqrt{3}}}{2} \\
& =\frac{2}{\sqrt{3}}
\end{aligned}
$$

Check for the above result:
It is known that length of the base of the triangle AOF (Fig.14) is 2 units and length of hypotenuse is $\frac{4 \pi_{3}^{a}}{9}$
$=\frac{4}{\sqrt{3}}$ units
Then the magnitude of opposite side, $O F=\sqrt{\frac{16}{3}-4}$
$=\frac{2}{\sqrt{3}}$
Thus checked.
3.0.3. Further, in the II nd quadrant same domain extends upto H i.e, $\frac{4}{\sqrt{3}} \leq z \leq 2 \sqrt{3}$; here z varies from $\frac{4}{\sqrt{3}}$ to $2 \sqrt{3} ;$ Fig. 15 .

Then $G P(-a, b)=z \sin \left(\frac{\pi}{6}\right)$
$G P(-a, b)=\frac{Z}{2}-----(35)$
For example when the magnitude of $A P(-a, b)$ is $2 \sqrt{3}$ magnitude of opposite side will be $G P(-a, b)=\frac{Z}{2}$
$=\frac{2 \sqrt{3}}{2}$
$=\sqrt{3}$
This $\sqrt{3}$ is the length of the opposite side of the triangle AKH, also half of the side HI.
This is the maximum length of the opposite side in the I st and II nd domains.

Fig. 15.
3.0.4. And in the II nd quadrant for the domain $2 \sqrt{3} \leq z \leq 3 \sqrt{3}$, here z varies from $2 \sqrt{3}$ to $3 \sqrt{3}$; and;Fig. 16.

The typical opposite side, $K P(-1, b)=\pi_{3}^{a}-z$
Here $z=A H+H P(-1, b)$
Since $A H$ is a constant equal to $2 \sqrt{3} ; z=2 \sqrt{3}+\operatorname{HP}(-1, b)$
Consequently, $H P(-1, b)=z-2 \sqrt{3}$
$H P(-1, b)=z-2 \sqrt{3}$
$\begin{aligned} H P(-1, b) & =z-2 \sqrt{3} \\ H P(-1, b) & =(z-2 \sqrt{3})\end{aligned}$
$H P(-1, b)=(z-2 \sqrt{3})$
For example, if the values of z are $2 \sqrt{3}, \frac{5 \sqrt{3}}{2}, 3 \sqrt{3}$, the values of $\operatorname{HP}(-1, b)$ will be

Fig. 16.
When $2=2 \sqrt{3} ; H P(-1, b)=(z-2 \sqrt{3})$
i.e., $H P(-1, b)=(2 \sqrt{3}-2 \sqrt{3})$
$=0$
Similarly when $z=\frac{5 \sqrt{3}}{2} \quad ; H P(-1, b)=(z-2 \sqrt{3})$
$=\frac{\sqrt{3}}{2}$
And when $z=3 \sqrt{3}, \quad ; H P(-1, b)=(z-2 \sqrt{3})$
$=\sqrt{3}$
Now the opposite side $K P(-1, b)=(3 \sqrt{3}-(2 \sqrt{3}+(z-2 \sqrt{3})))$
$=\sqrt{3}-(z-2 \sqrt{3})$
Opposite side $K P(-1, b)=(3 \sqrt{3}-z)------(37)$
Similarly the values of $K P(-1, b)$ to the values of $z=2 \sqrt{3}, 2.5 \sqrt{3}, 3 \sqrt{3}, \pi_{3}^{a}$ are,
For $z=2 \sqrt{3}$ or $k=\frac{3}{2}$ we have ; $K P(-a, b)=(3 \sqrt{3}-z)$
$=(3 \sqrt{3}-2 \sqrt{3})$
$=\sqrt{3}$
3.0.5. Further in the III rd quadrant, domain is definable as varying between $3 \sqrt{3} \leq z \leq 4 \sqrt{3} ; z$ varies $3 \sqrt{3}$ to $4 \sqrt{3}$; Fig. 17 .

Fig.17.
$-K P(-1,-b)=-\left(z-\pi_{3}^{a}\right)$

$$
\begin{array}{ll}
=(3 \sqrt{3}-z) & \\
-K P(-1,-b) & =(3 \sqrt{3}-z) \\
\text { Also, } & =(3 \sqrt{3}-z)
\end{array}
$$

For example when the value of $z=4 \sqrt{3}$
$-K P(-1,-b)=(3 \sqrt{3}-4 \sqrt{3})$
$=-\sqrt{3}$
2.06. Next in the III rd quadrant which consists the domain $4 \sqrt{3} \leq z \leq \frac{14}{\sqrt{3}}$; this domain varies between $4 \sqrt{3}$ to $\frac{14}{\sqrt{3}} \quad ;$ Fig. 18.

Fig. 18.
Here $4 \sqrt{3}$ is the length of AHI; $I P(-a,-b)=z-A H I=z-4 \sqrt{3}$
hence $A P(-a .-b)=A P(-a,-b)-I P(-a,-b)=(z-4 \sqrt{3})-2 \sqrt{3}$
Then , opposite side,$-L P(-a,-b)=[(z-4 \sqrt{3})-2 \sqrt{3}] \sin \left(\frac{\pi}{6}\right)$
$=\frac{[(z-4 \sqrt{3})-2 \sqrt{3}]}{2}$
$-L P(-a,-b)=\frac{[(z-6 \sqrt{3})]}{2}$
For example when, $z=\frac{14 \sqrt{3}}{3}$
$-L P(-a,-b)=\frac{\left[\left(\frac{14 \sqrt{3}}{3}-6 \sqrt{3}\right)\right]}{2}$
$=-\frac{2}{\sqrt{3}}$
3.0.7. And finally the IV th quadrant that consists the domain, $\frac{14}{\sqrt{3}} \leq z \leq 6 \sqrt{3}$ here z varies from $\frac{14}{\sqrt{3}}$ to $6 \sqrt{3} ;$ fig. 19.

Fig. 19.
$-R P(a,-b)=\left[\left(z-\frac{14}{\sqrt{3}}\right)-\frac{4}{\sqrt{3}}\right] \sin \left(\frac{\pi}{6}\right)$
$=\frac{\sqrt{3} z-18}{2 \sqrt{3}}$
$-R P(a,-b)=\frac{z-6 \sqrt{3}}{2}$
When $z=6 \sqrt{3}$
$-R P(a,-b)=\frac{6 \sqrt{3}-6 \sqrt{3}}{2}$
$=0$

3.0.8. Adjacent sides of determinant triangles at different quadrants and domains:

Adjacent side OC exists in the first quadrant and its domain is
$0 \leq z \leq \frac{4}{\sqrt{3}}$ here z takes any value from 0 to $2.3094 \ldots$; Fig. 14
Here OC is a typical adjacent side that varies between A and O.
A typical adjacent side, $O C=O A-\left[A P(a, b) \cos \left(\frac{\pi}{6}\right)\right] ;$ Fig. 14 .
i.e., $O C=2-\left[z \cos \left(\frac{\pi}{6}\right)\right]$
$O C=\frac{4-\sqrt{3} z}{2}--------$

3.0.9. Values of adjacent side at some of significant positions:

When $z=0$
Applying (41)we have $O C=\frac{4-\sqrt{3} z}{2}$
$=\frac{4-0}{2}$
$=2$
When $z=\sqrt{3}$
$O C=\frac{1}{2}$
When $z=\frac{4}{\sqrt{3}}$
$O C=0$
3.1.0. Further, in the II nd quadrant and domain, $\frac{4}{\sqrt{3}} \leq z \leq 2 \sqrt{3}$, the typical adjacent side is $-O G$ that varies from O to K.; Fig(15).
i.e, $-O G=2-\left[A P(-a, b) \cos \left(\frac{\pi}{6}\right)\right]$
$=2-[A P(-a, b)] \frac{\sqrt{3}}{2}$
$=2-\frac{z \sqrt{3}}{2}$
$-O G=\frac{4-z \sqrt{3}}{2}------(42)$
For example when $z=\frac{4}{\sqrt{3}}$; (42) will be
$-O G=\frac{4-\left(\frac{4}{\sqrt{3}}\right) \sqrt{3}}{2}$
$-O G=0$
Also when $z=2 \sqrt{3}$
(42) will be equal to -1
3.1.1. In the same quadrant another domain i.e $2 \sqrt{3}<z \leq 3 \sqrt{3}$ or π_{3}^{a} exists, and changes its direction by, $\frac{\pi}{3}$,w.r.t the side $A H$ and X axis, these points move perpendicularly and collinearly upto X axis, consequently value of adjacent side remains constant. Fig. 16
i.e, $-O K=2-(A H) \cos \left(\frac{\pi}{6}\right)$
$=2-2 \sqrt{3}\left(\frac{\sqrt{3}}{2}\right)$
$-O K=-1------(43)$
3.1.2. Also in the III rd quadrant same condition continues, i.e, in the domain
$3 \sqrt{3}<z \leq \frac{4 \pi_{3}^{a}}{3}$, points of this domain keep perpendicularity and collinearity with
X axis up to the vertex I.Fig. 17.
$-O K=2-(A I) \cos \left(\frac{\pi}{6}\right)$
Then, - OK $=-1------$ - (44)
3.1.3. Further, in the III rd quadrant base of the determinant triangle begins to increase from
-1 to 0 in the domain $4 \sqrt{3} \leq z \leq \frac{14}{\sqrt{3}}$ which extends up to N. Fig. 18
$-O L=\left[(z-6 \sqrt{3}) \cos \left(\frac{\pi}{6}\right)\right]+2$
$-O L=\frac{\sqrt{3} z-14}{2}----(45)$
When, $z=4 \sqrt{3}$
$-O L=-1$
When $z=\frac{14}{\sqrt{3}}$
$-O L=\frac{\sqrt{3} z-14}{2}$
$=\frac{\sqrt{3} \frac{14}{\sqrt{3}}-14}{2}$
$=0$
3.1.4. Finally in the IV th quadrant and in the domain $\frac{14}{\sqrt{3}} \leq z \leq 6 \sqrt{3}$; fig.19.

The value of the base of the determinant triangle will be, OR $=O A-\left[A P(a,-b) \cos \left(\frac{\pi}{6}\right)\right]$
$-O R=2-\left[(6 \sqrt{3}-z) \cos \left(\frac{\pi}{6}\right)\right]$
$-O R=\frac{\sqrt{3} z-14}{2}---------(46)$

When, $z=\frac{14}{\sqrt{3}}$
$-O R=\frac{\sqrt{3} z-14}{2}$
$=\frac{\sqrt{3}\left(\frac{14}{\sqrt{3}}\right)-14}{2}$
$=0$
And when $z=6 \sqrt{3}$
$-O R=\frac{\sqrt{3} z-14}{2}$
$=\frac{\sqrt{3}(6 \sqrt{3})-14}{2}$
$=2$
3.1.5. Hypotenuses (radii) of determinant triangles at different quadrants and domains:
$P(a, b) O$ - is an hypotenuse or variable radius of the determinant triangle OCP varying between A and F in the I st quadrant and in the domain $0 \leq z \leq \frac{4}{\sqrt{3}}$;Fig. 14 .
All hypotenuses are considered as having absolute values.
Now a typical hypotenuse or radius, $O P(a, b)=\sqrt{O C^{2}+P C^{2}}$
From (32) and
$=\sqrt{\left(\frac{4-\sqrt{3} z}{2}\right)^{2}+\left(\frac{z}{2}\right)^{2}}$
$O P(a, b)=\sqrt{z^{2}-2 \sqrt{3} z+4}$
When $z=0$
The hypotenuse, $O P(a, b)=\sqrt{z^{2}-2 \sqrt{3} z+4}$
$=2$
And when,$z=\frac{4}{\sqrt{3}}$
$O P(a, b)=\sqrt{z^{2}-2 \sqrt{3} z+4}$
$=\sqrt{\left(\frac{4}{\sqrt{3}}\right)^{2}-2 \sqrt{3}\left(\frac{4}{\sqrt{3}}\right)+4}$
$=\frac{2}{\sqrt{3}}$
3.1.6. Further, in the II nd quadrant and domain, $\frac{4}{\sqrt{3}} \leq z \leq 2 \sqrt{3}$, the typical hypotenuse
is $O P(-a, b)$ that varies from F to H. ; Fig. 15
Then, $O P(-a, b)=\sqrt{O G^{2}+[G P(-a, b)]^{2}}$
From (35) and (42) we have
$=\sqrt{\left(\frac{4-z \sqrt{3}}{2}\right)^{2}+\left(\frac{z}{2}\right)^{2}}$
$O P(-a, b)=\sqrt{z^{2}-2 \sqrt{3} z+4}-----(48)$
when, $z=\frac{4}{\sqrt{3}}, \quad$ The value of the radius will be, $O P(-a, b)=\sqrt{z^{2}-2 \sqrt{3} z+4}$
$=\sqrt{\left(\frac{4}{\sqrt{3}}\right)^{2}-2 \sqrt{3}\left(\frac{4}{\sqrt{3}}\right)+4}$
$=\frac{2}{\sqrt{3}}$
When $z=2 \sqrt{3}$
(48) will be
$O P(-a, b)=\sqrt{(2 \sqrt{3})^{2}-2 \sqrt{3}(2 \sqrt{3})+4}$
$=2$
3.1.7. And in the II nd quadrant for the domain $2 \sqrt{3} \leq z \leq 3 \sqrt{3}$; Fig16.

