
IOSR Journal of Mathematics (IOSR-JM) 

e-ISSN: 2278-5728, p-ISSN:2319-765X. Volume 10, Issue 3 Ver. IV (May-Jun. 2014), PP 01-05 

www.iosrjournals.org 

www.iosrjournals.org                                                             1 | Page 

 

On Application of Matrix-Vector Operations for Solving 

Constrained Optimization Problems 
 

1
T. E. Olaosebikan, 

2
S. A. Olorunsola and 

3
K. J. Adebayo  

1,2,3
Department of Mathematical Sciences, Ekiti State University, Ado Ekiti, Nigeria. 

 

Abstract: This paper discusses the application of matrix-vector operations technique for solving constrained 

optimization problems. The method is aimed at circumventing the computational rigours undergone using the 

simplex and revised simplex method in solving this class of problems with aim of reducing the computer memory 

space occupied by the methods. In other to achieve this, a straightforward and simple to handle matrix-vector 

operations algorithm has been developed to solve the same constrained problems. Numerical results show some 

improvements compared with the classical method. 
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I. Introduction 

 The general optimization problem to be considered is of the form by [1] and [2] as: 

  Optimize:  ( )           (objective function)   1.1 

                         Subject to:  

                                                 ( )                      (equality constraint)   1.2 

                                                 ( )                    (inequality constraint)  1.3            

                                                                                        (non-negative condition)  1.4 

where    is a vector of n variables (  ,         ) ,   ( ) is a vector of equations of dimension   , and   ( ) 

is a vector of inequality of dimension   , and the total number of constraints   (      ). Methods for 

solving this model have been developed, tested and successfully applied to many important problems of 

scientific and economic interest. However, in spite of the proliferation of the methods, there is no universal 

method for solving all optimization problems which calls for application of matrix-vector operations techniques 

to solving (1.1) through (1.4). 

 

II. Computational Procedure of Matrix-Vector Operations 

Before discussing the computational procedure of matrix-vector operations to solving constrained 

optimization problems which is our major concern, it is expedient to show the following theorems which will be 

advantageous in other to get the clear picture of what the analysis is all about. 

 

Theorem 1 

(a) Suppose   is an     non-singular matrix then: 

   (    ( ))   (    ( ))      ( )         2.1 

(b) If   is     non-singular matrix with    ( )      then: 

                     
 

   
(  (   ( ))         2.2 

where   is an identity matrix.  

 

Proof: 

(a) To show (2.1), 

Let    [

       

   
       

]          2.3 

and 

let                    2.4 

be the cofactor matrix then: 

   ( )   [

       

   
       

].                                                                            2.5 

Considering the product of (2.3) and (2.5), we observe that the entry in the     row and     column is: 

                                        2.6 
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Now if       , then this expression is the cofactor expansion of det( ) along the     of  . But if       , the 

factors of this product come from different rows of   and so the expression has a value of zero. This means 

that: 

   (    ( )   [
    ( )   

   
      ( )

]       2.7 

              ( )           2.8 

Similarly, the entry in the     row and     column of (2.3) and (2.5) is:  

                                 ( )        2.9 

for      . For      hence (2.1) holds. 

(b) From (2.1) we have: 

(    ( ))        ( )  . 

Since   is non-singular and therefore     ( )     , we have 
 

    ( )
 

 

    ( )  
           2.10 

Or 
 

    ( )
  (   ( ))               2.11 

 [
 

    ( )
]     ( )               2.12 

Multiplying (2.12) through by      and (2.2) holds 

 

Theorem 2 

Suppose   is the transition matrix from a basis (  ) to a basis (  ) for a vector space  . Then, for any vector  

    ,  

                      2.13 

Hence: 

                       2.14 

 

Proof: 

The proof is presented by illustration. Consider the case of a 3-dimentional vector space. Let   be the transition 

matrix from basis (        ) of    to another basis (        ) of   . Then: 

                         

                         

                         

}          2.15 

The coefficient matrix of (2.15) is: 

    [

      

      

      

]           2.16 

hence, the transition matrix of (2.16) is: 

    [

      

      

      

].          2.17 

Now, let       such that: 

                              2.18 

substituting (2.15)into (2.18), we have: 

         (              )    (               )    (              ) 

           =(              )   (              )   (              )      2.19 

Thus: 

      ⌈

  

  

  

⌉           2.20 

and 

     [

            

            

            

]          2.21 

Now, multiplying (2.17) and (2.20) gives: 

       [

            

            

            

]          2.22 
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                      2.23 

Multiplying (2.23) by    , we have: 

                       2.24 

(2.24) satisfies the theorem. 

With the theorems above, the following derivations will be useful. Also, from our knowledge of simplex and 

revised simplex methods, this will lead us to the next concept to be discussed in what follows: 

 Let the column vectors               denote the original columns of              and let the 

column vector   represent the right-hand side constants. 

 Determine the basic variable and define a basis matrix B whose elements are the original columns of 

the basic variables. 

 Obtain the inverse of the basis matrix     .  

