Stochastic Modelling of Tumor Growth within Organ during Chemotherapy Using Bivariate Birth, Death and Migration Processes

${ }^{1}$ Tirupathi Rao Padi, ${ }^{2}$ J. Jayabharathiraj, ${ }^{3}$ B.N. Naveen Kumar, ${ }^{4}$ C. Lakshmi Usha, ${ }^{5}$ P. Rajasekhara Reddy
1,2 Dept. of Statistics, Pondicherry University Puducherry -605 014, India,
${ }^{3,4,5}$ Dept. of Statistics, S.V. University Tirupathi - 517 502, Andhra Pradesh, India

Abstract

In this paper, a bivariate stochastic model for cancer growth within a specific organ during chemotherapy is developed using the birth, death and migration processes based on pathophysiology and genetic programs of cancerous cell. Joint probability functions and statistical properties of the model are derived with the formulated stochastic differential equations. Model behaviour was analysed with numerical data.

Keywords: Stochastic Modelling, Cancer Growth within Organ, Chemotherapy, Generalized Poisson Processes, Differential- difference equations

I. Introduction

Continuous proliferation with minimum rate of death in such cells will form a mass of accumulation of corrupted cells called tumour. The growth or loss processes of cells are depending on the nature of mutant cell and its stages of transformation. Invasion of cancer cells has a potential to generate new colonies at different sites of the body from the forming or hosting sites. Hence, the growth and spread of cancerous cells will have the random processes such as birth, death and migration. The dynamics of cancer cells spread is influenced by the drug presence and its absence during the treatment with chemotherapy. It is customary to assess the severity of the cancer of the patient through manual methods.

Approach of stochastic modelling for evaluating the health status of the patient will be more beneficial under the uncertain environment. There is much evidence in literature on quantitative approach of cancer growth studies. The colony size distribution of multiple metastatic tumor and their growth is modelled by Wata et al [1]. The cancer chemotherapy treatment with the metastasis is modelled mathematically by Pinho et al [2]. The growth of cancer during and after the chemotherapy is modelled for studying the equilibrium probability of tumor size by Srinivasa Rao et al [3,4]. Various stochastic multistage models were developed for dynamics of cells in the cancer tumor and its behaviour under the presence and absence of chemotherapy by Tirupathi Rao et al [5-7].

This study is focused on developing bi-variate stochastic model for the cancer cells growth in an organ under presence and absence of chemotherapy. The birth, death and migration of cells to the neighbouring parts of an organ have been considered in the model. The migration of cancer cells are happens through the process called metastasis. Initial position of cancer tumor is named as primary tumor and tumor in the neighbouring location due migration process is called secondary tumor. This model is constructed based on the biological and patho-physiological assumptions of cancer and completely randomized cell divisions. The following schematic diagram shall give more clear idea on cancer growth in presence and absence of chemotherapy.

Figure -1: Schematic Diagram of cancer cells growth during chemotherapy.

II. Stochastic Model for growth of cancerous cell during chemotherapy

The mechanisms involved in the cell divisions are purely stochastic in nature. Let the events occurred in non-overlapping interval of time are statistically independent. Let Δt be an infinitesimal interval in the time.

Let λ_{ijl} be the growth rate of $\mathrm{i}^{\text {th }}$ stage cells in $\mathrm{j}^{\text {th }}$ stage tumor and $\mathrm{l}^{\text {th }}$ state of drug in chemotherapy; μ_{ijl} be the loss rate of $\mathrm{i}^{\text {th }}$ stage cells in $\mathrm{j}^{\text {th }}$ stage tumor and $\mathrm{l}^{\text {th }}$ state of drug in chemotherapy;
δ_{ij1} be the transformation rate of $\mathrm{i}^{\text {th }}$ stage cells to $(\mathrm{i}+1)^{\text {th }}$ stage in the $\mathrm{j}^{\text {th }}$ stage tumor to $(\mathrm{j}+1)^{\text {th }}$ stage of tumor and $1^{\text {th }}$ state of drug in chemotherapy.

Where,
$\mathrm{i}=1,2,3$: Normal stage of cell, Mutant stage of cell, Migrant mutant stage of cell.
$\mathrm{j}=1,2$: Primary stage of tumor, Secondary stage of tumor.
l=0, 1: Drug Absence, Drug Presence.
Let $a_{k}= \begin{cases}1 & \text { Drug Presence } \quad \text { for } k=1,2,3,4,5,6,7,8,9 \\ 0 & \text { Drug Absence } \\ (0,1) & \text { Partial Presence of drug }\end{cases}$
Let $\{\mathrm{N}(\mathrm{t}), \mathrm{t} \geq 0\}$ be the process of normal cell division (growth/loss) and $\{\mathrm{M}(\mathrm{t}), \mathrm{t} \geq 0\}$ be the process of mutant cell division (growth/loss). Let $\{\mathrm{N}(\mathrm{t}), \mathrm{M}(\mathrm{t}), \mathrm{t} \geq 0\}$ be a joint bivariate stochastic processes of individual stochastic processes of $\{N(t), t \geq 0\}$ and $\{M(t), t \geq 0\}$. Such that $\operatorname{Pr}\{[N(t), M(t)]=[n, m]\}=P_{n, m}(t)$ and $\operatorname{Pr}\{\mathrm{N}(\mathrm{t})=\mathrm{n}\}=\mathrm{P}_{\mathrm{n}}(\mathrm{t}), \operatorname{Pr}\{\mathrm{M}(\mathrm{t})=\mathrm{m}\}=\mathrm{P}_{\mathrm{m}}(\mathrm{t})$.

Further,

```
\(\operatorname{Pr}\{\mathrm{N}(\Delta \mathrm{t})=\mathrm{u} / \mathrm{N}(\mathrm{t})=\mathrm{n}\}=\mathrm{P}_{\mathrm{nu}}\) for \(\mathrm{u}=\mathrm{n}+1, \mathrm{n}-1, \mathrm{n}, \mathrm{n} \pm 2\)
\(\operatorname{Pr}\{\mathrm{M}(\Delta \mathrm{t})=\mathrm{v} / \mathrm{M}(\mathrm{t})=\mathrm{m}\}=\mathrm{P}_{\mathrm{mv}}\) for \(\mathrm{v}=\mathrm{m}+1, \mathrm{~m}-1, \mathrm{~m}, \mathrm{~m} \pm 2\)
\(\operatorname{Pr}\{\{[\mathrm{N}(\Delta \mathrm{t}), \mathrm{M}(\Delta \mathrm{t})]=(\mathrm{u}, \mathrm{v})\} /\{[\mathrm{N}(\mathrm{t}), \mathrm{M}(\mathrm{t})=(\mathrm{n}, \mathrm{m})]\}\}=\mathrm{P}_{\mathrm{nu}, \mathrm{mv}}\) for \(\mathrm{v}=\mathrm{m}+1, \mathrm{~m}-1, \mathrm{~m}, \mathrm{~m} \pm 2\)
```

Let us now define postulates of the univariate process with respect to normal and mutant growth,

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{n}, \mathrm{u}}=\mathrm{P}\{\mathrm{~N}(\Delta \mathrm{t})=\mathrm{u} / \mathrm{N}(\mathrm{t})=\mathrm{n}\} \\
& =\mathrm{n}\left(\mathrm{a}_{1} \lambda_{111}+\left(1-\mathrm{a}_{1}\right) \lambda_{110}\right) \Delta \mathrm{t}+\mathrm{o}(\Delta \mathrm{t}) \quad ; \mathrm{u}=\mathrm{n}+1 \\
& =\mathrm{n}\left(\mathrm{a}_{5} \mu_{111}+\left(1-\mathrm{a}_{5}\right) \mu_{110}\right) \Delta \mathrm{t}+\mathrm{o}(\Delta \mathrm{t}) \quad ; \mathrm{u}=\mathrm{n}-1 \\
& =\mathrm{n}\left(\mathrm{a}_{2} \delta_{111}+\left(1-\mathrm{a}_{2}\right) \delta_{111}\right) \Delta \mathrm{t}+\mathrm{o}(\Delta \mathrm{t}) \quad ; \mathrm{u}=\mathrm{n}-1 \\
& =1-\left[\mathrm{n}\left(\begin{array}{l}
\left(\mathrm{a}_{1} \lambda_{111}+\left(1-\mathrm{a}_{1}\right) \lambda_{110}\right) \\
+\left(\mathrm{a}_{5} \mu_{111}+\left(1-\mathrm{a}_{5}\right) \mu_{110}\right) \\
+\left(\mathrm{a}_{2} \delta_{111}+\left(1-\mathrm{a}_{2}\right) \delta_{111}\right)
\end{array}\right) \Delta \mathrm{t}+\mathrm{o}(\Delta \mathrm{t})\right] ; \mathrm{u}=\mathrm{n} \\
& =o(\Delta t)^{2} \\
& ; \mathrm{u}=\mathrm{n} \pm 2
\end{aligned}
$$