Fig(20)
A typical hypotenuse in this domain is $O P(-1, b)=\sqrt{O K^{2}+[O P(-1, b)]^{2}}$

$$
=\sqrt{1+[3 \sqrt{3}-z]^{2}}
$$

$O P(-1, b)=\sqrt{z^{2}-6 \sqrt{3} z+28}-----(49)$
When, $z=2 \sqrt{3}$, the value of $O P(-1, b)$ will be
$O P(-1, b)=\sqrt{z^{2}-6 \sqrt{3} z+28}$
$=\sqrt{(2 \sqrt{3})^{2}-6 \sqrt{3}(2 \sqrt{3})+28}$
$=2$
When $z=3 \sqrt{3}$
$O P(-1, b)=\sqrt{z^{2}-6 \sqrt{3} z+28}$
$=\sqrt{(3 \sqrt{3})^{2}-6 \sqrt{3}(3 \sqrt{3})+28}$
$=1$
3.1.8. Further, in the III rd quadrant same condition continues i.e, in the domain $3 \sqrt{3}<z \leq 4 \sqrt{3}$, points move away from X - axis, perpendicularly. Fig. 17.
The length of radius or hypotenuse, $O P(-1 .-b)=\sqrt{1+(z-3 \sqrt{3})^{2}}$
$O P(-1 .-b)=\sqrt{z^{2}-6 \sqrt{3} z+28}-----$
When, $z=3 \sqrt{3}$
$O P(-1 .-b)=\sqrt{z^{2}-6 \sqrt{3} z+28}$
$=\sqrt{(3 \sqrt{3})^{2}-6 \sqrt{3}(3 \sqrt{3})+28}$

$=1$

When $z=4 \sqrt{3}$
$O P(-1 .-b)=\sqrt{z^{2}-6 \sqrt{3} z+28}$
$=\sqrt{(4 \sqrt{3})^{2}-6 \sqrt{3}(4 \sqrt{3})+28}$
$=2$
3.1.9. Moving to the next domain in the same IIIrd quadrant $4 \sqrt{3} \leq z \leq \frac{14}{\sqrt{3}}$; Fig. 18
$O P(-a,-b)=\sqrt{(O L)^{2}+[L P(-a,-b)]^{2}}$
From (45) and (39) we have
$O P(-a,-b)=\sqrt{\left(\frac{\sqrt{3} z-14}{2}\right)^{2}+\left(\frac{[(z-6 \sqrt{3})]}{2}\right)^{2}}$
$O P(-a,-b)=\sqrt{z^{2}-10 \sqrt{3} z+76}------(51)$
When, $z=4 \sqrt{3}$
$O P(-a,-b)=\sqrt{z^{2}-10 \sqrt{3} z+76}$
$=\sqrt{(4 \sqrt{3})^{2}-10 \sqrt{3}(4 \sqrt{3})+76}$
$=2$
When $z=\frac{14}{\sqrt{3}}$
$O P(-a,-b)=\sqrt{z^{2}-10 \sqrt{3} z+76}$
$=\sqrt{\left(\frac{14}{\sqrt{3}}\right)^{2}-10 \sqrt{3}\left(\frac{14}{\sqrt{3}}\right)+76}$
$=\frac{2}{\sqrt{3}}$
3.2.0. Finally in the IV th quadrant and the domain $\frac{14}{\sqrt{3}} \leq z \leq 6 \sqrt{3}$; Fig. 19 .
$O P(\mathrm{a},-b)=\sqrt{O R^{2}+[R P(a,-b)]^{2}}$
From (46) and (40) we have
Then,$O P(a,-b)=\sqrt{\left(\frac{\sqrt{3} z-14}{2}\right)^{2}+\left(\frac{\sqrt{3} z-18}{2 \sqrt{3}}\right)^{2}}$
$O P(a,-b)=\sqrt{z^{2}-10 \sqrt{3} z+76}------(52)$
When $z=\frac{14}{\sqrt{3}}$
$O P(a,-b)=\sqrt{z^{2}-10 \sqrt{3} z-76}$
$=\sqrt{\left(\frac{14}{\sqrt{3}}\right)^{2}-10 \sqrt{3}\left(\frac{14}{\sqrt{3}}\right)+76}$
$=\frac{2}{\sqrt{3}}$
When, $z=6 \sqrt{3}$
$P(a,-b)=\sqrt{z^{2}-10 \sqrt{3} z+76}$
$=\sqrt{(6 \sqrt{3})^{2}-10 \sqrt{3}(6 \sqrt{3})+76}$
$=2$

IV. Now, coming to the trigonometric functions with respect to $\pi_{\boldsymbol{n}}$,

They are written as following to provide with uniqueness.

$$
\sin _{n}(x), \cos _{n}(x), \tan _{n}(x) \text { etc. }
$$

For example, for an equilateral triangle, the above expressions will be

$$
\sin _{3}(x), \cos _{3}(x), \tan _{3}(x) e t c
$$

4.0.1. Trigonometric Functions w.r.t. π_{3}^{a} :

4.0.2. Mathematical expression of $\sin _{3}(z)$:

Fig(21)
In the above figure $A F$ is the domain defined by the expression of inequality, $0 \leq z \leq \frac{4}{\sqrt{3}}$,
where $P(a, b)$ is the variable position of moving radius $O P(a, b)$ measured from A in the anticlockwise direction.
Accordingly, $\sin _{3}(z)=\frac{\text { Opposite side }}{\text { Hypotenuse }} ;$ of the determinant triangle
$=\frac{C P(a, b)}{O P(a, b)}$
From (34)and (47)we have $\sin _{3}(z)=\frac{\left(\frac{Z}{2}\right)}{\sqrt{z^{2}-2 \sqrt{3} z+4}}$
$\sin _{3}(z)=\frac{z}{2 \sqrt{z^{2}-2 \sqrt{3} z+4}}--------(53)$
Some of the significant values of $\sin (z)$ at significant positions are:
When θ_{3} or $z=0$
$\sin _{3}(0)=\frac{z}{2 \sqrt{z^{2}-2 \sqrt{3} z+4}}$
$=\frac{0}{2 \sqrt{z^{2}-2 \sqrt{3} z+4}}$
$=0$
Further, when $z=\sqrt{3}$
$\sin _{3}(\sqrt{3})=\frac{z}{2 \sqrt{z^{2}-2 \sqrt{3} z+4}}$
$=\frac{\sqrt{3}}{2}$
Now, when $z=\frac{4}{\sqrt{3}}$
$\sin _{3}\left(\frac{4}{\sqrt{3}}\right)=\frac{z}{2 \sqrt{z^{2}-2 \sqrt{3} z+4}}$
$=\frac{\frac{4}{\sqrt{3}}}{2 \sqrt{\left(\frac{4}{\sqrt{3}}\right)^{2}-2 \sqrt{3}\left(\frac{4}{\sqrt{3}}\right)+4}}$
$=1$
Further moving to the next domain
4.0.3. Now, FH, Fig(15) is the domain defined by the expression of inequality, $\frac{4}{\sqrt{3}} \leq z \leq 2 \sqrt{3}$ and it is in the II nd quadrant.

Fig(21a)
$\sin _{3}(z)=\frac{G P(-a, b)}{O P(-a, b)}$
From (35) and (48) $\sin _{3}(z)=\frac{\frac{Z}{2}}{\sqrt{z^{2}-2 \sqrt{3} z+4}}$
$\sin _{3}(z)=\frac{z}{2 \sqrt{z^{2}-2 \sqrt{3} z+4}}-----$ (54)
When $z=\frac{4}{\sqrt{3}}$
$\sin _{3}\left(\frac{4}{\sqrt{3}}\right)=\frac{z}{2 \sqrt{z^{2}-2 \sqrt{3} z+4}}$
$\sin _{3}(z)=1$
When, $z=2 \sqrt{3}$
$\sin _{3}(2 \sqrt{3})=\frac{z}{2 \sqrt{z^{2}-2 \sqrt{3} z+4}}$
$=\frac{2 \sqrt{3}}{2 \sqrt{(2 \sqrt{3})^{2}-2 \sqrt{3}(2 \sqrt{3})+4}}$
$=\frac{\sqrt{3}}{2}$
4.0.4. Moving to the next domain in the same II nd quadrant Fig(16) , $2 \sqrt{3} \leq z \leq 3 \sqrt{3}$;

Fig(22)
we have, $\sin _{3}(z)=\frac{K P(-1, b)}{O P(-1, b)}$
From (37) and (49) $\sin _{3}(z)=\frac{(3 \sqrt{3}-z)}{\sqrt{z^{2}-6 \sqrt{3} z+28}}------$ (55)
When $z=2 \sqrt{3}$
Then, $\sin _{3}(2 \sqrt{3})=\frac{(3 \sqrt{3}-z)}{\sqrt{z^{2}-6 \sqrt{3} z+28}}$
$=\frac{(3 \sqrt{3}-2 \sqrt{3})}{\sqrt{(2 \sqrt{3})^{2}-6 \sqrt{3}(2 \sqrt{3})+28}}$
$=\frac{\sqrt{3}}{2}$
When, $z=3 \sqrt{3}$
$\sin _{3}(z)=\frac{(3 \sqrt{3}-z)}{\sqrt{z^{2}-6 \sqrt{3} z+28}}$
$=\frac{(3 \sqrt{3}-3 \sqrt{3})}{\sqrt{z^{2}-6 \sqrt{3} z+28}}$
$=0$
4.0.5. Now in the III rd quadrant and domain $3 \sqrt{3} \leq z \leq 4 \sqrt{3}$

Then, $\sin _{3}(z)=\frac{-K P(-1,-b)}{O P(-1,-b)}$
From (38) and(50), $\sin _{3}(z)=\frac{(3 \sqrt{3}-z)}{\sqrt{z^{2}-6 \sqrt{3} z+28}}$
When, $z=3 \sqrt{3}$; The value of $\sin _{3}(\theta)$ will be,
$\sin _{3}(3 \sqrt{3})=\frac{(3 \sqrt{3}-z)}{\sqrt{z^{2}-6 \sqrt{3} z+28}}$
$=\frac{3 \sqrt{3}-3 \sqrt{3}}{\sqrt{z^{2}-6 \sqrt{3} z+28}}$

Fig(23)

When, $z=4 \sqrt{3}$
$\sin _{3}(3 \sqrt{3})=\frac{(3 \sqrt{3}-z)}{\sqrt{z^{2}-6 \sqrt{3} z+28}}$ will be
$\sin _{3}(3 \sqrt{3})=\frac{(3 \sqrt{3}-4 \sqrt{3})}{\sqrt{(4 \sqrt{3})^{2}-6 \sqrt{3}(4 \sqrt{3})+28}}$
$=\frac{\sqrt{3}}{2}$
4.0.6. In the same III rd quadrant and in the domain $4 \sqrt{3} \leq z \leq \frac{14}{\sqrt{3}}$, value of
$\sin _{3}(z)$, will be,
$\sin _{3}(z)=\frac{-L P(-a,-b)}{O P(-a,-b)}$
Substituting (39) for $-L P$ and (51) for $O P(-a,-b)$ we have,