 To determine the non basic variable that enters the basis and the basic variable that leaves the basis, the 

following steps are carried-out: 

(   
̅̅ ̅       

̅̅ ̅)         ∑              2.25 

               ∑    

                                ̅         2.26 

but            ̅            (pivot column)        2.27 

Putting (2.27) in (2.26), we obtain: 

(   
̅̅ ̅     

̅̅ ̅)                      2.28 

Let the vector multiplier be: 

                   2.29 

Putting (2.29) in (2.28), we obtain: 

   
̅̅ ̅       

̅̅ ̅            for all          2.30 

To get the constant: 

  ̅                 2.31 

We calculate the pivot of any entering variable by (2.27) and to get the outgoing variable, 

Ratio, R, we use 

      
 

   ̅̅ ̅̅
          2.32 

III. The Matrix-Vector Operations Algorithm 
Step 1: Transform the problem into standard optimization form 

Step 2: Get the column vectors from the problem (    ,           )   

Step 3: Determine the initial basis  

Step 4: Calculate the inverse of the matrix   

Step 5: Determine the entering variable using (2.29) and (2.30) respectively. 

Step 6: Determine the pivot column with (2.27) 

Step 7: Determine the constant with (2.31) 

Step 8: Determine the leaving variable by calculating the ratio using (2.32) 

Step 9: Go back to step3 and continue until step 5 becomes all negative or positive for maximization or 

otherwise for minimization. Then step 7. 

Remark: (1). For maximization problem, pick the most positive value of (2.30) and the least positive value of 

(2.32) until all the values of (2.30) becomes negative. Then, compute (2.31) for optimal solution. (2). For 

minimization problem, pick the least positive in case all the values are  positive  or most negative value in case 

all the values are  negative from (2.30) and the most positive or least positive value of (2.32) until all the values 

of (2.30) yields all positive. Then, compute (2.31) for optimal solution. 

 

IV. Computational Results 
The following problems were evaluated using the afore algorithm thus: 

(P1)  Maximize:     4   + 3   + 6        

Subject to:         2   + 3   + 2     440 

              4              + 3    470 

                       2   + 5    430 

             ,    ,     0 

(P2)  Maximize:     5   +    + 3   + 2    

Subject to:         2   + 3   + 6         6 

              6   + 3   + 5   + 3    8 

3   + 6   +    + 3    4 

                                                         ,   ,   ,     0 
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(P3)  Minimize:     6   + 3   + 4     

Subject to:            + 6   +    = 10 

                2   + 3   +    = 15 

                                                 ,    ,      0 

(P4)  Maximize:     3   + 4   +    + 5   

Subject to:         8   + 3   + 2   + 4   10 

   2   + 5   +    + 4    5 

                                    + 2   + 5   +     6 

      ,    ,    ,     0 

(P5)  Maximize:     2   + 4   +     

Subject to:            +    +     8 

                                         -    - 5    5 

                               5   + 5   +     25 

                                  ,    ,      0 

(P6)  Maximize:     -3   - 4   - 2    

Subject to:            +     10 

        + 3   +     9 

                           +     4 

                                   ,    ,      0 

 

V. Conclusion 
In this paper, the algorithm developed has been tested on some problems as stated in section 4.0 of this 

paper and the corresponding results are shown in tables below. From the tables, while some results are very 

close to the analytical results, some are equal to the analytical results which invariably justify clearly the 

applicability of the matrix-vector operations techniques in solving constrained optimization problems. Note:  ’s 

(        ) are slack/surplus variables. 
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Table of Results for (P1) 
Iterations                   

1 0 0 0 240 156.6667 430 

2 0 0 156.6666667 126.66666667 0 430 

3 0 42.22222222 156.6666667 0 0 218.8888889 

Analytical Result:    = 0,    = 42.22222222,    = 156.6666667 

 

Table of Results for (P2) 
Iterations                      

1 0 0 0 0 6 8 4 

2 0 0.6666667 0 0 4 6 0 

3 0 0.5454545455 0.72727277273 0 0 2.727272727 0 

Analytical Result:    = 0,    = 2.666666667,     = 0,    = 0 

 

Table of Results for(P3) 
Iterations                      

1 0 0 0 10 -10 15 -15 

2 0 -5 0 -20 20 0 0 

3 0 1.666666667 -20 -20 0 0 0 

Analytical Result:    = 6.666666667,    = 0.555555556,    = 0 

 

  



On Application Of Matrix-Vector Operations  for Solving Constrained Optimization Problems 

www.iosrjournals.org                                                             5 | Page 

Table of Results for (P4) 
Iterations                      

1 0 0 0 0 10 5 6 

2 0 0 0 2.5 7.5 0 4.75 

3 1.071428571 0 0 0.7142857143 0 0 -4.214285714 

Analytical Result:    = 1.071428571,    =    = 0,    = 0.714285714 

 

Table of Results for (P5) 
Iterations                   

1 0 0 0 10 9 4 

2 0 3 0 -21 0 1 

3 0 2.5 1.5 7.5 0 0 

Analytical Result:    = 7.5,    =  0,    = 0.5 

 

Table of Results for (P6) 
Iterations                   

1 0 0 0 -8 -5 -25 

2 0 5 0 -3 -10 0 

3 0 4.25 3.75 0 -28 0 

Analytical Result:    = 0,    = 4,     = 0 