For mutant growth processes,

$$
\left.\begin{array}{rlrl}
P_{m, v} & =P\{M(\Delta t)=v / M(t)=m\} & & \\
& =m\left(a_{3} \lambda_{211}+\left(1-a_{3}\right) \lambda_{210}\right) \Delta t+o(\Delta t) & & ; v=m+1 \\
& =m\left(a_{6} \mu_{211}+\left(1-a_{6}\right) \mu_{210}\right) \Delta t+o(\Delta t) & & ; v=m-1 \\
& =m\left(a_{7} \delta_{211}+\left(1-a_{7}\right) \delta_{210}\right) \Delta t+o(\Delta t) & & ; v=m+1 \\
& =\left(a_{4} \lambda_{321}+\left(1-a_{4}\right) \lambda_{320}\right) \Delta t+o(\Delta t) & & ; v=m-1 \\
& =\left(a_{8} \mu_{321}+\left(1-a_{8}\right) \mu_{320}\right) \Delta t+o(\Delta t) & ; v=m-1 \\
& =\left(a_{9} \delta_{321}+\left(1-a_{9}\right) \delta_{321}\right) \Delta t+o(\Delta t) & \\
& =1-\left[\left\{\begin{array}{ll}
m\left(\left(a_{3} \lambda_{211}+\left(1-a_{3}\right) \lambda_{210}\right)+\left(a_{6} \mu_{211}+\left(1-a_{6}\right) \mu_{210}\right)\right. \\
\left.+\left(a_{7} \delta_{211}+\left(1-a_{7}\right) \delta_{210}\right)\right)+\left(\left(a_{4} \lambda_{321}+\left(1-a_{4}\right) \lambda_{320}\right)\right. \\
\left.+\left(a_{8} \mu_{321}+\left(1-a_{8}\right) \mu_{320}\right)+\left(a_{9} \delta_{321}+\left(1-a_{9}\right) \delta_{321}\right)\right)
\end{array}\right\} \Delta t+o(\Delta t)\right. & ; v=m
\end{array}\right]
$$

Considering the joint stochastic processes, we have

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{nu}, \mathrm{mv}}=\mathrm{P}\{[(\mathrm{~N}(\Delta \mathrm{t}), \mathrm{M}(\Delta \mathrm{t})]=(\mathrm{u}, \mathrm{v}) /[(\mathrm{N}(\mathrm{t}), \mathrm{M}(\mathrm{t})]=(\mathrm{n}, \mathrm{~m})\} \\
& =\mathrm{n}\left(\mathrm{a}_{1} \lambda_{111}+\left(1-\mathrm{a}_{1}\right) \lambda_{110}\right) \Delta \mathrm{t}+\mathrm{o}(\Delta \mathrm{t}) \\
& ; \mathrm{u}=\mathrm{n}+1, \mathrm{v}=\mathrm{m} \\
& =\mathrm{n}\left(\mathrm{a}_{5} \mu_{111}+\left(1-\mathrm{a}_{5}\right) \mu_{110}\right) \Delta \mathrm{t}+\mathrm{o}(\Delta \mathrm{t}) \quad ; \mathrm{u}=\mathrm{n}-1, \mathrm{v}=\mathrm{m} \\
& =\mathrm{n}\left(\mathrm{a}_{2} \delta_{111}+\left(1-\mathrm{a}_{2}\right) \delta_{111}\right) \Delta \mathrm{t}+\mathrm{o}(\Delta \mathrm{t}) \quad ; \mathrm{u}=\mathrm{n}-1, \mathrm{v}=\mathrm{m} \\
& =\mathrm{m}\left(\mathrm{a}_{3} \lambda_{211}+\left(1-\mathrm{a}_{3}\right) \lambda_{210}\right) \Delta \mathrm{t}+\mathrm{o}(\Delta \mathrm{t}) \quad ; \mathrm{u}=\mathrm{n}, \mathrm{v}=\mathrm{m}+1 \\
& =\mathrm{m}\left(\mathrm{a}_{6} \mu_{211}+\left(1-\mathrm{a}_{6}\right) \mu_{210}\right) \Delta \mathrm{t}+\mathrm{o}(\Delta \mathrm{t}) \quad ; \mathrm{u}=\mathrm{n}, \mathrm{v}=\mathrm{m}-1 \\
& =\mathrm{m}\left(\mathrm{a}_{7} \delta_{211}+\left(1-\mathrm{a}_{7}\right) \delta_{210}\right) \Delta \mathrm{t}+\mathrm{o}(\Delta \mathrm{t}) \quad ; \mathrm{u}=\mathrm{n}, \mathrm{v}=\mathrm{m}-1 \\
& =\left(\mathrm{a}_{4} \lambda_{321}+\left(1-\mathrm{a}_{4}\right) \lambda_{320}\right) \Delta \mathrm{t}+\mathrm{o}(\Delta \mathrm{t}) \quad ; \mathrm{u}=\mathrm{n}, \mathrm{v}=\mathrm{m}+1 \\
& =\left(\mathrm{a}_{8} \mu_{321}+\left(1-\mathrm{a}_{8}\right) \mu_{320}\right) \Delta \mathrm{t}+\mathrm{o}(\Delta \mathrm{t}) \quad ; \mathrm{u}=\mathrm{n}, \mathrm{v}=\mathrm{m}-1 \\
& =\left(\mathrm{a}_{9} \delta_{321}+\left(1-\mathrm{a}_{9}\right) \delta_{320}\right) \Delta \mathrm{t}+\mathrm{o}(\Delta \mathrm{t}) \quad ; \mathrm{u}=\mathrm{n}, \mathrm{v}=\mathrm{m}-1 \\
& =1-\left[\begin{array}{l}
\left.\left.\begin{array}{l}
\mathrm{n}\left(\left(\mathrm{a}_{1} \lambda_{111}+\left(1-\mathrm{a}_{1}\right) \lambda_{110}\right)+\left(\mathrm{a}_{5} \mu_{111}+\left(1-\mathrm{a}_{5}\right) \mu_{110}\right)\right. \\
\left.+\left(\mathrm{a}_{2} \delta_{111}+\left(1-\mathrm{a}_{2}\right) \delta_{111}\right)\right)+\mathrm{m}\left(\left(\mathrm{a}_{3} \lambda_{211}+\left(1-\mathrm{a}_{3}\right) \lambda_{210}\right)\right. \\
\left.+\left(\mathrm{a}_{6} \mu_{211}+\left(1-\mathrm{a}_{6}\right) \mu_{210}\right)+\left(\mathrm{a}_{7} \delta_{211}+\left(1-\mathrm{a}_{7}\right) \delta_{210}\right)\right) \\
+\left(\left(\mathrm{a}_{4} \lambda_{321}+\left(1-\mathrm{a}_{4}\right) \lambda_{320}\right)+\left(\mathrm{a}_{8} \mu_{321}+\left(1-\mathrm{a}_{8}\right) \mu_{320}\right)\right. \\
\left.+\left(\mathrm{a}_{9} \delta_{321}+\left(1-\mathrm{a}_{9}\right) \delta_{320}\right)\right)
\end{array}\right\} \Delta \mathrm{t}+\mathrm{o}(\Delta \mathrm{t})\right]
\end{array}\right] \\
& =\mathrm{o}(\Delta \mathrm{t})^{2} \quad ; \mathrm{u}=\mathrm{n} \pm 2, \mathrm{v}=\mathrm{m} \pm 2
\end{aligned}
$$

Let $P_{n, m}(t+\Delta t)$ be the probability that happening of an event of one event in an infinitesimal interval Δt, there exists ' n ' normal and ' m ' mutant cells in the organ upto time ' t '. Then the differential - difference equations of the model are:

$$
\begin{align*}
& \mathrm{P}_{\mathrm{n}, \mathrm{~m}}^{\prime}(\mathrm{t})=-\left\{\mathrm{n}\left(\left(\mathrm{a}_{1} \lambda_{111}+\left(1-\mathrm{a}_{1}\right) \lambda_{110}\right)+\left(\mathrm{a}_{2} \delta_{111}+\left(1-\mathrm{a}_{2}\right) \delta_{110}\right)+\left(\mathrm{a}_{5} \mu_{111}+\left(1-\mathrm{a}_{5}\right) \mu_{110}\right)\right)\right. \\
& +\mathrm{m}\left(\left(\mathrm{a}_{3} \lambda_{211}+\left(1-\mathrm{a}_{3}\right) \lambda_{210}\right)+\left(\mathrm{a}_{6} \mu_{211}+\left(1-\mathrm{a}_{6}\right) \mu_{210}\right)+\left(\mathrm{a}_{7} \delta_{211}+\left(1-\mathrm{a}_{7}\right) \delta_{210}\right)\right) \\
& \left.+\left(\left(\mathrm{a}_{4} \lambda_{41}+\left(1-\mathrm{a}_{4}\right) \lambda_{40}\right)+\left(\mathrm{a}_{8} \mu_{41}+\left(1-\mathrm{a}_{8}\right) \mu_{40}\right)+\left(\mathrm{a}_{9} \mu_{51}+\left(1-\mathrm{a}_{9}\right) \mu_{50}\right)\right)\right\} \mathrm{P}_{\mathrm{n}, \mathrm{~m}}(\mathrm{t}) \\
& +\mathrm{P}_{\mathrm{n}+1, \mathrm{~m}}(\mathrm{t})\left[(\mathrm{n}-1)\left(\mathrm{a}_{1} \lambda_{111}+\left(1-\mathrm{a}_{1}\right) \lambda_{110}\right)\right]+\mathrm{P}_{\mathrm{n}+1, \mathrm{~m}-1}(\mathrm{t})\left[(\mathrm{n}+1)\left(\mathrm{a}_{2} \delta_{111}+\left(1-\mathrm{a}_{2}\right) \delta_{110}\right)\right] \\
& +\mathrm{P}_{\mathrm{n}, \mathrm{~m}-1}(\mathrm{t})\left[(\mathrm{m}-1)\left(\mathrm{a}_{3} \lambda_{211}+\left(1-\mathrm{a}_{3}\right) \lambda_{210}\right)\right]+\mathrm{P}_{\mathrm{n}+1, \mathrm{~m}}(\mathrm{t})\left[(\mathrm{n}+1)\left(\mathrm{a}_{5} \mu_{111}+\left(1-\mathrm{a}_{5}\right) \mu_{110}\right)\right] \\
& +\mathrm{P}_{\mathrm{n}, \mathrm{~m}+1}(\mathrm{t})\left[(\mathrm{m}+1)\left(\mathrm{a}_{6} \mu_{211}+\left(1-\mathrm{a}_{6}\right) \mu_{210}\right)\right]+\mathrm{P}_{\mathrm{n}, \mathrm{~m}+1}(\mathrm{t})\left[(\mathrm{m}+1)\left(\mathrm{a}_{7} \delta_{211}+\left(1-\mathrm{a}_{7}\right) \delta_{210}\right)\right] \\
& +\mathrm{P}_{\mathrm{n}, \mathrm{~m}-1}(\mathrm{t})\left[\left(\mathrm{a}_{4} \lambda_{321}+\left(1-\mathrm{a}_{4}\right) \lambda_{320}\right)\right]+\mathrm{P}_{\mathrm{n}, \mathrm{~m}+1}(\mathrm{t})\left[\left(\mathrm{a}_{8} \mu_{321}+\left(1-\mathrm{a}_{8}\right) \mu_{320}\right)\right] \\
& +\mathrm{P}_{\mathrm{n}, \mathrm{~m}+1}(\mathrm{t})\left[\left(\mathrm{a}_{9} \delta_{321}+\left(1-\mathrm{a}_{9}\right) \delta_{320}\right)\right] \quad \text { for } \mathrm{n}, \mathrm{~m} \geq 1 \tag{2.1}\\
& \mathrm{P}_{0,1}^{\prime}(\mathrm{t})=-\left[\left(\mathrm{a}_{3} \lambda_{211}+\left(1-\mathrm{a}_{3}\right) \lambda_{210}\right)+\left(\mathrm{a}_{4} \lambda_{321}+\left(1-\mathrm{a}_{4}\right) \lambda_{320}\right)+\left(\mathrm{a}_{6} \mu_{211}+\left(1-\mathrm{a}_{6}\right) \mu_{210}\right)\right. \\
& \left.+\left(\mathrm{a}_{8} \mu_{321}+\left(1-\mathrm{a}_{8}\right) \mu_{320}\right)+\left(\mathrm{a}_{9} \delta_{321}+\left(1-\mathrm{a}_{9}\right) \delta_{320}\right)\right] \mathrm{P}_{0,1}(\mathrm{t})+\left(\mathrm{a}_{5} \mu_{111}+\left(1-\mathrm{a}_{5}\right) \mu_{110}\right) \mathrm{P}_{1,1}(\mathrm{t}) \tag{2.2}\\
& +\left(\mathrm{a}_{2} \delta_{111}+\left(1-\mathrm{a}_{2}\right) \delta_{110}\right) \mathrm{P}_{1,0}(\mathrm{t})+\left\{2\left(\left(\mathrm{a}_{6} \mu_{211}+\left(1-\mathrm{a}_{6}\right) \mu_{210}\right)+\left(\mathrm{a}_{7} \delta_{211}+\left(1-\mathrm{a}_{7}\right) \delta_{210}\right)\right)\right. \\
& \left.+\left(\mathrm{a}_{8} \mu_{321}+\left(1-\mathrm{a}_{8}\right) \mu_{320}\right)+\left(\mathrm{a}_{9} \delta_{321}+\left(1-\mathrm{a}_{9}\right) \delta_{320}\right)\right\} \mathrm{P}_{0,2}(\mathrm{t})+\left(\mathrm{a}_{4} \lambda_{321}+\left(1-\mathrm{a}_{4}\right) \lambda_{320}\right) \mathrm{P}_{0,0}(\mathrm{t}) \\
& \mathrm{P}_{1,0}^{\prime}(\mathrm{t})=\mathrm{P}_{1,0}(\mathrm{t})\left\{-\left(\left(\mathrm{a}_{1} \lambda_{111}+\left(1-\mathrm{a}_{1}\right) \lambda_{110}\right)+\left(\mathrm{a}_{2} \delta_{111}+\left(1-\mathrm{a}_{2}\right) \delta_{110}\right)+\left(\mathrm{a}_{4} \lambda_{321}+\left(1-\mathrm{a}_{4}\right) \lambda_{320}\right)\right.\right. \\
& +\left(\mathrm{a}_{5} \mu_{111}+\left(1-\mathrm{a}_{5}\right) \mu_{110}\right)+\left(\mathrm{a}_{7} \delta_{211}+\left(1-\mathrm{a}_{7}\right) \delta_{210}\right)+\left(\mathrm{a}_{8} \mu_{321}+\left(1-\mathrm{a}_{8}\right) \mu_{320}\right)+\left(\mathrm{a}_{9} \delta_{321}\right. \\
& \left.\left.\left.+\left(1-\mathrm{a}_{9}\right) \delta_{320}\right)\right)\right\}+2\left(\mathrm{a}_{5} \mu_{111}+\left(1-\mathrm{a}_{5}\right) \mu_{110}\right) \mathrm{P}_{2,0}(\mathrm{t})+\mathrm{P}_{1,1}(\mathrm{t})\left\{\left(\left(\mathrm{a}_{5} \mu_{111}+\left(1-\mathrm{a}_{5}\right) \mu_{110}\right)\right.\right. \tag{2.3}\\
& \left.\left.+\left(\mathrm{a}_{7} \delta_{211}+\left(1-\mathrm{a}_{7}\right) \delta_{210}\right)+\left(\mathrm{a}_{8} \mu_{321}+\left(1-\mathrm{a}_{8}\right) \mu_{320}\right)+\left(\mathrm{a}_{9} \delta_{321}+\left(1-\mathrm{a}_{9}\right) \delta_{320}\right)\right)\right\} \\
& \mathrm{P}_{0.0}^{\prime}(\mathrm{t})=\left\{-\left[\left(\mathrm{a}_{4} \lambda_{321}+\left(1-\mathrm{a}_{4}\right) \lambda_{320}\right)+\left(\mathrm{a}_{8} \mu_{321}+\left(1-\mathrm{a}_{8}\right) \mu_{320}\right)+\left(\mathrm{a}_{9} \delta_{321}+\left(1-\mathrm{a}_{9}\right) \delta_{320}\right)\right]\right\} \mathrm{P}_{0,0}(\mathrm{t}) \\
& +\left(\mathrm{a}_{5} \mu_{111}+\left(1-\mathrm{a}_{5}\right) \mu_{110}\right) \mathrm{P}_{1,0}(\mathrm{t})+\left(\left(\mathrm{a}_{5} \mu_{111}+\left(1-\mathrm{a}_{5}\right) \mu_{110}\right)+\left(\mathrm{a}_{7} \delta_{211}+\left(1-\mathrm{a}_{7}\right) \delta_{210}\right)\right. \tag{2.4}\\
& \left.+\left(\mathrm{a}_{8} \mu_{321}+\left(1-\mathrm{a}_{8}\right) \mu_{320}\right)+\left(\mathrm{a}_{9} \delta_{321}+\left(1-\mathrm{a}_{9}\right) \delta_{320}\right)\right) \mathrm{P}_{0,1}(\mathrm{t})
\end{align*}
$$

With the initial condition

$$
\mathrm{P}_{\mathrm{N}_{0}, \mathrm{M}_{0}}(\mathrm{t})=1, \mathrm{P}_{\mathrm{i}, \mathrm{j}}(0)=0 \quad \forall \mathrm{i} \neq \mathrm{N}_{0} ; \mathrm{j} \neq \mathrm{M}_{0}
$$