Fig(24)
$\sin (z)=\frac{\frac{[(z-6 \sqrt{3})]}{2}}{\sqrt{z^{2}-10 \sqrt{3} z+76}}$
$\sin _{3}(z)=\frac{[(z-6 \sqrt{3})]}{2 \sqrt{z^{2}-10 \sqrt{3} z+76}}-----(57)$
When $z=\frac{14}{\sqrt{3}}$
$\sin _{3}\left(\frac{14}{\sqrt{3}}\right)=\frac{\left[\left(\frac{14}{\sqrt{3}}-6 \sqrt{3}\right)\right]}{2 \sqrt{\left(\frac{14}{\sqrt{3}}\right)^{2}-10 \sqrt{3}\left(\frac{14}{\sqrt{3}}\right)+76}}$
$=-1$
3.07. Final quadrant is IV th quadrant and domain is $\frac{14}{\sqrt{3}} \leq z \leq 6 \sqrt{3}$, value of $\sin _{3}(z)$ is,

Fig(25)
$\sin _{3}(z)=\frac{-R P(a,-b)}{O P(a,-b)}$
From, (40) and (52), we have
$\sin _{3}(z)=\frac{\frac{z-6 \sqrt{3}}{2}}{\sqrt{z^{2}-10 \sqrt{3} z+76}}$
$\sin _{3}(z)=\frac{z-6 \sqrt{3}}{2 \sqrt{z^{2}-10 \sqrt{3} z+76}}$
When, $z=6 \sqrt{3}$, the value of $\sin _{3}(\theta)$ will be
$\sin _{3}(6 \sqrt{3})=\frac{6 \sqrt{3}-6 \sqrt{3}}{2 \sqrt{z^{2}-10 \sqrt{3} z+76}}$
$=0$

V. Graph of $\sin _{3}(z)$

Graph is drawn for the values of z , in the table furnished below. $2 \pi_{3}^{a}$ or $6 \sqrt{3}$ is divided into 360 units.
TABLE-I

Sl.No.	Equation	Z	$\operatorname{Sin}(\mathrm{z})$
1.	$\sin _{3}(z)=\frac{z}{2 \sqrt{z^{2}-2 \sqrt{3} z+4}}$	0.0000	0.0000
2.		0.0289	0.0073
3.		0.0577	0.0148
4.		0.0866	0.0225
5.		0.1155	0.0304

Sl.No.	Equation	Z	Sin(z)
6.		0.1443	0.0385
.	.	.	.
.	.	.	.
.	.	.	.
		2.2517	0.9990
	Domain, $0 \leq z \leq \frac{4}{\sqrt{3}}$	2.2805	0.9998
80		2.3094	1.0000
81	z	2.3383	0.9998
82	$\sin _{3}(z)=\frac{}{2 \sqrt{z^{2}-2 \sqrt{3} z+4}}$	2.3671	0.9991
83	$2 \sqrt{z^{2}-2 \sqrt{3} z+4}$	2.3960	0.9981
.	.	.	.
.	.	.	.
.	.	.	.
118		3.4064	0.8733
119		3.4352	0.8697
120	Domain, $\frac{4}{\sqrt{3}} \leq z \leq 2 \sqrt{3}$	3.4641	0.8660
121	$\sin (z)=\frac{(3 \sqrt{3}-z)}{\sqrt{z}}$	3.4930	0.8624
122	$n(z)=\frac{(3 \sqrt{3}-z)}{\sqrt{z^{2}-6 \sqrt{3} z+28}}$	3.5218	0.8585
123	$\sqrt{z^{2}-6 \sqrt{3} z+28}$	3.5507	0.8546
.		.	.
.		.	.
.		.	.
178		5.1384	0.05764
179		5.1673	0.02886
180	$2 \sqrt{3} \leq z \leq 3 \sqrt{3}$	5.1962	0.00000
181	$(3 \sqrt{3}-z)$	5.2250	-0.02886
182	$\sin _{3}(z)=\frac{(3 \sqrt{3}}{\sqrt{z^{2}-6 \sqrt{3} z+28}}$	5.2539	-0.05764
183		5.2828	-0.08628
.		.	.
.		.	.
.		.	.
238		6.8705	-0.8585
239		6.8993	-0.8624
240	$3 \sqrt{3} \leq z \leq 4 \sqrt{3}$	6.9282	-0.8660
241	[(z-6 $\sqrt{3})]$	6.9571	-0.8697
242	$n_{3}(z)=\frac{[(z-6 \sqrt{3}}{2 \sqrt{z^{2}-10 \sqrt{3} z+76}}$	6.9859	-0.8733
243	$2 \sqrt{z^{2}-10 \sqrt{3} z+76}$	7.0148	-0.8771
.		.	.
.		.	.
.		.	.
278		8.0252	-0.99911
279		8.0540	-0.99977
280	$4 \sqrt{3} \leq z \leq \frac{14}{\sqrt{3}}$	8.0829	-1.00000
281	$z-6 \sqrt{3}$	5.2250	-0.02886
282	$\sin _{3}(z)=\frac{z-6 \sqrt{3}}{2 \sqrt{z^{2}-10 \sqrt{3} z+76}}$	5.2539	-0.05764
283	$2 \sqrt{z^{2}-10 \sqrt{3} z+76}$	5.2828	-0.08628
.		.	.
.		.	.
.		.	.
358		10.3346	-0.01480
359		10.3634	-0.00731
360	$\frac{14}{\sqrt{3}} \leq z \leq 6 \sqrt{3}$	10.3923	0.00000

5.0.1. Mathematical expression of $\sin _{3}(-z)$:

When the variable radius is rotated in the clockwise direction the valus of $\boldsymbol{\operatorname { s i n }}_{\mathbf{3}}(-\mathbf{z})$ will be as following
Opposite side $R P(a,-b)$ will be $=\left(\frac{-z}{2}\right)$
Then, $\sin _{3}(-z)=\frac{\left(\frac{-z}{2}\right)}{\sqrt{z^{2}-2 \sqrt{3} z+4}}$; here hypotinuse remains same since it is absolute value.
$=\frac{-z}{2 \sqrt{z^{2}-2 \sqrt{3} z+4}}$
$=-\left(\frac{z}{2 \sqrt{z^{2}-2 \sqrt{3} z+4}}\right)$
$\sin _{3}(-z)=-\left(\sin _{3}(z)\right)$
Similarly equations are drawable for all quadrants
VI. Mathematical expression of $\cos _{3}(z)$:

Value of, $\cos _{3}(z)=\frac{\text { Adjacent side }}{\text { Hypotenuse }} ;$ of the determinant triangle
i.e., $\quad \cos _{3}(z)=\frac{ \pm O C}{O P(\pm a, \pm b)}$
6.0.1. Value of, $\cos _{3}(z)$ in the Ist quadrant and in the domain $0 \leq z \leq \frac{4}{\sqrt{3}}$,

Fig(26)
$\cos _{3}(z)=\frac{O C}{O P(a, b)}$
From (41) and (47) we have
$\cos _{3}(z)=\frac{\frac{4-\sqrt{3} z}{2}}{\sqrt{z^{2}-2 \sqrt{3} z+4}}$
$\cos _{3}(z)=\frac{4-\sqrt{3} z}{2 \sqrt{z^{2}-2 \sqrt{3} z+4}}$
When $z=0$
Accordingly, $\cos _{3}(z)=\frac{4-\sqrt{3} z}{2 \sqrt{z^{2}-2 \sqrt{3} z+4}}$
$\cos _{3}(0)=\frac{4-\sqrt{3} \times 0}{2 \sqrt{0^{2}-2 \sqrt{3} \times 0+4}}$
$=1$
Also , when, $z=\frac{4}{\sqrt{3}}$, we have
$\cos _{3}(z)=\frac{4-\sqrt{3} z}{2 \sqrt{z^{2}-2 \sqrt{3} z+4}}$
$\cos _{3}\left(\frac{4}{\sqrt{3}}\right)=\frac{4-\sqrt{3}\left(\frac{4}{\sqrt{3}}\right)}{2 \sqrt{\left(\frac{4}{\sqrt{3}}\right)^{2}-2 \sqrt{3}\left(\frac{4}{\sqrt{3}}\right)+4}}$
$=0$
6.0.2. Now, moving to the next quadrant (II nd) and domain, $\frac{4}{\sqrt{3}} \leq z \leq 2 \sqrt{3}$, we have,

Fig(27)
$\cos _{3}(z)=\frac{-O G}{P(-a, b)}$
From (42) and (48)we have
$\cos _{3}(z)=\frac{\frac{4-z \sqrt{3}}{2}}{\sqrt{z^{2}-2 \sqrt{3} z+4}}$
$\cos _{3}(z)=\frac{4-z \sqrt{3}}{2 \sqrt{z^{2}-2 \sqrt{3} z+4}}----(60)$
When $z=\frac{4}{\sqrt{3}}$, the value of $\cos _{3}(z)$ will be
$\cos _{3}\left(\frac{4}{\sqrt{3}}\right)=\frac{4-\left(\frac{4}{\sqrt{3}}\right) \sqrt{3}}{2 \sqrt{z^{2}-2 \sqrt{3} z+4}}$
$=0$
When, $z=2 \sqrt{3}$
$\cos _{3}(z)=\frac{4-z \sqrt{3}}{2 \sqrt{z^{2}-2 \sqrt{3} z+4}}$
$\cos _{3}(2 \sqrt{3})=\frac{4-(2 \sqrt{3}) \sqrt{3}}{2 \sqrt{(2 \sqrt{3})^{2}-2 \sqrt{3}(2 \sqrt{3})+4}}$
$=-\frac{1}{2}$
6.0.3. Moving to the next domain in the same II nd quadrant , $2 \sqrt{3} \leq z \leq 3 \sqrt{3}$;

From (43) and (49) we have

Fig(28)
$\cos _{3}(z)=\frac{-O K}{O P(-1, b)}$
we have, $\cos _{3}(z)=\frac{-1}{\sqrt{z^{2}-6 \sqrt{3} z+28}}$
When, $z=2 \sqrt{3}$, the value of $\cos _{3}(z)$ will be

$$
\begin{aligned}
& \cos _{3}(z)=\frac{-1}{\sqrt{z^{2}-6 \sqrt{3} z+28}} \\
& =\frac{-1}{\sqrt{(2 \sqrt{3})^{2}-6 \sqrt{3}(2 \sqrt{3})+28}} \\
& =-\frac{1}{2}
\end{aligned}
$$

6.0.4. Now in the III rd quadrant and domain $3 \sqrt{3} \leq z \leq 4 \sqrt{3}$, value of $\cos _{3} z$ will be,

Fig(29)
$\cos _{3}(\mathrm{z})=\frac{-O K}{O P(-1,-b)}$
From (44) and (50), we have
$\cos _{3}(z)=\frac{-1}{\sqrt{z^{2}-6 \sqrt{3} z+28}}-----(62)$
When, $z=3 \sqrt{3} ;$ value of $\cos _{3}(\theta)$ will be
$\cos _{3}(3 \sqrt{3})=\frac{-1}{\sqrt{(3 \sqrt{3})^{2}-6 \sqrt{3}(3 \sqrt{3})+28}}$
$=-1$
When $z=4 \sqrt{3}$, we have
$\cos _{3}(4 \sqrt{3})=\frac{-1}{\sqrt{(4 \sqrt{3})^{2}-6 \sqrt{3}(4 \sqrt{3})+28}}$
$=-\frac{1}{2}$
6.0.5. In the same III $r d$ quadrant and in the domain $4 \sqrt{3}<z \leq \frac{14}{\sqrt{3}}$,

Fig(30)
$\cos _{3}(z)=\frac{-O L}{O P(-a,-b)}$
$\cos _{3}(z)=\frac{\frac{\sqrt{3} z-14}{2}}{\sqrt{z^{2}-10 \sqrt{3} z+76}}$
$\cos _{3}(z)=\frac{\sqrt{3} z-14}{2 \sqrt{z^{2}-10 \sqrt{3} z+76}}$
When the value of $z=4 \sqrt{3}$, the value of $\cos _{3}(z)$ will be
$\cos _{3}(4 \sqrt{3})=,\frac{\sqrt{3}(4 \sqrt{3},)-14}{2 \sqrt{(4 \sqrt{3},)^{2}-10 \sqrt{3}(4 \sqrt{3},)+76}}$
$=-\frac{1}{2}$
6.0.6. Final quadrant is IV th quadrant and domain is $\frac{14}{\sqrt{3}} \leq z \leq 6 \sqrt{3}$
$\cos _{3}(z)=\frac{-O R}{O P(a,-b)}$
From (46) and (52)we have,