III. Generating Functions and Statistical Measures

Let $P(x, y ; t)$ be the probability generating function of $P_{n, m}(t)$.
Where, $\left.P(x, y ; t)=\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} x^{n} y^{m} P_{n, m}(t)\right) ;|x|<1,|y|<1$. Multiplying the above differential-difference equations (2.1) to (2.4) with $x^{n} y^{m}$ and summing over n , m , we get

$$
\begin{align*}
\frac{d}{d x} P(x, y ; t)= & -\left(\left(a_{1} \lambda_{111}+\left(1-a_{1}\right) \lambda_{110}\right)+\left(a_{2} \delta_{111}+\left(1-a_{2}\right) \delta_{110}\right)+\left(a_{5} \mu_{111}+\left(1-a_{5}\right) \mu_{110}\right)\right) x \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} n x^{n-1} y^{m} P_{n, m}(t) \\
& -\left(\left(a_{3} \lambda_{211}+\left(1-a_{3}\right) \lambda_{210}\right)+\left(a_{6} \mu_{211}+\left(1-a_{6}\right) \mu_{210}\right)+\left(a_{7} \delta_{211}+\left(1-a_{7}\right) \delta_{210}\right)\right) y \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} m x^{n} y^{m-1} P_{n, m}(t) \\
& -\left(\left(a_{4} \lambda_{321}+\left(1-a_{4}\right) \lambda_{320}\right)+\left(a_{8} \mu_{321}+\left(1-a_{8}\right) \mu_{320}\right)+\left(a_{9} \delta_{321}+\left(1-a_{9}\right) \delta_{320}\right)\right) \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} x^{n} y^{m} P_{n, m}(t) \\
& +\left(a_{1} \lambda_{111}+\left(1-a_{1}\right) \lambda_{110}\right) x^{2} \sum_{m=0}^{\infty} \sum_{n=0}^{\infty}(n-1) x^{n-2} y^{m} P_{n+1, m}(t)+\left(a_{2} \delta_{111}+\left(1-a_{2}\right) \delta_{110}\right) y \sum_{m=0}^{\infty} \sum_{n=0}^{\infty}(n+1) x^{n} y^{m-1} \\
& P_{n+1, m-1}(t)+\left(a_{3} \lambda_{211}+\left(1-a_{3}\right) \lambda_{210}\right) y^{2} \sum_{m=0}^{\infty} \sum_{n=0}^{\infty}(m-1) x^{n} y^{m-2} P_{n, m-1}(t)+\left(a_{5} \mu_{111}+\left(1-a_{5}\right) \mu_{110}\right) \\
& \sum_{m=0}^{\infty} \sum_{n=0}^{\infty}(n+1) x^{n} y^{m} P_{n+1, m}(t)+\left(\left(a_{6} \mu_{211}+\left(1-a_{6}\right) \mu_{210}\right)+\left(a_{7} \delta_{211}+\left(1-a_{7}\right) \delta_{210}\right)\right) \sum_{m=0}^{\infty} \sum_{n=0}^{\infty}(m+1) x^{n} y^{m} \\
& P_{n+1, m-1}(t)+\left(a_{3} \lambda_{211}+\left(1-a_{3}\right) \lambda_{210}\right) y^{2} \sum_{m=0}^{\infty} \sum_{n=0}^{\infty}(m-1) x^{n} y^{m-2} P_{n, m-1}(t)+\left(a_{5} \mu_{111}+\left(1-a_{5}\right) \mu_{110}\right) \\
& \sum_{m=0}^{\infty} \sum_{n=0}^{\infty}(n+1) x^{n} y^{m} P_{n+1, m}(t)+\left(\left(a_{6} \mu_{211}+\left(1-a_{6}\right) \mu_{210}\right)+\left(a_{7} \delta_{211}+\left(1-a_{7}\right) \delta_{210}\right)\right) \sum_{m=0}^{\infty} \sum_{n=0}^{\infty}(m+1) x^{n} y^{m} \tag{3.1}
\end{align*}
$$

On simplification, we obtain the differential equation of the form as follows,

$$
\begin{align*}
\frac{\partial}{\partial \mathrm{t}} \mathrm{P}(\mathrm{x}, \mathrm{y} ; \mathrm{t})= & \left\{-\left(\left(\mathrm{a}_{1} \lambda_{111}+\left(1-\mathrm{a}_{1}\right) \lambda_{110}\right)+\left(\mathrm{a}_{2} \delta_{111}+\left(1-\mathrm{a}_{2}\right) \delta_{110}\right)+\left(\mathrm{a}_{5} \mu_{111}+\left(1-\mathrm{a}_{5}\right) \mu_{110}\right)\right) \mathrm{x}+\left(\mathrm{a}_{5} \mu_{111}\right.\right. \\
& \left.\left.+\left(1-\mathrm{a}_{5}\right) \mu_{110}\right)+\left(\mathrm{a}_{1} \lambda_{111}+\left(1-\mathrm{a}_{1}\right) \lambda_{110}\right) \mathrm{x}^{2}+\left(\mathrm{a}_{2} \delta_{111}+\left(1-\mathrm{a}_{2}\right) \delta_{110}\right) \mathrm{y}\right\} \frac{\partial}{\partial \mathrm{x}} \mathrm{P}(\mathrm{x}, \mathrm{y} ; \mathrm{t}) \\
& +\left\{-\left(\left(\mathrm{a}_{3} \lambda_{211}+\left(1-\mathrm{a}_{3}\right) \lambda_{210}\right)+\left(\mathrm{a}_{6} \mu_{211}+\left(1-\mathrm{a}_{6}\right) \mu_{210}\right)+\left(\mathrm{a}_{7} \delta_{211}+\left(1-\mathrm{a}_{7}\right) \delta_{210}\right)\right) \mathrm{y}\right. \\
& \left.+\left(\mathrm{a}_{3} \lambda_{211}+\left(1-\mathrm{a}_{3}\right) \lambda_{210}\right) \mathrm{y}^{2}+\left(\left(\mathrm{a}_{6} \mu_{211}+\left(1-\mathrm{a}_{6}\right) \mu_{210}\right)+\left(\mathrm{a}_{7} \delta_{211}+\left(1-\mathrm{a}_{7}\right) \delta_{210}\right)\right)\right\} \\
& \frac{\partial}{\partial \mathrm{y}} \mathrm{P}(\mathrm{x}, \mathrm{y} ; \mathrm{t})+\left\{-\left(\left(\mathrm{a}_{4} \lambda_{321}+\left(1-\mathrm{a}_{4}\right) \lambda_{320}\right)+\left(\mathrm{a}_{8} \mu_{321}+\left(1-\mathrm{a}_{8}\right) \mu_{320}\right)\right.\right. \tag{3.2}\\
& \left.+\left(\mathrm{a}_{9} \delta_{321}+\left(1-\mathrm{a}_{9}\right) \delta_{320}\right)\right)+\frac{\left[\left(\mathrm{a}_{8} \mu_{321}+\left(1-\mathrm{a}_{8}\right) \mu_{320}\right)+\left(\mathrm{a}_{9} \delta_{321}+\left(1-\mathrm{a}_{9}\right) \delta_{320}\right)\right]}{y} \\
& \left.+\left(a_{4} \lambda_{321}+\left(1-\mathrm{a}_{4}\right) \lambda_{320}\right) \mathrm{y}\right\} P(\mathrm{x}, \mathrm{y} ; \mathrm{t})
\end{align*}
$$

We can obtain the characteristics of the model using joint cumulant generating function of $\mathrm{P}_{\mathrm{n}, \mathrm{m}}(\mathrm{t})$. Taking $\mathrm{x}=\mathrm{e}^{\mathrm{u}}, \mathrm{y}=\mathrm{e}^{\mathrm{v}}$ and denoting $\mathrm{k}(\mathrm{u}, \mathrm{v} ; \mathrm{t})$ as the joint cumulant generating function of $\mathrm{P}_{\mathrm{n}, \mathrm{m}}(\mathrm{t})$, we get the following expression

$$
\begin{aligned}
\frac{\partial}{\partial \mathrm{t}} \mathrm{k}(\mathrm{u}, \mathrm{v} ; \mathrm{t})= & \left\{-\left(\left(\mathrm{a}_{1} \lambda_{111}+\left(1-\mathrm{a}_{1}\right) \lambda_{110}\right)+\left(\mathrm{a}_{2} \delta_{111}+\left(1-\mathrm{a}_{2}\right) \delta_{110}\right)+\left(\mathrm{a}_{5} \mu_{111}+\left(1-\mathrm{a}_{5}\right) \mu_{110}\right)\right)+\left(\mathrm{a}_{5} \mu_{111}\right.\right. \\
& \left.\left.+\left(1-\mathrm{a}_{5}\right) \mu_{110}\right)+\left(\mathrm{a}_{1} \lambda_{111}+\left(1-\mathrm{a}_{1}\right) \lambda_{110}\right) \mathrm{e}^{u}+\left(\mathrm{a}_{2} \delta_{111}+\left(1-\mathrm{a}_{2}\right) \delta_{110}\right) \mathrm{e}^{v-\mathrm{u}}\right\} \frac{\partial}{\partial \mathrm{u}} \mathrm{k}(\mathrm{u}, \mathrm{v} ; \mathrm{t}) \\
& +\left\{-\left(\left(\mathrm{a}_{3} \lambda_{211}+\left(1-\mathrm{a}_{3}\right) \lambda_{210}\right)+\left(\mathrm{a}_{6} \mu_{211}+\left(1-\mathrm{a}_{6}\right) \mu_{210}\right)+\left(\mathrm{a}_{7} \delta_{211}+\left(1-\mathrm{a}_{7}\right) \delta_{210}\right)\right)\right.
\end{aligned}
$$

$$
\begin{align*}
& \left.+\left(a_{3} \lambda_{211}+\left(1-a_{3}\right) \lambda_{210}\right) e^{v}+\left(\left(a_{6} \mu_{211}+\left(1-a_{6}\right) \mu_{210}\right)+\left(a_{7} \delta_{211}+\left(1-a_{7}\right) \delta_{210}\right)\right) e^{-v}\right\} \\
& \frac{\partial}{\partial v} k(u, v ; t)+\left\{-\left(\left(a_{4} \lambda_{321}+\left(1-a_{4}\right) \lambda_{320}\right)+\left(a_{8} \mu_{321}+\left(1-a_{8}\right) \mu_{320}\right)+\left(a_{9} \delta_{321}+\left(1-a_{9}\right) \delta_{320}\right)\right)\right. \\
& \left.+\frac{\left[\left(a_{8} \mu_{321}+\left(1-a_{8}\right) \mu_{320}\right)+\left(a_{9} \delta_{321}+\left(1-a_{9}\right) \delta_{320}\right)\right]}{e^{v}}+\left(a_{4} \lambda_{321}+\left(1-a_{4}\right) \lambda_{320}\right) e^{v}\right\} k(u, v ; t) \tag{3.3}
\end{align*}
$$

Comparing the coefficient of the power of u's and v's in the above equations, we get the following

$$
\begin{align*}
\frac{\partial}{\partial \mathrm{t}} \mathrm{~m}_{1,0}(\mathrm{t})= & \left(\lambda_{1}^{*}-\lambda_{2}^{*}-\mu_{1}^{*}\right) \mathrm{m}_{1,0}(\mathrm{t}) \tag{3.4}\\
\frac{\partial}{\partial \mathrm{t}} \mathrm{~m}_{0,1}(\mathrm{t})= & \lambda_{2}^{*} \mathrm{~m}_{1,0}(\mathrm{t})+\left(\lambda_{3}^{*}-\mu_{2}^{*}-\mu_{3}^{*}\right) \mathrm{m}_{0,1}(\mathrm{t}) \tag{3.5}\\
\frac{\partial}{\partial \mathrm{t}} \mathrm{~m}_{2,0}(\mathrm{t})= & 2\left(\lambda_{1}^{*}-\lambda_{2}^{*}-\mu_{1}^{*}\right) \mathrm{m}_{2,0}(\mathrm{t})+\left(\lambda_{1}^{*}+\lambda_{2}^{*}+\mu_{1}^{*}\right) \mathrm{m}_{1,0}(\mathrm{t}) \tag{3.6}\\
\frac{\partial}{\partial \mathrm{t}} \mathrm{~m}_{0,2}(\mathrm{t})= & \lambda_{2}^{*} \mathrm{~m}_{1,0}(\mathrm{t})+\left(\lambda_{3}^{*}+\mu_{2}^{*}+\mu_{3}^{*}\right) \mathrm{m}_{0,1}(\mathrm{t})+2\left(\lambda_{3}^{*}-\mu_{2}^{*}-\mu_{3}^{*}\right) \mathrm{m}_{0,2}(\mathrm{t}) \\
& +2\left(\lambda_{4}^{*}-\mu_{4}^{*}-\mu_{5}^{*}\right) \mathrm{m}_{0,1}(\mathrm{t})+\lambda_{2}^{*} \mathrm{~m}_{1,1}(\mathrm{t}) \tag{3.7}\\
\frac{\partial}{\partial \mathrm{t}} \mathrm{~m}_{1,1}(\mathrm{t})= & \left(\lambda_{1}^{*}-\lambda_{2}^{*}-\mu_{1}^{*}\right) \mathrm{m}_{1,1}(\mathrm{t})+\lambda_{2}^{*} \mathrm{~m}_{2,0}(\mathrm{t})-\lambda_{2}^{*} \mathrm{~m}_{1,0}(\mathrm{t})+\left(\lambda_{3}^{*}-\mu_{2}^{*}-\mu_{3}^{*}\right) \mathrm{m}_{1,1}(\mathrm{t}) \\
& +\left(\lambda_{4}^{*}-\mu_{4}^{*}-\mu_{5}^{*}\right) \mathrm{m}_{1,0}(\mathrm{t})+\lambda_{2}^{*} \mathrm{~m}_{2,0}(\mathrm{t}) \tag{3.8}
\end{align*}
$$

Let $m_{i, j}(t)$ denotes the moments of order (i, j) of the normal cells, mutant cells in an organ at time t . Then the characteristics of the model are obtained by solving the above ordinary linear differential equations, which are as follows

Expected number of normal cells in an organ at time ' t '
$\mathrm{m}_{1,0}(\mathrm{t})=\mathrm{N}_{0} \mathrm{e}^{\mathrm{At}}$
Expected number of mutant cells in an organ at time ' t '
$\mathrm{m}_{0,1}(\mathrm{t})=\frac{\lambda_{2}^{*} \mathrm{~N}_{0} \mathrm{e}^{\mathrm{At}}}{\mathrm{A}-\mathrm{B}}+\left(\mathrm{M}_{0}-\frac{\lambda_{2}^{*} \mathrm{~N}_{0}}{\mathrm{~A}-\mathrm{B}}\right) \mathrm{e}^{\mathrm{Bt}}$
Variance of number of normal cells in the organ at time ' t '
$m_{2,0}(t)=\frac{\mathrm{DN}_{0} \mathrm{e}^{\mathrm{At}}}{\mathrm{A}}\left(\mathrm{e}^{\mathrm{At}}-1\right)$
Variance of number of mutant cells in the organ at time ' t '

$$
\begin{align*}
& \mathrm{m}_{0,2}(\mathrm{t})=\frac{\lambda_{2}^{*} \mathrm{~N}_{0} \mathrm{e}^{\mathrm{At}}}{\mathrm{~A}-2 \mathrm{~B}}+(\mathrm{F}+2 \mathrm{E})\left\{\frac{\lambda_{2}^{*} \mathrm{~N}_{0} \mathrm{e}^{\mathrm{At}}}{(\mathrm{~A}-2 \mathrm{~B})(\mathrm{A}-\mathrm{B})}-\left(\mathrm{M}_{0}-\frac{\lambda_{2}^{*} \mathrm{~N}_{0}}{\mathrm{~A}-\mathrm{B}}\right) \frac{\mathrm{e}^{\mathrm{Bt}}}{\mathrm{~B}}\right\} \tag{3.11}\\
& +\lambda_{2}^{*}\left\{\begin{array}{l}
\frac{\lambda_{2}^{*} \mathrm{~N}_{0} \mathrm{D}}{\mathrm{~A}}\left(\frac{\mathrm{e}^{2 \mathrm{At}}}{2(\mathrm{~A}-\mathrm{B})^{2}}+\frac{\mathrm{e}^{\mathrm{At}}}{(\mathrm{~A}-2 \mathrm{~B}) \mathrm{B}}\right)-\frac{\left(\mathrm{E}-\lambda_{2}^{*}\right) \mathrm{N}_{0} \mathrm{e}^{\mathrm{At}}}{(\mathrm{~A}-2 \mathrm{~B}) \mathrm{B}} \\
-\left(\frac{\lambda_{2}^{*} \mathrm{~N}_{0} \mathrm{D}-(\mathrm{A}-\mathrm{B})\left(\mathrm{E}-\lambda_{2}^{*}\right) \mathrm{N}_{0}}{(\mathrm{~A}-\mathrm{B}) \mathrm{B}}\right) \frac{\mathrm{e}^{(\mathrm{A}+\mathrm{B}) \mathrm{t}}}{(\mathrm{~A}-\mathrm{B})}
\end{array}\right\} \\
& -\left\{\begin{array}{l}
\frac{\lambda_{2}^{*} \mathrm{~N}_{0}}{(\mathrm{~A}-2 \mathrm{~B})}+(\mathrm{F}+2 \mathrm{E})\left(\frac{\lambda_{2}^{*} \mathrm{~N}_{0}-(\mathrm{A}-2 \mathrm{~B}) \mathrm{M}_{0}}{2(\mathrm{~A}-2 \mathrm{~B})(\mathrm{A}-\mathrm{B})^{2} \mathrm{~B}}\right) \\
+\lambda_{2}^{* 2} \mathrm{~N}_{0}\left(\frac{2(\mathrm{~A}-\mathrm{B})\left(\lambda_{2}^{*}-\mathrm{E}\right)+\mathrm{D} \lambda_{2}^{*}}{2(\mathrm{~A}-2 \mathrm{~B})(\mathrm{A}-\mathrm{B})^{2}}\right)
\end{array}\right\} \mathrm{e}^{2 \mathrm{Bt}} \tag{3.12}
\end{align*}
$$