Fig(31)

$$
\begin{aligned}
& \cos _{3}(z)=\frac{\frac{\sqrt{3} z-14}{2}}{\sqrt{z^{2}-10 \sqrt{3} z+76}} \\
& \cos _{3}(z)=\frac{\sqrt{3} z-14}{2 \sqrt{z^{2}-10 \sqrt{3} z+76}}-----(64)
\end{aligned}
$$

When $z=\frac{14}{\sqrt{3}}$, the value of $\cos _{3}(z)$ will be,
$\cos _{3}(z)=\frac{\sqrt{3} z-14}{2 \sqrt{z^{2}-10 \sqrt{3} z+76}}$
$\cos _{3}(z)=\frac{\sqrt{3}\left(\frac{14}{\sqrt{3}}\right)-14}{2 \sqrt{z^{2}-10 \sqrt{3} z+76}}$
$=0$
When $z=6 \sqrt{3}$, the value of $\cos _{3}(z)$ will be,
$\cos _{3}(z)=\frac{\sqrt{3}(6 \sqrt{3})-14}{2 \sqrt{(6 \sqrt{3})^{2}-10 \sqrt{3}(6 \sqrt{3})+76}}$
$=1$
VII. Graph of $\cos _{3}(z)$

Sl.No.	Equation	Z	$\cos (\mathrm{z})$
1.		0.0000	1.00000
2.		0.0289	0.99997
3.	(z) $=\frac{4-\sqrt{3} z}{\text { d }}$	0.0577	0.99989
4.	$s_{3}(z)=\frac{4-\sqrt{z^{2}-2 \sqrt{3} z+4}}{2}$	0.0866	0.99975
5.		0.1155	0.99954
6.		0.1443	0.99926
.	.	.	.
.	.	.	.
.	.	.	.
78		2.2517	0.04437
79	Domain, $0 \leq z \leq \frac{4}{\sqrt{3}}$	2.2805	0.02192
80		2.3094	0.00000
81	$4-z \sqrt{3}$	2.3383	-0.02138
82	$\cos _{3}(z)=\frac{4}{2 \sqrt{2}-2 \sqrt{3} z+4}$	2.3671	-0.04221
83		2.3960	-0.06248
.	.	.	.
.	.	.	.
.	.	.	.

Sl.No.	Equation	Z	$\cos (\mathrm{z})$
118		3.4064	-0.48713
119		3.4352	-0.49366
120	Domain, $\frac{4}{\sqrt{3}} \leq z \leq 2 \sqrt{3}$	3.4641	-0.50000
121	- -1	3.4930	-0.50632
122	28	3.5218	-0.51276
123		3.5507	-0.51935
.		.	.
.		.	.
		.	.
178		5.1384	-0.99834
179		5.1673	-0.99958
180	$2 \sqrt{3} \leq z \leq 3 \sqrt{3}$	5.1962	-1.00000
181	-1	5.2250	-0.99958
182	(z) $=\frac{}{\sqrt{z^{2}-6 \sqrt{3} z+28}}$	5.2539	-0.99834
183		5.2828	-0.99627
		.	.
.		.	.
.		.	.
238		6.8705	-0.51276
239		6.8993	-0.50632
240	$3 \sqrt{3} \leq z \leq 4 \sqrt{3}$	6.9282	-0.50000
241	$\sqrt{3} z-14$	6.9571	-0.49366
242	$\cos _{3}(z)=\frac{}{2 \sqrt{z^{2}-10 \sqrt{3} z+76}}$	6.9859	-0.48713
243	$2 \sqrt{z^{2}-10 \sqrt{3} z+76}$	7.0148	-0.48040
		.	.
		.	.
		.	.
278		8.0252	-0.04221
279		8.0540	-0.02138
280	$4 \sqrt{3} \leq z \leq \frac{14}{\sqrt{3}}$	8.0829	0.00000
281	$\sqrt{3} z-14$	8.1118	0.02192
282	$s_{3}(z)=\overline{2 \sqrt{z^{2}-10 \sqrt{3} z+76}}$	8.1406	0.04437
283	$2 \sqrt{z^{2}-10} \sqrt{3} z+76$	8.1695	0.06733
.	.	.	.
.	.	.	.
.	.	.	.
358		10.3346	0.99989
359		10.3634	0.99997
360	$\frac{14}{\sqrt{3}} \leq z \leq 6 \sqrt{3}$	10.3923	1.00000

VIII. Mathematical expression for $\cos _{\mathbf{3}}(-\mathbf{z})$:

When the variable radius is rotated in the clockwise direction the valus of $\boldsymbol{\operatorname { c o s }}_{\mathbf{3}}(-\mathbf{z})$ will be as following
Adjacent side OR in the IV th quadrant will be will be $=\frac{4-\sqrt{3} z}{2}$
Then, $\cos _{3}(-z)=\frac{\frac{4-\sqrt{3} z}{2}}{\sqrt{z^{2}-2 \sqrt{3} z+4}}$; here hypotinuse remains same since it is absolute value.
$=\frac{4-\sqrt{3} z}{2 \sqrt{z^{2}-2 \sqrt{3} z+4}}$
$=\cos (-z)$
Hence trignometric identity $\cos _{3}(-z)=\cos _{3}(z)$ holds
Similarly equations are drawable for all quadrants

IX. Mathematical expression of $\tan _{3}(\theta)$:

Fig(32)
3.16. In the above figure $A F$ is the domain defined by the expression of inequality, $0 \leq z \leq \frac{4}{\sqrt{3}}$,
where $P(a, b)$ is the variable position of moving radius $O P(a, b)$ measured from A in the anticlockwise direction. where k vary from 1 to ∞ will be

Accordingly, $\tan _{3}(\theta)=\frac{\text { Opposite side }}{\text { Adjacent side }} ;$ of the determinant triangle $\operatorname{OCP}(a, b)$
Or $=\frac{\sin _{3}(z)}{\cos _{3}(z)}$
By(41) and (47), we have, $\tan _{3}(z)=\frac{\frac{z}{2}}{\frac{4-\sqrt{3} z}{2}}$
$\tan _{3}(z)=\frac{z}{4-\sqrt{3} z}-----(65)$
Some of the significant values at significant angles are:
When $z=0$
$\tan _{3}(z)=\frac{z}{4-\sqrt{3} z}$
$=\frac{0}{4-\sqrt{3} \times 0}$
$=0$
Next, when $z=\sqrt{3}$
$\tan _{3}(z)=\frac{z}{4-\sqrt{3} z}$
$=\frac{\sqrt{3}}{4-\sqrt{3}(\sqrt{3})}$
$=\sqrt{3}$
Now, when $z=\frac{4}{\sqrt{3}}$
$\tan _{3}(z)=\frac{z}{4-\sqrt{3} z}$
$=\frac{\frac{4}{\sqrt{3}}}{4-\sqrt{3} \times \frac{4}{\sqrt{3}}}$
$=\infty$
Further moving to the next domain
9.0.1. Now, in the Fig(25) FH is the domain defined by the expression of inequality, $\frac{4}{\sqrt{3}} \leq z \leq 2 \sqrt{3}$

Fig(33)
$\tan _{3}(\theta)=\frac{\sin _{3}(\theta)}{\cos _{3}(\theta)}$
from (55) and (61)we have
$=\frac{\frac{z}{2 \sqrt{z^{2}-2 \sqrt{3} z+4}}}{\frac{4-z \sqrt{3}}{2 \sqrt{z^{2}-2 \sqrt{3} z+4}}}$
$\tan _{3}(\theta)=\frac{z}{4-z \sqrt{3}}----(66)$
When $z=2 \sqrt{3}$,
$\tan _{3}(2 \sqrt{3})=\frac{2 \sqrt{3}}{4-(2 \sqrt{3}) \sqrt{3}}$
$\tan _{3}(2 \sqrt{3})=-\sqrt{3}$
9.0.2. Moving to the next domain in the same II nd quadrant, $2 \sqrt{3} \leq z \leq 3 \sqrt{3}$

Fig(34)
$\tan _{3}(z)=\frac{\sin _{3}(\theta)}{\cos _{3}(\theta)}$
From (37) and (43), $\tan _{3}(\theta)=\frac{(3 \sqrt{3}-z)}{-1}$
$\tan _{3}(z)=-(3 \sqrt{3}-z)$
$\tan _{3}(z)=(z-3 \sqrt{3})-----(67)$
When $z=3 \sqrt{3}$,
Then, $\tan _{3}(3 \sqrt{3})=(z-3 \sqrt{3})$
$=0$
9.0.3. Now in the III rd quadrant and domain $3 \sqrt{3} \leq z \leq 4 \sqrt{3}$, value of $\tan _{3} \theta$ will be,

Fig(35)
Similarly, $\tan _{3}(z)=(z-3 \sqrt{3})$
$\tan _{3}(z)=(z-3 \sqrt{3})-----(68)$
When, $z=4 \sqrt{3}$;
$\tan _{3}(z)=(z-3 \sqrt{3})$
$=(4 \sqrt{3}-3 \sqrt{3})$
$=\sqrt{3}$
9.0.4. In the same III r d quadrant and in the domain $4 \sqrt{3} \leq z \leq \frac{14}{\sqrt{3}}$,

Then value of $\tan _{3}(z)$, will be,

$\operatorname{Fig}(36)$
From (39) and (45)
$\tan _{3}(z)=\frac{\frac{[(z-6 \sqrt{3})]}{2}}{\frac{\sqrt{3} z-14}{2}}$
$\tan _{3}(z)=\frac{[(z-6 \sqrt{3})]}{\sqrt{3} z-14}-----(69)$
When $z=\frac{14}{\sqrt{3}}$
$\tan _{3}\left(\frac{14}{\sqrt{3}}\right)=\frac{\left[\left(\frac{14}{\sqrt{3}}-6 \sqrt{3}\right)\right]}{\sqrt{3}\left(\frac{14}{\sqrt{3}}\right)-14}$
$=-\infty$
9.0.5. Final quadrant is IV th quadrant and domain is $\frac{14}{\sqrt{3}} \leq z \leq 6 \sqrt{3}$.

Fig(37)
From (40) and (46) we have
$\tan _{3}(z)=\frac{\frac{z-6 \sqrt{3}}{2}}{\frac{\sqrt{3} z-14}{2}}$
$\tan _{3}(z)=\frac{z-6 \sqrt{3}}{\sqrt{3} z-14}----$ (70)
When, $z=6 \sqrt{3}$, the value of $\sin _{3}(z)$ will be
$\sin _{3}(6 \sqrt{3})=\frac{6 \sqrt{3}-6 \sqrt{3}}{\sqrt{3} z-14}$
$=0$
X. Graph of $\tan (z)$

Sl.No.	Equation	Z	$\tan (\mathrm{z})$
1.	$\tan _{3}(z)=\frac{z}{4-\sqrt{3} z}$	0.0000	0.00000
2.		0.0289	0.00731
3.		0.0577	0.01480
4.		0.0866	0.02249
5.		0.1155	0.03039
6.		0.1443	0.03849
.	.	.	.
.	.	.	.
.	.	.	.
78	Domain, $0 \leq z \leq \frac{4}{\sqrt{3}}$	2.2517	22.51666
79		2.2805	45.61067
80		2.3094	∞
81	$\tan _{3}(z)=\frac{z}{4-z \sqrt{3}}$	2.3383	-46.76537
82		2.3671	-23.67136
83		2.3960	-15.97336
.	.	.	
.	.	.	.
.	.	.	.
118		3.4064	-1.79282
119		3.4352	-1.76166
120	Domain, $\frac{4}{\sqrt{3}} \leq z \leq 2 \sqrt{3}$	3.4641	-1.73205
121	$\tan _{3}(z)=(z-3 \sqrt{3})$	3.4930	-1.70318
122		3.5218	-1.67432
123		3.5507	-1.64545
.		.	
.		.	.
.		.	.
178		5.1384	-0.05774
179		5.1673	-0.02887
180	$2 \sqrt{3} \leq z \leq 3 \sqrt{3}$	5.1962	0.00000
181	$\tan _{3}(z)=(z-3 \sqrt{3})$	5.2250	0.02887
182		5.2539	0.05774
183		5.2828	0.08660
.		.	.
.		.	.
.		.	.
238		6.8705	-0.51276
239		6.8993	-0.50632
240	$3 \sqrt{3} \leq z \leq 4 \sqrt{3}$	6.9282	-0.50000
241	$\tan _{3}(z)=\frac{[(z-6 \sqrt{3})]}{\sqrt{3} z-14}$	6.9571	1.76166
242		6.9859	1.79282
243		7.0148	1.82568
.		.	
.		.	.
.		.	
278		8.0252	23.67136
279		8.0540	46.76537
280	$4 \sqrt{3} \leq z \leq \frac{14}{\sqrt{3}}$	8.0829	∞
281	$\tan _{3}(z)=\frac{z-6 \sqrt{3}}{\sqrt{3} z-14}$	8.1118	-45.61067
282		8.1406	-22.51666
283		8.1695	-14.81866
.	.	.	.
.	.	.	.
.	.	.	.