Covariance of number of normal and mutant cells in an organ at time ' t '

$$
\begin{equation*}
\mathrm{m}_{1,1}(\mathrm{t})=\left\{\frac{\left(\mathrm{E}-\lambda_{2}^{*}\right) \mathrm{N}_{0} \mathrm{e}^{-\mathrm{Bt}}}{-\mathrm{B}}+\frac{\lambda_{2}^{*} \mathrm{DN}_{0}}{\mathrm{~A}}\left(\frac{\mathrm{e}^{2 \mathrm{At}}}{(\mathrm{~A}-\mathrm{B})}+\frac{\mathrm{e}^{\mathrm{At}}}{\mathrm{~B}}\right)\right\}+\left\{\frac{\lambda_{2}^{*} \mathrm{DN}_{0}-(\mathrm{A}-\mathrm{B})\left(\mathrm{E}-\lambda_{2}^{*}\right) \mathrm{N}_{0}}{(\mathrm{~A}-\mathrm{B}) \mathrm{B}}\right\} \mathrm{e}^{(\mathrm{A}+\mathrm{B}) \mathrm{t}} \tag{3.13}
\end{equation*}
$$

Where, $\mathrm{N}_{0} \& \mathrm{M}_{0}$ - Initial number of normal and mutant cells in an organ
$\mathrm{A}=\lambda_{1}^{*}-\lambda_{2}^{*}-\mu_{1}^{*}$
$\mathrm{B}=\lambda_{3}^{*}-\mu_{2}^{*}-\mu_{3}^{*}$
$\mathrm{D}=\lambda_{1}^{*}+\lambda_{2}^{*}+\mu_{1}^{*}$
$\mathrm{E}=\lambda_{4}^{*}-\mu_{4}^{*}-\mu_{5}^{*}$
$\mathrm{F}=\lambda_{3}^{*}+\mu_{2}^{*}+\mu_{3}^{*}$
$\lambda_{1}^{*}=\mathrm{a}_{1} \lambda_{111}+\left(1-\mathrm{a}_{1}\right) \lambda_{110}$
$\lambda_{2}^{*}=a_{2} \delta_{111}+\left(1-a_{2}\right) \delta_{110}$
$\lambda_{3}^{*}=\mathrm{a}_{3} \lambda_{211}+\left(1-\mathrm{a}_{3}\right) \lambda_{210}$
$\lambda_{4}^{*}=\mathrm{a}_{4} \lambda_{321}+\left(1-\mathrm{a}_{4}\right) \lambda_{320}$
$\mu_{1}^{*}=a_{5} \mu_{111}+\left(1-a_{5}\right) \mu_{110}$
$\mu_{2}^{*}=a_{6} \mu_{211}+\left(1-a_{6}\right) \mu_{210}$
$\mu_{3}^{*}=a_{7} \delta_{211}+\left(1-a_{7}\right) \delta_{210}$
$\mu_{4}^{*}=a_{8} \mu_{321}+\left(1-a_{8}\right) \mu_{320}$
$\mu_{5}^{*}=a_{9} \delta_{321}+\left(1-a_{9}\right) \delta_{320}$

IV. Numerical Illustration

The computed values of the characteristics of the model $m_{1,0}(t), m_{0,1}(t), m_{2,0}(t), m_{0,2}(t)$ and $m_{1,1}(t)$ mentioned above from equation (3.9) to (3.13) for the parameters are presented in the tables for changing values of $\lambda_{111}, \lambda_{110}, \delta_{111}, \delta_{110}, \lambda_{211}, \lambda_{210}, \lambda_{321}, \lambda_{320}, \mu_{111}, \mu_{110}, \mu_{211}, \mu_{210}, \delta_{211}, \delta_{210}, \mu_{321}, \mu_{320}, \delta_{321}, \delta_{320}$ and t in the appendix-I. The linear function is defined to connection the kinetics of cells in the tumor under presence and vacation period of drug therapy.

V. Findings

The findings were made by changing one decision parameter while fixing other parameters are constant.

- $m_{10,} m_{01}, m_{20}, m_{02}$ and m_{11} are the increasing function of initial size normal cells N_{0}.
- m_{10}, m_{20}, m_{11} are invariant and m_{01}, m_{02} are increasing function of initial number of mutant cells M_{0}.
- $\mathrm{m}_{10}, \mathrm{~m}_{01}, \mathrm{~m}_{20}, \mathrm{~m}_{02}$ and m_{11} are the increasing function arrival of normal cells λ_{111} and λ_{110}.
- $\quad m_{10}, m_{20}, m_{02}$ and m_{11} are decreasing and m_{01} is an increasing function of transformation rate of normal cells to mutant cells δ_{111} and δ_{110}.
- $m_{10,} \mathrm{~m}_{20}$ are invariant and, $\mathrm{m}_{01}, \mathrm{~m}_{02}$ and m_{11} are the increasing function arrival of mutant cells λ_{211} and λ_{210}.
- $\quad m_{10}, m_{01}, m_{20}$ are invariant and, m_{02} and m_{11} are the increasing function growth rate of mutant cells in secondary tumor λ_{321} and λ_{320}.
- $m_{10}, m_{01}, m_{20}, m_{02}$ and m_{11} are decreasing function of death rate of normal cells μ_{111} and μ_{110}.
- $m_{10}, \mathrm{~m}_{20}$ are invariant and $\mathrm{m}_{01}, \mathrm{~m}_{02}$ and m_{11} are decreasing function death rate of mutant cells μ_{211} and μ_{210}.
- $\quad \mathrm{m}_{10}, \mathrm{~m}_{01}, \mathrm{~m}_{20}$ are invariant and, m_{02} and m_{11} are the decreasing function migration rate of mutant cells to in secondary tumor δ_{211} and δ_{210}.
- $m_{10,}, m_{01}, m_{20}$ are invariant and, m_{02} and m_{11} are the decreasing function death rate of mutant cells in secondary tumor μ_{321} and μ_{320}.
- $\mathrm{m}_{10}, \mathrm{~m}_{01,}, \mathrm{~m}_{20}$ are invariant and, m_{02} and m_{11} are the decreasing function migration rate of mutant cells in secondary tumor μ_{321} and μ_{320}.
- $\mathrm{m}_{10}, \mathrm{~m}_{01}, \mathrm{~m}_{20}, \mathrm{~m}_{02}$ and m_{11} are the increasing function of time t .

The above findings are describing dynamics of the measures derived from the developed stochastic model and a_{k} is assumed as the partial presence of drug.

Acknowledgements:

The authors are thankful to acknowledge the funding agency to extract this study as the first author is the principal investigator of a major research project work entitled "Studies on stochastic models for cancer growth and its application to optimal drug administration with chemotherapy" sponsored by the Scientific and Engineering Research Board (SERB), Department of Science \& Technology (DST), Govt. of India.

References

[1] Iwata K, Kawasaki K, Shigesasa N (2000) A dynamical model for the growth and size distribution of multiple metastasis tumors. Jounal. Theor. Biol., 203: 177-186
[2] Pinho S T R, Freedman H I, Nani F (2002) A Chemotherapy model for the treatment of cancer with metastasis. Mathematical and Computer Modelling, 36: 773-803
［3］Srinivasa Rao K，Tirupathi Rao P（2004）A Stochastic Model for Cancer Cell Growth under Chemotherapy．Assam Statistical Review．18（1）：81－101
［4］Srinivasa Rao K，Tirupathi Rao P（2004）Stochastic Model for Mutant Cell Growth with Inactivation of Allele Genes．Journal of Statistical Theory and Applications．3（1）：75－85
［5］Tirupathi Rao P，Madhavi K，Masthan Babu S K（2011）Bivariate Stochastic Modeling for Mutant Cell Growth under Chemotherapy．International Journal of Mathematics and applications．4（1）：1－12
［6］Tirupathi Rao P，Naveen Kumar B N，Reddy P R S（2013）Three Stage Stochastic Modelling for Cancer cell growth under chemotherapy．International Journal of Advanced Computer and Mathematical Sciences．4（2）：168－180
［7］Tirupathi Rao P，Srinivasa Rao K（2004）Stochastic Model for Cancer Cell Growth with Spontaneous Mutation and Proliferation． International Journal of Management and Systems．20（1）：85－93

Appendix－1：Table for all statistical measures with varying values of one parameter when other parameters are