Sl.No.	Equation	Z	$\tan (\mathrm{z})$
358		10.3346	-0.01480
359		10.3634	-0.00731
360	$\frac{14}{\sqrt{3}} \leq z \leq 6 \sqrt{3}$		

XI. The basic trigonometric identities:

11.0.1.a) $\sin _{3}{ }^{2} z+\cos _{3}{ }^{2} z=1-------(71)$

Proof: LHS of above equation in the I st quadrant is $\left(\frac{z}{2 \sqrt{z^{2}-2 \sqrt{3} z+4}}\right)^{2}+\left(\frac{4-\sqrt{3} z}{2 \sqrt{\mathbf{z}^{2}-2 \sqrt{3} z+4}}\right)^{2}$
$=\frac{z^{2}}{\left(2 \sqrt{z^{2}-2 \sqrt{3} z+4}\right)^{2}}+\frac{(4-\sqrt{3} z)^{2}}{\left(2 \sqrt{z^{2}-2 \sqrt{3} z+4}\right)^{2}}$
$=\frac{z^{2}+16+3 z^{2}-8 \sqrt{3} z}{\left(2 \sqrt{z^{2}-2 \sqrt{3} z+4}\right)^{2}}$
$=\frac{4 z^{2}-8 \sqrt{3} z+16}{4 z^{2}-8 \sqrt{3} z+16}$
$=1$
This identity is true for all the domains because angles and determinant triangle are same for sin and cos functions. And hypotenuse of $\sin \theta=$ hypotenuse of $\cos \theta$, in a determinant triangle .
Also sum of square of opposite side and adjacent side is equal to square of hypotenuse.
consequently
$\sin ^{2} z+\cos ^{2} z=1$ throughout the triangle

11.0.2. Another method of proof

LHS of $\sin _{3}{ }^{2} z+\cos _{3}{ }^{2} z=1$ can be written as
$=\frac{(\text { Opposite side })^{2}}{(\text { Hypotenuse })^{2}}+\frac{(\text { Adjacent side })^{2}}{(\text { Hypotenuse })^{2}}$
Symbolically and generally it can also be written as
$=\frac{\{X P(\pm a, \pm b)\}^{2}}{\{O P(\pm a, \pm b)\}^{2}}+\frac{\{O(\pm X))\}^{2}}{\{O P(\pm a, \pm b)\}^{2}}$
$=\frac{\left.\{X P(\pm a, \pm b)\}^{2}+\{O(\pm X))\right\}^{2}}{\{O P(\pm a, \pm b)\}^{2}}$
$\left.=\frac{\{O P(\pm a, \pm b)\}^{2}}{\{O P(\pm a, \pm \mathrm{b})\}^{2}} ; \operatorname{since}\{X P(\pm a, \pm b)\}^{2}+\{O(\pm X))\right\}^{2}=\{O P(\pm a, \pm b)\}^{2}$
$=1$

XII. Inverse Trigonometric functions w.r.t π_{3}^{a} :

12.0.0. To find the value of inverse trigonometric functions of equilateral triangle, we require to find the value of coefficient z.
To find value of z , following method is adopted.
We know that in the Ist quadrant and the domain $0 \leq z \leq \frac{4}{\sqrt{3}}$,
$\sin _{3} z=\frac{z}{2 \sqrt{z^{2}-2 \sqrt{3} z+4}}$
Let $\sin _{3}(z)=x$
Then, above equation can be written as , $x=\frac{z}{2 \sqrt{z^{2}-2 \sqrt{3} z+4}}$
After algebraic manipulations it can be written as
$z^{2}\left(4 x^{2}-1\right)-\left(8 \sqrt{3} x^{2}\right) z+16 x^{2}=0--------(72)$
let $4 x^{2}-1=a ;-8 \sqrt{3} x^{2}=b$ and $16 x^{2}=c$
This resebles the quadratic equation $a z^{2}+b z+c=0$
Consequantly, the roots of the equation will be
$z=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
Example 1: when $\sin _{3}(z)=0.5, \quad$ the value of z will be
Then, $x=0.5$; hence , $a=4 x^{2}-1=4 \times(0.5)^{2}-1=0$
$b=-8 \sqrt{3} x^{2}=-8 \sqrt{3} \times(0.5)^{2}=-3.461$
$c=16 \times(0.5)^{2}=4$
In this case resulting equation is not a quadratic equation because $a=0$, hence z is directly
solvable as following
i.e., $3.461 z=4$
$z=\frac{4}{3.461}$
$=1.1547$
Example 2: $\sin _{3}(z)=1$
$a=4 \times 1-1=3$
$b=-8 \sqrt{3}=-13.8564$
$c=16$
Then, $z=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$=\frac{13.8564+\sqrt{(13.8564)^{2}-4 \times 3 \times 16}}{2 \times 3}$
$=2.3094$

XIII. The next regular polygon is a square. Trigonometric functions are derived as following.

13.0.0. $A B C D$ is a unit square (a square of unit apothem) circumscribing a unit circle.
$\mathrm{OP}(\mathrm{a}, \mathrm{b})$ - is a variable and moving radius in anti-clock wise direction from apothem OE. This $\mathrm{OP}(\mathrm{a}, \mathrm{b})$ varies from 1 to $\sqrt{2}$ units and vice versa. Also it is the hypotenuse of the determinant triangle $\operatorname{OEP}(a, b)$. This triangle varies w.r.t the position of radius $\operatorname{OP}(\mathrm{a}, \mathrm{b})$.
Here the $\angle G A P(a, b)$ is a conastant throughout the domain $0 \leq z \leq 2$;
Accordingly, opposite side $G P(a, b)$ w.r.t the $\triangle G A P(a, b)=A P(a, b) \sin \left(\frac{\pi}{4}\right)$
$G P(a, b)=\frac{z}{\sqrt{2}}$
$G P(a, b)$ is also the opposite side of the determinant triangle OGP (a, b)
$G A$ which is adjacent side of the $\triangle G A P(a, b)=A P(a, b) \times \cos \left(\frac{\pi}{4}\right)$
$8=\frac{z}{\sqrt{2}}$
Then the adjacent side $O G$ of determinant triangle is $=O A-G A$
$O G=\sqrt{2}-\frac{z}{\sqrt{2}} ;$ since the square is circumscribing a unit circle.
$=\frac{(2-z)}{\sqrt{2}}$

Fig(38)
Finally, the hypotenuse $O P(a, b)$ of the determinant triangle $\triangle G A P(a, b)=\sqrt{\left(\frac{z}{\sqrt{2}}\right)^{2}+\left(\frac{(2-z)}{\sqrt{2}}\right)^{2}}$ $=\sqrt{z^{2}-2 z+2}$
Now, $\sin _{4}(z)=\frac{\frac{Z}{\sqrt{2}}}{\sqrt{Z^{2}-2 z+2}}$
$\sin _{4}(z)=\frac{z}{\sqrt{2} \sqrt{z^{2}-2 z+2}}-----(73)$
For example when $z=0 ; \sin _{4}(0)=\frac{0}{\sqrt{2} \sqrt{z^{2}-2 z+2}}$
$=0$
And when $z=2$
$\sin _{4}(z)=\frac{z}{\sqrt{2} \sqrt{z^{2}-2 z+2}}$
$=1$
Next in the II nd quadrant for the domain, $2 \leq z \leq 4$
$\sin _{4}(z)=\frac{4-z}{\sqrt{2} \sqrt{z^{2}-6 z+10}}------(74)$
In the III rd quadrant for the domain, $4 \leq z \leq 6$
$\sin _{4}(z)=\frac{4-z}{\sqrt{2} \sqrt{z^{2}-10 z+26}}$
In the IV th quadrant for the domain, $6 \leq z \leq 8$
$\sin _{4}(z)=\frac{z-8}{\sqrt{2} \sqrt{z^{2}-14 z+50}}$

Sine graph of square

XIV. General equations to find the opposite sides of the determinant triangles of regular polygons:
Further, when the number of sides are within the reasonable limits, domains exists. When sides are sufficiently large to consider the Figure as a circle, then the domain may be considered as mono-element domain.

14.0.1. General equation for opposite side in the $I^{\text {st }}$ quadrant:

Fig(39). A typical regular polygon
Let $\mathrm{ABC} \ldots$ be a regular polygon of n number of sides Fig (39)
$\angle A O B, \angle B O C \cdots=\frac{2 \pi}{n}$, whence n is the number of sides.
And the $\angle O A P_{1}(a, b), \angle B^{\prime} B P_{2}(a, b), \cdots J^{\prime} C P_{n}(a, b) \cdots$ vary w.r.t the position from X axis to the end of the Ist quadrant. And the lines $B^{\prime} A, C^{\prime} C \ldots J^{\prime} Y \cdots$ are parallel to X - axis. And $G P_{1}(a, b), K P_{2}(a, b)$ $\ldots \mathrm{J} P_{n}(a, b)$ are parallel to Y axis.
$\angle O A B, \angle B^{\prime} B C \cdots$ are constant throughout the domain or side .
$\angle O A B($ angle formed with the x-axis is considered as Ist angle $)=\frac{(n-2) \pi}{2 n}$
; the line segment $O A$ is on X axis.
The second $\angle B^{\prime} B C=\frac{(\mathrm{n}-2) \pi}{2 n}-\angle O B B^{\prime}$
$=\frac{(n-2) \pi}{2 n}-\angle A O B ;$ angles between the parallels are equal
$=\frac{(n-2) \pi}{2 n}-\frac{2 \pi}{n}$
$=\frac{\pi(n-6)}{2 n}$
The third angle $\angle J^{\prime} C P_{3}(a, b)=\frac{(n-2) \pi}{2 n}-2\left(\frac{2 \pi}{n}\right)$
$=\frac{(n-2) \pi}{2 n}-\left(\frac{4 \pi}{n}\right)$
$=\frac{(n-2) \pi}{2 n}-\left(\frac{4 \pi}{n}\right)$
$=\frac{n \pi-2 \pi-8 \pi}{2 n}$
$=\frac{n \pi-10 \pi}{2 n}$
$=\frac{\pi(n-10)}{2 n}$
:
Equation for the angle at the i th term from initial position (in Ist quadrant)is
$\angle K^{\prime} D P_{i}=\frac{\pi(n-2 x)}{2 n}$
$\angle K^{\prime} D P_{i}=\frac{\pi(n-2(2 i-1))}{2 n}-----(75)$
; where x is an ordinal odd number, ie. $x \in N=\{1,3,5, \cdots\}$ / \quad ith side $\leq \frac{n}{4}$;
and $\frac{n}{4}$ is a natural number. And $x=2 i-1$, where i is the ordinal number of the
angle or side counted from X-axis.
For an equilateral triangle, $\angle O A B$ which is also equal to $\angle O A P_{1}(a, b), x=2 i-1$
i.e, $x=(2 \times 1)-1$
$=1$
$\angle O A P_{1}(a, b)=\frac{\pi(n-2(2 i-1))}{2 n}$
$=\frac{\pi(3-2)}{\pi^{2 \times 3}}$
$=\frac{\pi}{6}$
But, its $2^{\text {nd }}$ angle is not in the $I^{\text {st }}$ quadrant.
For a square , $\angle O A B$ in the $I^{\text {st }}$ quadrant will be.
$\angle O A P_{1}(a, b)=\frac{\pi(n-2(2 i-1))}{2 n}$
$=\frac{\pi(4-2)}{2 \times 4}$
$=\frac{\pi}{4}$
Here also only one angle is in the first quadrant that has an hand parallel to X axis and
the other end of the $I^{\text {st }}$ side rest on Y axis. Whereas in the equilateral triangle side extends
beyond $I^{\text {st }}$ quadrant.
For a regular pentagon the angles will be
$I^{s t} \angle O A P_{1}(a, b)=\frac{\pi(n-2 x)}{2 n}$
$=\frac{\pi(5-2)}{2 \times 5}$
$=\frac{3 \pi}{10}$
Further, for $2^{n d} \angle I B C=\frac{\pi(n-2 x)}{2 n}$
$=\frac{\pi(5-2 \times 3)}{2 \times 5}$
$=-\frac{\pi}{10}$
Here the angle is below the parallel to X axis, hence the opposite side starts decreasing. Further for hexagon, $\angle O A P_{1}(a, b)$ will vary as following
$I^{s t} \angle O A P_{1}(a, b)$ in the $I^{s t}$ quadrant will be.$=\frac{\pi(n-2 x)}{2 n}$
$=\frac{\pi(6-2)}{2 \times 6}$
$=\frac{\pi}{3}$
$2^{n d} \angle X Y P_{2}(a, b)$ in the $I^{s t}$ quadrant will be. $=\frac{\pi(n-2 \times 3)}{2 n}$
$=\frac{\pi(6-2 \times 3)}{2 \times 6}$
$=0$
Although I st quadrant of the hexagon contains fractional part of the second side, it is parallel to X - axis, hence the second angle is 0 .
9.02. For a regular polygon of 32 sides, each quadrant contains 8 sides, then the angle at the