\％	Mo	$2 \times$	2.	3	3.	20	200	2 m	2 m	Bu	Ba	bu	ma	3.	3	May	Max	3.	3.	：	ma	m	ma	mis	m
200	50			00	0.1			01	03	0.1	15	1	0.	201	03	0.1	008	0001	0.01		con． 219	659	15.5	11410	6amm
∞	200			001	0.1			0.1	03	0.1	0.5	1	0.5	0.01	03	01	005	0.001	001	1	sum：	unt	1979	Heso	whtur
900	10	2		0.01	01			0.1	07	0.1	05		05	20	01	01	008	0.001	001		1005	cose	264	แ1780	wiosss
000	50			001	01			0.1	01	0.1	05		0.5	001	01	01	103	1008	001		1206	6.4	2090	12050	\％¢06
\％00	0			001	01			0.1	01	0.1	0.5		$0:$	001	01	01	008	1000	001		1007	cm	354	1200	116
200	80			0.01	01			0.1	01	01	0.5		05	0.01	01	01	10	noil	0.01		40.196	769	200．69	110：0	m 2 m
0	000			80	01			01	01	0.1	$0 \cdot 5$	1	05	001	01	01	108	208	20		40.256	TBE	20， 69	12\％	m\％
200	65	2		001	0.1			21	0	0.1	0.5	1	0.5	001	03	01	100	200	20		40.196	sess	\％90．69	13900	m\％
80	700			001	1			01	07	0.1	05		05	001	03	0.1	008	000	001		40.196	213	30．689	1.550	m\％
200	720	2		001	01			01	07	0.1	$0 \cdot 5$		0.5	20	07	01	108	－ 08	001		40.96	भ7\％	2006	1500	m m \％
80	50	2.1		0.01	01			01	01	01	0.5		0.5	0.01	01	01	001	0001	001		410．06	658	1003	11250	200．03
200	50	2.2		001	01			01	07	01	$0:$		03	20	01	01	001	000	00		418.6	6ss	1078	แ\％\％	200．23
20	500	$2:$		001	01			01	01	0.1	05		$0 \cdot$	20	01	01	10	20	00		c6， 601	css	115	12000	129．4］
200	50	2.4		001	01			01	01	01	05	1	0.5	0.01	03	01	008	0001	00		6secs	65s	1174	12880	261．31
200	50	2.5	，	0.01	01			01	01	0.1	05		15	20	03	01	00	0001	0.01		44519	655	18	13%	ncivs
80	80		1.2	0.01	01			01	03	01	05		05	00	03	01	008	00	001		cl．us	655	129	15170	20．45
20	120		1.3	101	01			01	01	01	05		0.5	201	03	01	10	001	20		510.95	$\cdots \infty$	165	1780	40.83
\％00	5		1.4	20	01			0.	01	01	25	1	15	20	01	01	200	208	00		535．97	0	196	20050	64.809
200	50		1.5	001	01			0.1	03	0.1	05		05	001	0	01	008	Boin	001		59.65	006	234	206：0	S3LTM
200	50	2	1.6	10	01		8	0.1	03	0.1	05	1	0.	001	01	01	208	000	001		69.574	650	2705	：3me	611.587
200	20			0.02	01			01	03	01	0.5		05	001	07	01	008	0001	00		celit	675	2098	2030	610．31
200	50	2		0.04	01			01	07	0.1	25		15	20	07	01	10	0001	001		cescos	657	20\％	zowo	007．29
00	50			0.06	01			01	03	01	0.		0.	10	01	01	108	not	001		ce． 11	css	2074	2340	cescos
50	50	2		0.08	01			01	01	01	05		05	201	01	01	105	00	20		60．54	408	202	3030	02．037
800	50	2		0.1	01			01	0	01	05	1	05	001	07	01	007	000	00		67． 3.78	659	2680	3000	58127
300	50			001	0.2			01	03	0.1	05		0.5	001	01	01	008	0.001	001		55.003	caster	2.45048	2．545－4	ske72
20	10	2		001	0.3		4	01	01	01	05	1	$0 \cdot$	0.01	01	01	0	2001	001		238．531	6TTT－05	2．55－05	2．254－04	506．62
200	50			（10）	0.4			01	01	0.1	0.5		03	201	03	01	10	0.001	0.01		510．95	C57T－25	2055－015	1．985－04	435501
200	50	2		0.01	0.5	1	8	01	07	01	05		05	201	07	0.1	008	0.001	0.01		71．03	6．985－315	1．772－215	L．7cter	46.017
200	500			001	0.6			01	03	01	05		0.5	102	01	01	00	001	001		cises	7．04T－01	1．702－08	1．505－04	420.84
00	500			0.01	01	1.2		01	01	01	05		0.5	001	01	01	008	0001	001		02.156	cal	\％0．cis	11120	
200	500	2		001	01	1.	4	01	03	01	25	1	0.5	001	0	01	007	0001	001		201．96	OSt	380．69	11500	Leson
200	180			10	01	1.4	4	01	07	01	0.5		0.	20	01	01	008	0001	0.01		201．96	7004	20， 69	1450	29.64
200	50	2		001	01	1.5	4	01	03	01	0.5	1	0.	001	03	01	108	4	0.0		0.4 .96	726	200．69	11670	3s．0．
880	50			0.0	01	1.6		01	03	01	05		0.5	001	03	01	00	100	001		20．94	712	230．69	11550	准檪
200	50	2		00	01		4.	21	07	01	05	1	05	201	13	01	108	1001	00		40.196	7004	200．cs	Hes	29.954
	500			00	01		62	01	03	01	0.		0.	201	03	01	108	208	20		201．95	10：	200．cs	12000	207．64
20	180			30	01		4	01	07	01	05		0.5	10	01	01	008	08	001		001.96	815	20069	1200	27，014
200	50			001	01		4.	01	07	01	0.	1	05	001	03	01	000	0001	0.01		02.186	208	230．69	1460	207．58
200	50			20	01		4	01	0	01	25		15	20	03	01	103	08	001		00.196	7\％s	200．69	1570	48.46
80	500			001	21			0.5	07	1	$0 \cdot$	1	$0{ }^{0}$	001	07	01	004	0007	001		201．96	6551	200．69	10050	207.05
200	500			001	01			Q． 4	02	01	0.5		0.5	001	0	01	005	001	001		40.95	6551	20， 69	H000	44508
200	180	2		001	01		4	0.5	03	01	0.5	1	$0 \cdot$	0.01	3	01	000	0.001	0.01		00.95	6551	30．6．9	11170	SL128
	500			00	01			0.6	07	01	05		05	01	13	01	10	2001	20		201．95	4581	200．cs	1120	\＄19367
80	10			00	01			0.7	03	01	25		0.	10	0	01	0	0.001	001		40.265	6551	20．ces	11380	乡1\％
200	500			001	1			01	0.4	01	$0 \cdot$	1	$0 \cdot 5$	001	03	01	000	0001	0.01		40.1 .86	4581	\％30．69	11170	S4．239
00	500			10	01			0.1	2.5	01	0.5		0.5	101	0	01	10	0	20		40.1 .96	css	20．cis	11540	cil 64
80	500			0.01	1			21	0.6	01	0 a	1	05	001	07	01	004	0001	0.01		201．95	6551	200．69	11900	71.159
8	500			001	01			01	0.7	01	0.		0.	001	03	01	005	0001	001		40.1 .86	6551	230．69	1278	21．00s
80	80	2		10	01			21	0.8	01	0.	1	0.5	0.01	03	01	001	0.001	0.01		40．95	6551	\％90．69	12.60	1005
00	50			001	01			01	0	as	05		05	201	3	01	10	001	201		牫1585	658	981．73：	975	220：001
00	50			001	01			01	0	0.4	$0 \cdot$		05	0.01	03	01	00	0.001	001		71858	05	231297	2， 4	H609
50	500			0.01	01			01	07	0.5	05		$0 \cdot 5$	001	$0:$	01	007	2001	0.01		27．0c	cses	Кк3	207	201476
00	80			001	01			0.1	0	0.6	05		0.5	201	03	01	108	2007	001		2，	eses	w7．015		208．138
80	50	2		0.01	01		d	21	07	0.7	05	1	05	001	03	01	000	0001	001		36404	657	57\％．207	ถ19	29．65
00	500			001	01			01	01	01	0.6		$0:$	001	1	01	008	200	001		27．0c	est	ル¢	207	201876
00	500			001	01			0.1	3	01	0.7		05	001	03	01	000	0001	001		2 ce 516	6st	Bu7ts		： $\mathrm{ck} \times \mathrm{m}$
8	80			0.01	01			01	0	01	0.8		05	001	1	01	200	2001	0.01		11615：	esk	773.05	016	20646
300	5	2		001	01			0.1	03	01	0.9		0.	001	03	01	003	0.001	0.01		29．573		717．197	¢60	20．136

Stochastic Modelling of Tumor Growth within Organ during Chemotherapy Using Bivariate Birth,