7 th side will be $\angle X Y P_{7}(a, b)=\frac{\pi(n-2 x)}{2 n}$
$=\frac{\pi(32-2 \times 13)}{2 \times 32} ;$ where $x=2 i-1$
$=0.294524$
Further, (75) provides basis for the equation to find the opposite side.
accordingly, the longest opposite side of the first side is $=\left(\frac{2 \pi_{n}^{a}}{n}\right) \sin \left(\frac{\pi(n-2)}{2 n}\right)$
The longest opposite side of the second side is $=\left(\frac{2 \pi_{n}^{a}}{n}\right) \sin \left(\frac{\pi(n-2 \times 3)}{2 n}\right)$
The longest opposite side of the second side is $=\left(\frac{2 \pi_{n}^{a}}{n}\right) \sin \left(\frac{\pi(n-2 \times 5)}{2 n}\right)$
The longest opposite side of the i th side is $=\left(\frac{2 \pi_{n}^{a}}{n}\right) \sin \left(\frac{\pi(n-2 \times x)}{2 n}\right)$
Or
The longest opposite side of the i th side is $=\left(\frac{2 \pi_{n}^{a}}{n}\right) \sin \left(\frac{\pi(n-(4 i-2))}{2 n}\right)-----(76)$
Accordingly, opposite side is sum of the lengths from the first side to required position.
Magnitude of the Ist quadrant of regular polygons vary from $\frac{4 \pi_{3}^{a}}{9}$ to $\frac{\pi}{2}$ or $\frac{4}{\sqrt{3}}$ to $\frac{\pi}{2}$
Let, the arc of a regular polygon of n number of sides measured from the X - axis be z.
It is known that the length of each side is $\frac{2 \pi_{n}^{a}}{n}$
If the number of sides with fractional side that z contains be denoted by $\quad(C+d)$
where C is a whole number and d is a decimal.
Then,$(C+d)=\frac{z}{\frac{2 \pi_{n}^{a}}{n}}$
$(C+d)=\frac{n z}{2 \pi_{n}^{a}}$
Please note that magnitude of all sides are equal except the fractional part d and the corresponding angles in this context are different.

It is known that magnitude of each side is $=\frac{2 \pi_{n}^{a}}{n}$
$z=\frac{2 \pi_{n}^{a}}{n}(C+d)$
$=\frac{2 C \pi_{n}^{a}}{n}+\frac{2 d \pi_{n}^{a}}{n}$
let $\frac{2 d \pi_{n}^{a}}{n}, \quad$ be denoted by D
i.e, $=\frac{2 C \pi_{n}^{a}}{n}+D$

For an equilateral triangle, magnitude of opposite side with in the $I^{\text {st }}$ quadrant is
$G P_{1}(a, b)=\frac{2 \pi_{n}^{a}}{n}(C+d)\left[\sin \left(\frac{\pi(n-2)}{2 n}\right)\right]------(77) ;$ Fig (41)
in case of an equilateral triangle $C=0$ because the length of the arc in the $I^{\text {st }}$ quadrant is
less than one side.
Hence, $C+d=d$
Then, $G P_{1}(a, b)=\left(\frac{2 d \pi_{n}^{a}}{n}\right)\left[\sin \left(\frac{\pi(n-2)}{2 n}\right)\right]$
a)For example when $z=\sqrt{3}, ; d$ will be $=\frac{\sqrt{3}}{2 \sqrt{3}}$; here $2 \sqrt{3}$ is the length of the side of the considered triangle
Putting these values we have
of opposite side of of the determinant triangle will be,
$G P(a, b)=\left(\frac{2 \times \frac{1}{2} \times 3 \sqrt{3}}{3}\right)\left[\sin \left(\frac{\pi(3-2)}{6}\right)\right]$
$=\frac{\sqrt{3}}{2}$
b)Also, if $D=2.3094$
$G P(a, b)=d\left(\frac{2 \pi_{n}^{a}}{n}\right)\left[\sin \left(\frac{\pi(n-2)}{2 n}\right)\right]$
$=2.3094\left[\sin \left(\frac{\pi(n-2)}{2 n}\right)\right]$
$=2.3094 \times \sin \left(\frac{\pi}{6}\right)$
$=1.1547$
c)For square when $z=1, C$ will be $=0$, and $d=\frac{1}{2}$, then we have
$G P(a, b)=d\left(\frac{2 \pi_{n}^{a}}{n}\right)\left[\sin \left(\frac{\pi(n-2)}{2 n}\right)\right]$
$=\frac{1}{2}(2)\left[\frac{1}{\sqrt{2}}\right]$
$=\frac{1}{\sqrt{2}}$
d)When $n=32, \pi_{32}^{a}=32\left[\tan \left(\frac{\pi}{32}\right)\right]=3.1517$, hence length of each side $i s, \frac{2 \pi_{n}^{a}}{n}=\frac{6.3035}{32}=0.1970$
arc length 6.4 sides $=6.4 \times 0.1970=1.2608$
(side in this case is the length of the side of given $n-g o n$)

$$
\text { Then } C+d=6+0.4
$$

Then, magnitude of opposite side is
$G P(a, b)=\frac{2 \pi_{n}^{a}}{n}\left[\sin \left(\frac{\pi(n-2)}{2 n}\right)\right]+\cdots+\frac{2 \pi_{n}^{a}}{n}\left[\sin \left(\frac{\pi(n-2 \times 11)}{2 n}\right)\right]+D \times\left[\sin \left(\frac{\pi(n-2 \times 13)}{2 n}\right)\right]$
$=\frac{2 \pi_{32}^{a}}{32}\left[\left\{\sin \left(\frac{\pi(32-2)}{64}\right)\right\}+\cdots+\left\{\sin \left(\frac{\pi(32-2 \times 11)}{64}\right)\right\}\right]+0.0788 \times\left[\sin \left(\frac{\pi(32-2 \times 13)}{64}\right)\right]$
$=0.1970\left[\sin \left(\frac{15 \pi}{32}\right)+\cdots+\sin \left(\frac{5 \pi}{32}\right)\right]+0.0788 \times\left[\sin \frac{3 \pi}{32}\right]$
$=0.9284+0.0229$
$=0.9513$
This above series of n number of sides is a convergent functional series that converges towards 1 .
14.0.2. To check the above result geometric method is adopted as following.

Here C indicates number of sides in the given arc. Hence, at the end of 6 th side, the triangle $O P_{6}(a, b) O_{6}$ isformable. The side OO_{6} is the part of the required opposite side $0 \mathrm{O}_{6.4}$. Some of the elements of the $\Delta O P_{6}(a, b) O_{6}$ are known. Hence this triangle is chosen.
The magnitude of $O P_{c}(a, b)$ is a constant $=\sec \left(\frac{\pi}{n}\right)$
Consequently, $O P_{6}(a, b)=\sec \left(\frac{\pi}{32}\right)$
And, $\angle O_{6}=\frac{\pi}{2}$

$\operatorname{Fig}(40)$
Similarly, $\angle O_{c} P_{c}(a, b) O=\frac{\pi(n-2)}{2 n}-\frac{\pi(n-2(2 C-1))}{2 n}$
$=\frac{2 C \pi}{n}$
Hence, $\quad \angle O_{6} P_{6} O(a, b)=\frac{2 \times 6 \times \pi}{32}$
$=\frac{3 \pi}{8}$
Further, $\angle O O_{c} P_{c}(a, b)=\frac{\pi}{2}$
Then, $\angle O O_{6} P_{6}(a, b)=\frac{\pi}{2}$
applying \sin law OO_{i} can be found as following
$\frac{O O_{i}}{\sin \left(\frac{2 C \pi}{n}\right)}=\frac{O P_{i}(a, b)}{\sin \left(\frac{\pi}{2}\right)}$
$O O_{i}=\left(O P_{i}(a, b)\right)\left(\sin \left(\frac{2 C \pi}{n}\right)\right)$
$O O_{i}$ or $G P_{i}(a, b)=\frac{\left(\sin \left(\frac{2 C \pi}{n}\right)\right)}{\cos \left(\frac{\pi}{n}\right)}-----(78)$

Hence, $0 O_{6}=\frac{\sin \frac{(2 \times 6 \times \pi)}{32}}{\cos \left(\frac{\pi}{32}\right)}$
$=0.9284$
Length of the remaining part is $d \times \frac{2 \pi_{n}^{a}}{n}=0.4 \times 0.1970$
$=0.0788$
Finally to find the remaining part of the opposite side
$=0.0788 \times\left[\sin \frac{3 \pi}{32}\right]$
$=0.0229$
Further length of opposite side will be
$O O_{6.4}=0.9284+0.0229$
$=0.9513$
9.04.Now (79)is used for equating with (78) as following

If $C+d=\frac{n}{4}$; Following formula is valid for $(C+d)^{\text {th }}$ term, which means if
the fraction d exists, $d=1$, if does not exist, $d=0$
$G P(a, b)=\frac{2 \pi_{n}^{a}}{n}\left[\sin \left(\frac{\pi(n-2(2-1))}{2 n}\right)+\cdots+\sin \left(\frac{\pi(n-2(4-1))}{2 n}\right)+\cdots+\sin \left(\frac{\pi\left(n-2\left(2 i_{1}-1\right)\right)}{2 n}\right)\right.$
$\left.+d \times \sin \left(\frac{\pi\left(n-2\left(2 i_{2}-1\right)\right)}{2 n}\right)\right]=\frac{\left(\sin \left(\frac{2 C \pi}{n}\right)\right)}{\cos \left(\frac{\pi}{n}\right)}+D \times \sin \left(\frac{\pi\left(n-2\left(2 i_{2}-1\right)\right)}{2 n}\right)-$
$G P(a, b)=\left[\frac{2 \pi_{n}^{a}}{n} \sum_{i=1}^{i=C}\left[\sin \left(\frac{\pi\left(n-2\left(2 i_{1}-1\right)\right)}{2 n}\right)\right]\right]+D \times \sin \left(\frac{\pi\left(n-2\left(2 i_{2}-1\right)\right)}{2 n}\right)$
$\left[\frac{2 \pi_{n}^{a}}{n} \sum_{i=1}^{i=C}\left[\sin \left(\frac{\pi(n-2(2 C-1))}{2 n}\right)\right]\right]+\left(d \times \frac{2 \pi_{n}^{a}}{n}\right) \times \sin \left(\frac{\pi\left(n-2\left(2 i_{2}-1\right)\right)}{2 n}\right)$

$$
\begin{equation*}
=\frac{\sin \left(\frac{2 C \pi}{n}\right)}{\cos \left(\frac{\pi}{n}\right)}+D \times \sin \left(\frac{\pi\left(n-2\left(2(C+1)^{\text {th }} \text { term }-1\right)\right.}{2 n}\right)-----(\tag{80}
\end{equation*}
$$