No	M 0	λ_{412}	${ }^{2} 48$	δ_{13}	δ_{10}	$\lambda_{\text {an }}$	$k^{4.8}$	$\lambda_{3 n}$	${ }^{2} 38$	$\mu_{3 n}$	μ_{3}	$\mu_{\text {m }}$	μ_{35}	δ_{m}	δ_{018}	$\mu_{3 n}$	μ_{380}	$\delta_{0 m}$	δ_{308}	t	m_{30}	m_{81}	m_{30}	m_{88}	m_{32}
300	300	2	1	001	0.1	1	4	0.1	0.3	0.1	05	1.3	05	001	03	0.1	003	0001	001	1	401945	6172	959.639	10530	31999
300	300	2	1	0.01	0.1	1	4	01	03	01	05	1.4	$0 \cdot 5$	0.01	03	0.1	0.03	0001	001	1	401945	6050	959.639	10550	316.033
300	S00	2	1	0.01	0.1	1	4	0.1	03	0.1	0.	1.5	0.5	0.01	03	0.1	0.03	0.001	0.01	1	401945	5931	959.639	10540	312.133
300	S00	2	1	001	0.1	1	4	0.1	03	0.1	05	1.6	0.5	0.01	03	0.1	003	0.001	0.01	1	401945	5514	9599.639	10510	308.291
300	500	2	1	001	0.1	1	4	0.1	03	0.1	05	1	0.6	001	03	0.1	0.03	0.001	0.01	1	401945	6050	959.639	10550	316.033
300	500	2	1	001	0.1	1	4	0.1	03	0.1	05	1	0.7	0.01	03	0.1	0.03	0.001	001	1	401945	5557	959.639	10470	300.39
300	S00	2	1	001	0.1	1	4	0.1	03	0.1	05	1	0.8	001	03	0.1	0.03	0001	0.01	1	401945	5160	959.639	10460	256.39
300	300	2	1	001	0.1	1	4	0.1	03	0.1	05	1	09	001	03	0.1	0003	0.001	0001	1	401945	4765	959.639	10560	272.826
300	300	2	1	001	0.1	1	4	0.1	03	01	05	1	1.1	001	03	0.1	0.03	0.001	001	1	401.945	4055	959.639	11150	247958
300	500	2	1	0.01	0.1	1	4	0.1	03	0.1	05	1	05	0.04	03	0.1	0.03	0.001	0.01	1	401946	6512	959.639	10750	330.805
300	500	2	1	001	0.1	1	4	0.1	03	0.1	05	1	05	0.05	03	0.1	003	0.001	001	1	401945	6455	959.639	10770	330.145
300	500	2	1	001	0.1	1	4	0.1	03	0.1	05	,	$0 \cdot 5$	0.05	03	0.1	0.03	0001	001	1	401945	6450	959.639	10750	329.319
300	S00	2	1	0.01	0.1	1	4	0.1	03	0.1	05	1	05	0.1	03	0.1	0.03	0.001	0.01	1	401945	6435	9599.639	10740	328.495
300	300	2	1	001	0.1	1	4	0.1	03	0.1	05	1	05	0.12	03	0.1	0.03	0.001	001	1	401945	6409	959.639	10730	327.574
300	S00	2	1	001	0.1	1	4	0.1	0.3	0.1	05	1	05	0.01	0.4	0.1	0.03	0001	001	1	401945	6050	959.639	10350	316.033
300	S00	2	1	001	0.1	1	4	0.1	03	0.1	05	1	05	0.01	0.5	0.1	0.03	0.001	001	1	401945	5557	959.639	10470	300.775
300	S00	2	1	001	0.1	1	4	0.1	03	0.1	05	1	$0 \cdot 5$	0001	0.6	0.1	0.03	0.001	001	1	401945	5160	959.639	10450	285.39
300	S00	2	1	001	0.1	1	4	0.1	03	0.1	05	1	$0 \cdot 5$	001	0.7	0.1	0.03	0.001	0.01	1	401945	4766	959.639	10560	276.826
300	500	2	1	0.01	0.1	1	4	0.1	03	0.1	05	1	05	001	0.8	0.1	0003	0001	0001	1	401945	4402	959.639	10790	260.031
300	500	2	,	0.01	0.1	1	4	0.1	03	0.1	05	1	05	0.01	03	0.3	0.03	0.001	0.01	1	401945	6551	959.639	10520	257354
300	500	2	1	0.01	0.1	1	4	0.1	03	0.1	05	1	05	001	03	0.4	0.03	0.001	0.01	1	401946	6551	959.639	10520	219935
300	500	2	1	001	0.1	1	4	0.1	03	0.1	05	1	05	0.01	03	0.5	0003	0001	001	1	401945	6551	959.639	10430	152.505
300	S00	2	1	001	0.1	1	4	0.1	03	0.1	05	1	05	0.01	03	0.6	0.03	0.001	0.01	1	401.945	6551	959.639	10340	145.077
300	500	2	1	001	0.1	1	4	0.1	0.3	0.1	$0 \cdot 5$	1	$0 \cdot 5$	0.01	03	0.7	0.03	0.001	0.01	1	401945	6551	959.639	10250	107.448
300	500	2	1	001	0.1	1	4	0.1	03	0.1	05	1	05	001	03	0.1	0.05	0001	0.01	1	401.945	6551	959.639	10370	302.279
300	500	2	1	001	0.1	1	4	0.1	03	0.1	05	1	05	0.01	03	0.1	0.07	0001	0.01	1	401.946	6551	959.639	10550	272.336
300	500	2	,	0.01	0.1	1	4	0.1	03	0.1	05	1	0.5	001	03	0.1	0.09	0.001	0.01	1	401.946	6551	959.639	10550	242.392
300	S00	2	1	001	0.1	1		0.1	03	0.1	05	1	05	0001	03	0.1	0.11	0001	0001	1	401945	6551	959.639	10500	212.449
300	500	2	1	001	0.1	1	4	0.1	03	0.1	05	1	05	0.01	03	0.1	0.13	0.001	001	1	401945	6551	959.639	10430	182.505
300	500	2	1	001	0.1	1	4	0.1	03	0.1	05	1	$0 \cdot 5$	0.01	03	0.1	0.03	0.004	0.01	1	401945	6551	959.639	10500	331.009
300	300	2	1	001	0.1	1	4	0.1	03	0.1	05	1	05	0.01	03	0.1	0003	0.005	0.01	1	401945	6551	959.639	10500	330.35
300	500	2	1	001	0.1	1	4	0.1	03	0.1	05	1	0.5	001	03	0.1	0003	0.005	0.01	-	401945	6551	959.639	10790	329.602
300	500	2	1	001	0.1	1	4	0.1	03	0.1	05	1	05	0.01	03	0.1	003	0.01	0.01	1	401945	6551	959.639	10790	328.853
300	S00	2	1	001	0.1	1	4	0.1	0.3	0.1	05	1	05	0.01	03	0.1	0.03	0.012	0.01	1	401945	6551	959.639	10790	328.105
300	S00	2	1	001	0.1	1	4	0.1	0.3	0.1	05	1	05	0.01	03	0.1	0.03	0.001	0.02	1	401945	6551	959.639	10760	317.25
300	500	2	1	001	0.1	1	4	01	03	0.1	05	1	05	0.01	03	0.1	0.03	0.001	0.04	1	401.945	6551	959.639	10590	257.307
300	500	2	1	001	0.1	1	4	0.1	03	01	05	1	$0 \cdot 5$	0.01	03	0.1	0.03	0.001	0.05	1	401.945	6551	959.639	10520	257.354
300	500	2	1	001	0.1	1	4	0.1	0.3	0.1	05	1	05	0.01	03	0.1	0.03	0.001	0.05	1	401945	6551	959.639	10540	227.421
300	300	2	1	001	0.1	1	4	0.1	03	0.1	05	1	05	0.01	03	0.1	0.03	0.001	0.1	1	401945	6551	959.639	10470	197.478
300	S00	2	1	001	0.1	1	4	0.1	0.3	0.1	05	1	05	0.01	03	0.1	0.03	0.001	0.1	3	1623	$1.10 \mathrm{E}+05$	$2.822{ }^{2}+04$	$6.31 \mathrm{E}+05$	$2.73 \mathrm{E}+05$
300	S00	2	1	0.01	0.1	1	4	0.1	0.3	0.1	$0 \cdot 5$	1	0.5	0.01	03	0.1	0.03	0.001	001	4	3263	$1.41 \mathrm{E}+07$	$127 \mathrm{E}+05$	$1.05 \mathrm{E}+11$	$7.11 \mathrm{E}+05$
300	300	2	1	001	0.1	1	4	0.1	03	0.1	05	1	05	0.01	03	0.1	0003	0001	001	5	6557	$1.83 \mathrm{E}+08$	$5.05 \mathrm{E}+05$	$1.76 \mathrm{E}+13$	$1.85 \mathrm{E}+0{ }^{\text {a }}$
300	300	2	1	001	0.1	1	4	0.1	03	0.1	05	1	05	0.01	03	0.1	0.03	0001	001	6	13150	$2.36 \mathrm{E}+09$	$2.19 \mathrm{E}+05$	$293 \mathrm{E}+15$	4.79E +09
300	300	2	1	001	01	1	4	01	03	01	05	1	05	001	03	01	003	0001	001	7	26450	$3.04 \mathrm{E}+10$	$8.49 \mathrm{E}+05$	$4.58 \mathrm{E}+17$	$124 \mathrm{E}+11$