Case-1
When $n=2 y$, where $y \in\{2,3,4 \cdots\}$, and for $C+d=\frac{n}{4}$, if d exists $d=1$, hence $(C+1)^{\text {th }}$ term exists.
We have $G P(a, b)=\frac{\sin \left(\frac{2 C \pi}{n}\right)}{\cos \left(\frac{\pi}{n}\right)}+D \times \sin \left(\frac{\pi\left(n-2\left(2(C+1)^{\text {th }} \text { term }-1\right)\right.}{2 n}\right)-$
We reqiure to show here that $2\left(2(C+1)^{\text {th }}\right.$ term -1$)=2 y$ iff d exists and $n=2 y$.
For that following method is adopted.
We know that $\frac{n}{4}=C+d$; iff $\frac{n}{4} \neq C$
Let $\frac{n}{4}=C+d$
$\frac{n}{4}-d=C$
1 is added to both sides of above equation, we have
$\frac{n}{4}-d+1=(C+1)$
Multiplied both sides by 2, and considered $C+1$ as the value of the term
$2\left(\frac{n}{4}-d+1\right)=2\left((C+1)^{\text {th }}\right.$ term $)$
1 is subtracted from both sides
$2\left(\frac{n}{4}-d+1\right)-1=2\left((C+1)^{\text {th }}\right.$ term $)-1$
Once again both sides are multiplied by 2
$2\left(2\left(\frac{n}{4}-d+1\right)-1\right)=2\left(2\left((C+1)^{\text {th }}\right.\right.$ term $\left.)-1\right)$

Now RHS of the equation resembles LHS of (81)
When LHS of the above equation is brought to simple terms, we have
$n-4 d+2=2\left(2\left((C+1)^{\text {th }}\right.\right.$ term $\left.)-1\right)------(82)$
Once again it needs to show that $4 d=2$
Any even number >5 and not multiple of 4 can be written as
$4 C+2=n$
Further, $n-4 C=2-----$ (83)
Also, $\frac{n}{4}=C+d$
Then, $n=4 C+4 d$
And, $n-4 C=4 \mathrm{~d}-----(84)$
Subtracting (84)from (83)we have
$0=2-4 d$
$4 d=2$
or $d=0.5$
This value of d serves as a proof of, +Y ordinate passes through the centre of a side.
Now equation (88) can be written as
$n=2\left(2\left((C+1)^{\text {th }}\right.\right.$ term $\left.)-1\right)$
i.e. $2 y=2\left(2\left((C+1)^{\text {th }}\right.\right.$ term $\left.)-1\right)$

Consequently, $G P(a, b)=\frac{\sin \left(\frac{2 C \pi}{2 y}\right)}{\cos \left(\frac{\pi}{2 y}\right)}+D \times \sin \left(\frac{\pi(2 y-2 y)}{2 n}\right)$
$G P(a, b)=\frac{\sin \left(\frac{2 C \pi}{2 y}\right)}{\cos \left(\frac{\pi}{2 y}\right)}$
The sum of the angles of $\sin \left(\frac{2 C \pi}{2 y}\right)$ and $\cos \left(\frac{\pi}{2 y}\right)$ is
$\frac{C \pi}{y}+\frac{\pi}{2 y}=\frac{2 C \pi+\pi}{2 y}$
$=\frac{\pi(2 C+1)}{2 y}$
Substituting $\frac{n}{4}$ for C we have,
$=\frac{\pi\left(2\left(\frac{n}{4}-d\right)+1\right)}{2 y}$
$=\frac{\pi\left(\left(\frac{n-4 d}{2}\right)+1\right)}{2 y}$
$=\frac{\pi\left(\frac{n-4 d+2}{2}\right)}{2 y}$
$=\frac{\pi\left(\frac{n}{2}\right)}{2 y}$; since $d=0.5$ in this case .
$=\frac{y \pi}{2 y}$; since $n=2 y$
Hence, $\frac{C \pi}{y}+\frac{\pi}{2 y}=\frac{\pi}{2}$
\therefore angles of sin and cos are complementary.
Hence, $\sin \left(\frac{2 C \pi}{2 y}\right)=\cos \left(\frac{\pi}{2 y}\right)$
Therefore, $\operatorname{GP}(a, b)=\frac{\sin \left(\frac{2 C \pi}{2 y}\right)}{\cos \left(\frac{\pi}{2 y}\right)}=1$
Case-2
When n is the multiple of $4, i e ., n=4 y$, for $y \in N=\{1,2,3 \cdots\}$

Then d will be $=0$, hence the equation will be
$G P(a, b)=\frac{\sin \left(\frac{2 C \pi}{n}\right)}{\cos \left(\frac{\pi}{n}\right)}$
$G P(a, b)=\frac{\sin \left(\frac{\left(\frac{n}{2}\right) \pi}{n}\right)}{\cos \left(\frac{\pi}{n}\right)} ;$ since $2 C=\frac{n}{2}$
$=\frac{1}{\cos \left(\frac{\pi}{n}\right)}$
$G P(a, b)=\sec \left(\frac{\pi}{n}\right)$
For example when $n=4$, and for $C=\frac{n}{4}=1$, then
$G P(a, b)=\sec \left(\frac{\pi}{n}\right)$
$=\sec \left(\frac{\pi}{4}\right)$
$=1.4142$
Further, applying limit on both sides of (86) we have
$\lim _{n \rightarrow \infty}\left[\left\{\frac{2 \pi_{n}^{a}}{n} \sum_{i=1}^{i=C,}\left[\sin \left(\frac{\pi(n-2(2 C-1))}{2 n}\right)\right]\right\}+D \times \sin \left(\frac{\pi\left(n-2\left(2(C+1)^{\text {th }} \text { term }-1\right)\right.}{2 n}\right)\right]$

$$
=\lim _{n \rightarrow \infty}\left[\frac{\sin \left(\frac{2 C \pi}{n}\right)}{\cos \left(\frac{\pi}{n}\right)}+D \times \sin \left(\frac{\pi\left(n-2\left(2(C+1)^{\text {th }} \text { term }-1\right)\right.}{2 n}\right)\right]
$$

$=\lim _{n \rightarrow \infty}\left(\frac{\sin \left(\frac{2 C \pi}{n}\right)}{\cos \left(\frac{\pi}{n}\right)}\right)+\lim _{n \rightarrow \infty}\left\{\frac{2 \pi_{n}^{a}}{n} \times d \times \sin \left(\frac{\pi\left(n-2\left(2(C+1)^{\text {th }} \text { term }-1\right)\right.}{2 n}\right)\right\}$
$=\frac{\lim _{n \rightarrow \infty}\left\{\sin \left(\frac{2 C \pi}{n}\right)\right\}}{\lim _{n \rightarrow \infty}\left\{\cos \left(\frac{\pi}{n}\right)\right\}}+\left\{\lim _{n \rightarrow \infty}\left(\frac{2 \pi_{n}^{a}}{n}\right) \times d \times \sin \left(\frac{\pi\left(n-2\left(2(C+1)^{\text {th }} \text { term }-1\right)\right.}{2 n}\right)\right\}$
as $n \rightarrow \infty$, The value of $2 C \rightarrow \frac{n}{2} ; \frac{\pi}{n} \rightarrow 0$ and $\frac{2 \pi_{n}^{a}}{n}$ also $\rightarrow 0$.
Consequently, $\lim _{n \rightarrow \infty}\left\{\sin \left(\frac{2 C \pi}{n}\right)\right\}=\sin \left(\frac{\pi}{2}\right)=1 ; \lim _{n \rightarrow \infty}\left\{\cos \left(\frac{\pi}{n}\right)\right\}=\cos (0)=1$ and $\lim _{n \rightarrow \infty}\left(\frac{2 \pi_{n}^{a}}{n}\right)=0$
Then (80) will be
$=1$
This result is the value of radius of unit circle.
Similarly equations are derivable for other sides of the determinant triangles.
XV. To find the value of arc trignometric functions like $\arcsin \theta, \arccos \theta$.:
10.01. Example1: Let the value of $\sin \theta$ in the Ist quadrant of a circle, be $=0.5$, here the value of θ is in conventional π
Solution 1: we have $O O_{i}=\left(O P_{i}(a, b)\right)\left(\sin \left(\frac{2 C \pi}{n}\right)\right)-----(85)$
$\frac{O O_{i}}{\left(O P_{i}(a, b)\right)}=\left(\sin \left(\frac{2 C \pi}{n}\right)\right)----(92)$
Then, (85)will be , $0.5=\left(\sin \left(\frac{2 C \pi}{n}\right)\right)----(86)$
By trial and error method we can find that (87)will be true when $C=4$, hence $n=48$
Consequantly, $\theta=\frac{2 C \pi}{n}$
$=\frac{2 \times 4 \times \pi}{48}$
$=\frac{\pi}{6}$
This result can also be found as following
Solution 2: From (79)we have
$G P(a, b)=\frac{2 \pi_{n}^{a}}{n}\left[\sin \left(\frac{\pi(n-2(2-1))}{2 n}\right)+\cdots+\sin \left(\frac{\pi(n-2(4-1))}{2 n}\right)+\cdots+\sin \left(\frac{\pi\left(n-2\left(2 i_{1}-1\right)\right)}{2 n}\right)\right.$
$\left.+d \times \sin \left(\frac{\pi\left(n-2\left(2 i_{2}-1\right)\right)}{2 n}\right)\right]=\frac{\left(\sin \left(\frac{2 C \pi}{n}\right)\right)}{\cos \left(\frac{\pi}{n}\right)}+D \times \sin \left(\frac{\pi\left(n-2\left(2 i_{2}-1\right)\right)}{2 n}\right)$
Let $n=32$

TABLE-4 : Showing the details of required elements to find the angle.

Ordinal number of a side	n	Number of sides in the Ist quadrant $\frac{n}{4}$	Length of each side $l=\frac{2 \pi_{n}^{a}}{n}$	Length of maximum opposite side of each side $l \times \sin \left(\frac{\pi(n-2(2 i-1))}{2 n}\right)=m$	Length of the opposit e side w.r.t each side -m	Cumulative total(opposit e side) $\left(G P_{i}(a, b)\right)$
1	2	3	4	5	6	7
1 st	4	1	2	$2 \times \sin \left(\frac{\pi\{4-2(2-1)\}}{2 \times 4}\right)$	$\sqrt{2}$	
1 st	8	2	0.8284	$0.8284 \times \sin \left(\frac{\pi\{8-2(2-1)\}}{2 \times 8}\right)$	0.7654	
$2^{\text {nd }}$				$0.8284 \times \sin \left(\frac{\pi(n-2((2 \times 2)-1)}{2 n}\right)$	0.3170	1.0824
$1{ }^{\text {st }}$	12	3	0.5359	$0.5359 \times \sin \left(\frac{\pi\{12-2(2-1)\}}{2 \times 12}\right)$	0.5176	
$2^{\text {nd }}$				$0.5359 \times \sin \left(\frac{\pi\{12-2(2 \times 2-1)\}}{2 \times 12}\right)$	0.3789	0.8966
$3^{\text {rd }}$				$0.5359 \times \sin \left(\frac{\pi\{12-2(2 \times 3-1)\}}{2 \times 12}\right)$	0.1387	1.0353
$1{ }^{\text {st }}$	16	4	0.3978	$0.3978 \times \sin \left(\frac{\pi\{16-2(2-1)\}}{2 \times 16}\right)$	0.3902	
$2^{\text {nd }}$				$0.3978 \times \sin \left(\frac{\pi\{16-2(2 \times 2-1)\}}{2 \times 16}\right)$	0.3308	0.7210
$3^{\text {rd }}$				$0.3978 \times \sin \left(\frac{\pi\{16-2(2 \times 3-1)\}}{2 \times 16}\right)$	0.2210	0.9420
$4^{\text {th }}$				$0.3978 \times \sin \left(\frac{\pi\{16-2(2 \times 4-1)\}}{2 \times 16}\right)$	0.0776	1.0196
$1{ }^{\text {st }}$	20	5	0.3168	$0.3168 \times \sin \left(\frac{\pi\{24-2(2-1)\}}{2 \times 24}\right)$	0.3129	
$2^{\text {nd }}$				$0.3168 \times \sin \left(\frac{\pi\{24-2(2 \times 2-1)\}}{2 \times 24}\right)$	0.2822	0.5951
$3^{\text {rd }}$				$0.3168 \times \sin \left(\frac{\pi\{24-2(2 \times 3-1)\}}{2 \times 24}\right)$	0.2240	0.8191
$4^{\text {th }}$				$0.3168 \times \sin \left(\frac{\pi\{20-2(2 \times 4-1)\}}{2 \times 24}\right)$	0.1438	0.9629
$5^{\text {th }}$				$0.3168 \times \sin \left(\frac{\pi\{20-2(2 \times 5-1)\}}{2 \times 20}\right)$	0.0496	1.0124
$1{ }^{\text {st }}$	24	6	0.2633	$0.2633 \times \sin \left(\frac{\pi\{24-2(2-1)\}}{2 \times 24}\right)$	0.2611	
$2^{\text {nd }}$				$0.2633 \times \sin \left(\frac{\pi\{24-2(2 \times 2-1)\}}{2 \times 24}\right)$	0.2433	0.5043
$3^{\text {rd }}$				$0.2633 \times \sin \left(\frac{\pi\{24-2(2 \times 3-1)\}}{2 \times 24}\right)$	0.2089	0.7132
$4^{\text {th }}$				$0.2633 \times \sin \left(\frac{\pi\{24-2(2 \times 4-1)\}}{2 \times 24}\right)$	0.1603	0.8735
$5^{\text {th }}$				$0.2633 \times \sin \left(\frac{\pi\{24-2(2 \times 5-1)\}}{2 \times 24}\right)$	0.1008	0.9743

Ordinal number of a side	n	Number of sides in the Ist quadrant $\frac{n}{4}$	Length of each side $l=\frac{2 \pi_{n}^{a}}{n}$	Length of maximum opposite side of each side $l \times \sin \left(\frac{\pi(n-2(2 i-1))}{2 n}\right)=m$	Length of the opposit e side w.r.t each side -m	Cumulative total(opposit e side) (GP $\left.P_{i}(a, b)\right)$
$6^{\text {th }}$				$0.2633 \times \sin \left(\frac{\pi\{24-2(2 \times 6-1)\}}{2 \times 24}\right)$	0.0344	1.0086
$1{ }^{\text {st }}$	28	7	0.2254	$0.2254 \times \sin \left(\frac{\pi\{28-2(2-1)\}}{2 \times 28}\right)$	0.2239	
$2^{\text {nd }}$				$0.2254 \times \sin \left(\frac{\pi\{28-2(2 \times 2-1)\}}{2 \times 28}\right)$	0.1825	0.4366
$3^{\text {rd }}$				$0.2254 \times \sin \left(\frac{\pi\{28-2(2 \times 3-1)\}}{2 \times 28}\right)$	0.1908	0.6274
$4^{\text {th }}$				$0.2254 \times \sin \left(\frac{\pi\{28-2(2 \times 4-1)\}}{2 \times 28}\right)$	0.1593	0.7868
$5^{\text {th }}$				$0.2254 \times \sin \left(\frac{\pi\{28-2(2 \times 5-1)\}}{2 \times 28}\right)$	0.1199	0.9067
$6^{\text {th }}$				$0.2254 \times \sin \left(\frac{\pi\{28-2(2 \times 6-1)\}}{2 \times 28}\right)$	0.0744	0.9811
$7^{\text {th }}$				$0.2254 \times \sin \left(\frac{\pi\{28-2(2 \times 6-1)\}}{2 \times 28}\right)$	0.0252	1.0063
$1{ }^{\text {st }}$	32	8	0.1970	$0.1970 \times \sin \left(\frac{\pi\{32-2(2-1)\}}{2 \times 32}\right)$	0.1961	
$2^{\text {nd }}$				$0.1970 \times \sin \left(\frac{\pi\{32-2(2 \times 2-1)\}}{2 \times 32}\right)$	0.1885	0.3846
$3^{\text {rd }}$			0.1970	$0.1970 \times \sin \left(\frac{\pi\{32-2(2 \times 3-1)\}}{2 \times 32}\right)$	0.1737	0.5583
$4^{\text {th }}$				$0.1970 \times \sin \left(\frac{\pi\{32-2(2 \times 4-1)\}}{2 \times 32}\right)$	0.1523	0.7116
$5^{\text {th }}$				$0.1970 \times \sin \left(\frac{\pi\{32-2(2 \times 5-1)\}}{2 \times 32}\right)$	0.1250	0.8366
$6^{\text {th }}$				$0.1970 \times \sin \left(\frac{\pi\{32-2(2 \times 6-1)\}}{2 \times 32}\right)$	0.0929	0.9295
$7^{\text {th }}$				$0.1970 \times \sin \left(\frac{\pi\{32-2(2 \times 7-1)\}}{2 \times 32}\right)$	0.0580	0.9875
$8^{\text {th }}$				$0.1970 \times \sin \left(\frac{\pi\{32-2(2 \times 8-1)\}}{2 \times 32}\right)$	0.0193	1.0048

15.0.1. If a polygon of non convenient number of sides is chosen value of θ is approximatable as following.
Solution 2: Now let a convenient regular polygon be chosen to find the angle, i.e., let n
$=32$, then $\frac{n}{4}=8$
$G P(a, b)=\frac{2 \pi_{n}^{a}}{n}\left[\sin \left(\frac{\pi(n-2)}{2 n}\right)\right]+\cdots+\frac{2 \pi_{n}^{a}}{n}\left[\sin \left(\frac{\pi(n-2 \times 11)}{2 n}\right)\right]+D \times\left[\sin \left(\frac{\pi(n-2 \times 13)}{2 n}\right)\right]$
To find the boundary
The value of $\frac{2 \pi_{32}^{a}}{32}\left[\sin \left(\frac{\pi(32-2)}{2 \times 32}\right)\right]+\frac{2 \pi_{32}^{a}}{32}\left[\sin \left(\frac{\pi(32-6)}{2 \times 32}\right)\right]+D \times\left[\sin \left(\frac{\pi(32-10)}{2 \times 32}\right)\right]$ will be
$0.1970\left[\sin \left(\frac{\pi(32-2)}{2 \times 32}\right)\right]+0.1970\left[\sin \left(\frac{\pi(32-6)}{2 \times 32}\right)\right]+D \times\left[\sin \left(\frac{\pi(32-10)}{2 \times 32}\right)\right]$
$=0.1960+0.1885+D \times\left[\sin \left(\frac{\pi(32-10)}{2 \times 32}\right)\right]$
$=0.3845+D \times 0.8819$
Similarly, the expression for adjacent side is.
$O G=1.004839-\left[0.1970\left\{\cos \left(\frac{\pi(32-2)}{2 \times 32}\right)+\cos \left(\frac{\pi(32-6)}{2 \times 32}\right)\right\}+\left\{D \times \cos \left(\frac{\pi(32-10)}{2 \times 32}\right)\right\}\right]$
$=1.004839-\left[0.1970\left\{\cos \left(\frac{\pi(32-2)}{2 \times 32}\right)+\cos \left(\frac{\pi(32-6)}{2 \times 32}\right)\right\}+D \times \cos \left(\frac{\pi(32-10)}{2 \times 32}\right)\right]$
$=1.004839-0.0765-D \times 0.4714$
$=0.9283-D \times 0.4714$
Now the hypotenuse of determinant Δ is,
$O P(a, b)=(0.3845+D \times 0.8819)^{2}+(0.9283-D \times 0.4714)^{2}$
$[2(0.3845+D \times 0.8819)]^{2}=(0.3845+D \times 0.8819)^{2}+(0.9283-D \times 0.4714)^{2}$
When above relation is brought to simple terms we have a quadratic equation that can be solved for D.
i.e, $2.1110 D^{2}+2.5157 D-0.4182=0$

Here the leading coefficient $a=2.1110$, middle coefficient $b=2.5157$ and the constant term $c=-0.4182$
Now solving for D using the formula $D_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 b}$ we have
$D=0.1312$
Consequently $d=\frac{0.1312}{0.197}$
$=0.6660$
Now to find the angle subtended by two sides and the fractional side is found as following
Angle subtended by each side at the center is $=\frac{2 \pi}{32}$
$=0.1963$
So, the angle subtended by two such sides $=2 \times 0.1963$
$=0.3927$
Here, segments of the side do not subtend the angle at the centre proportinately. Hence an approximation is done at this stage.
i.e., the angle subtended by the fractional part of the side is $\approx 0.6660 \times 0.1963$
i.e., Opposite side intersect the perimeter at $C+d$ number of sides which is $=2+0.6660$ $=2.666$ sides
$\frac{C+d}{\frac{n}{4}}=\frac{2.666}{8}$
Here $\lim _{n \rightarrow \infty}(C+d)=C$
Now let $n=400000$, a relatively large number, then C will be
$\frac{C}{100000}=\frac{2.666}{8}$
Then $C=33325$
Then, $\theta=C \times \frac{2 \pi}{n}$
$=33325 \times \frac{2 \pi}{400000}$
$=0.5235$
which is very nearly equal to $\frac{\pi}{6}=0.5236$
Example2: Find the angle when $\sin \theta=\frac{1}{\sqrt{2}}$ (in the Ist quadrant)
Solution: It is known that, $O O_{i}=\left(O P_{i}(a, b)\right)\left(\sin \left(\frac{2 C \pi}{n}\right)\right)$
i.e, in the above case , $\quad \frac{O O_{i}}{\left(O P_{i}(a, b)\right)}=\left(\sin \left(\frac{2 C \pi}{n}\right)\right)$
$\frac{1}{\sqrt{2}}=\left(\sin \left(\frac{2 C \pi}{n}\right)\right)$
Above equation is true when $C=1$ and $n=4$
Consequantly, $\theta=\frac{2 \pi}{4}$
This method is applicable for values that can be found by trial and error method.
15.0.2. Finally, it is the right position to study the values of sum and differances of trigonometric functions. $\cos (x+y)=\cos x \cos y-\sin x \sin y------(87) ;$
this identity is not true for equilateral triangle
Now, let we consider a regular polygon of 32 sides. Here values of x and y are considerd only at vertices.
Here in the first quadrant values of x and y are any one of the multiples of $\frac{2 \pi_{32}^{a}}{32}=0.1970$
Let $x=\frac{2 \pi_{32}^{a}}{32}$ and $y=\frac{2 \pi_{32}^{a}}{16}$
Then, $\cos (x+y)=\cos x \cos y-\sin x \sin y$
$\cos \left(\frac{2 \pi_{32}^{a}}{32}+\frac{2 \pi_{32}^{a}}{16}\right)=\cos \left(\frac{2 \pi_{32}^{a}}{32}\right) \cos \left(\frac{2 \pi_{32}^{a}}{16}\right)-\sin \left(\frac{2 \pi_{32}^{a}}{32}\right) \sin \left(\frac{2 \pi_{32}^{a}}{16}\right)$
$\cos \left(\frac{3 \pi_{32}^{a}}{16}\right)=\cos \left(\frac{2 \pi_{32}^{a}}{32}\right) \cos \left(\frac{2 \pi_{32}^{a}}{16}\right)-\sin \left(\frac{2 \pi_{32}^{a}}{32}\right) \sin \left(\frac{2 \pi_{32}^{a}}{16}\right)$
$\frac{3 \pi_{32}^{a}}{16}$ is equal to arc length of 3 sides
$\cos \left(\frac{3 \pi_{32}^{a}}{16}\right)=\frac{\frac{1}{\cos \left(\frac{\pi}{32}\right)}-0.197\left\{\cos \left(\frac{15 \pi}{32}\right)+\cos \left(\frac{13 \pi}{32}\right)+\cos \left(\frac{11 \pi}{32}\right)\right\}}{\frac{1}{\cos \left(\frac{\pi}{32}\right)}}$
$=1-0.197 \times \cos \left(\frac{\pi}{32}\right)\left\{\cos \left(\frac{15 \pi}{32}\right)+\cos \left(\frac{13 \pi}{32}\right)+\cos \left(\frac{11 \pi}{32}\right)\right\}$
$=0.8315$
Similarly, $\cos \left(\frac{2 \pi_{32}^{a}}{32}\right)=0.9808 ; \cos \left(\frac{2 \pi_{32}^{a}}{16}\right)=0.9239 ; \sin \left(\frac{2 \pi_{32}^{a}}{32}\right)=0.1951 ; \sin \left(\frac{2 \pi_{32}^{a}}{16}\right)=0.3827$
Substituting these values in () we have

$$
\begin{aligned}
0.8315 & =(0.9808 \times 0.9239)-(0.1951 \times 0.3827) \\
& =0.8314 \\
0.8315 & \approx 0.8314
\end{aligned}
$$

This result shows that the equation $\cos (x+y)=\cos x \cos y-\sin x \sin y$ is valied only to the values at the vertices of the regular polygons from reasonable number of sides.
As $n \rightarrow \infty$, the resulting figure will be a circle. then, each point on the circumferance of a circle is a side as well as a vertex. Consequently, (87)is true for all points on the circumferance of a circle.

XVI. Conclusion

Any knowledge that exhibits good relation and link between the subject and matter will be interesting, easy to learn and to remember, hence they can be easily applicable in required fields. With this vision an effort is made to bring the link between the equations of regular polygons in this article

