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Abstract: This paper discusses the application of a Modified Lagrange Multipliers Method (MLM) in solving 

optimization problems with equality and inequality constraints. The method is aimed at circumventing the 

computational rigours undergone using the Lagrange multipliers method in solving this class of problems with 

equality and inequality constraints independently. Also, it aims at reducing the computer memory space 

occupied by the independent methods in solving these problems using the said methods.  
In other to achieve this, a straightforward and simple to handle MLM algorithm has been developed to solve the 

same optimization problems with both equality and inequality constraints. Comparing the numerical results 

with that of the classical methods show some improvements. 
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I. Introduction 

The general optimization problem to be considered is of the form [1] and [2] as: 

Optimize:   ( )         1.1 

Subject to:   ( )                        1.2                                                           

                                                  ( )                            1.3                                                 

                                                                   1.4 

where        ,   ( ),  a vector  equations of dimension    , and   ( ) is a vector of inequality of 

dimension    , such that the sum of the constraints   (      ). The functions  ( )   ( )        ( ) are 

differentiable functions. Methods for solving this model have been developed, tested and successfully applied to 

many important problems of scientific and economic interest. However, in spite of the proliferation of the 

methods, there is no universal method for solving all optimization problems which calls for application of  

MLM for solving optimization problems that comprises of the equality and inequality constraints. 

 

II. Computational Procedure of the MLM Algorithm 

Before discussing the computational procedure of the modified Lagrange multipliers to solving this 

kind of optimization problems which is our major concern, it is expedient to briefly discuss how the equality and 

inequality type of the said problems have been solved independently with some supporting theorems which are 

advantageous in other to get the clear picture of what the analysis is all about and basis for the MLM algorithm. 

 

Theorem 2.1:  

Let   and        , and given the existence of the Lagrange multiplier   , then the following conditions 

have to be satisfied at the point     that corresponds to the solution of the primal problem: 

 

  

   
(  )   ∑    

   
   

   
            

       ( 
 )              

    ( 
 )                 

              
                  }

 
 

 
 

              2.1                      

Or in a more compact notation form: 

   ( 
    )      

   ( 
    )      

        (  )     

                         
These conditions are known as the Karush-Kuhn-Tucker (KKT) stationary conditions [3]. 
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Proof: 

   First convert the inequality constraints into equality constraints by introducing the slack variables   : 
  ( )                          2.2                           

                    
Define the corresponding Lagrange function as: 

 (     )    ( )   ∑   (  ( )     ) 
 
                           2.3 

Assume that the solution (1.1), (1.2), (1.4) with the constraints (2.2) is given by       . 
Now distinguish between the two possibilities: 

(i) Let   
     for all  . In the case the problem is identical to the usual minimization problem with 

equality constraints which is solved using Lagrange multipliers. Here there are   additional variables 

            . Hence the necessary conditions for the minimum are: 
  

   
(        )   

  

   
(  )   ∑   

 
   

   

   
(  )                             2.4 

  

   
(        )     

                                                     2.5 

As   
       it also follows that   ( 

 )    and with the fact that   
     this yields: 

   
   ( 

 )                                           2.6 

Consequently all the conditions of the theorem hold for the case   
    for all   . 

(i) Let   
    for             and   

                
In this case, the solution may be considered to the solution of an equivalent minimization problem with 

the following equality constraints: 

           ( )                                 2.7 

  ( )                                        2.8 

Applying (2.4), (2.5) and (2.7) it follows that (2.6).   
Obviously, 

  ( 
 )                              2.9 

And from (2.7) it follows that: 

  ( 
 )                            2.10  

 

However, no information concerning   
           is available. This is obtained from the 

following additional argument. Consider feasible charges from       in all variables                  Again 

consider   of these as dependent variables and the remaining   as independent variables. If     then,   

         can always be included in the set of independent variables. (Find    by putting the partial derivatives 

of   at    ,    with respect to the dependent variables, equal to zero and solving for    ). As        (  
    ) 

must apply for feasible changes in the independent variables          it follows that in general for changes 

which are consistent with the equality constraints, that       for changes involving         . Thus if these 

independent variables are varied one at a time, since all the partial derivatives of   with respect to the dependent 

variables must be equal to zero, that: 

    
  

   
(      )       

                .                        2.11 

As        it follows that,                 . Thus, since it has already been proved that                        

   
             , it follows that indeed                . This completes the proof of the 

theorem. 

 

Remark 1: Obviously, if an equality constraint,   ( )     is also prescribed explicitly, then,     does not exist 

and nothing is known of the sign of   
 
 as 

  

   
 does not exist. 

 

Case 1: Equality Constraints 

In this case, (1.1) and (1.2) are to be considered only, the problem is to determine a point    which 

yields a strong relative minimum or maximum for (1.1) and also satisfies (1.2) and to achieve this using 

Lagrange method is by appending (1.2) to (1.1) with Lagrange multipliers: 

                             2.12 

The new (1.1) now becomes: 

  (   )                                                                                                                                             2.13 

where (2.13) is called Lagrangian. Now, (1.1) and (2.13) becomes: 

  (   )    ( )   ∑     ( )
 
                  2.14 

(2.14) is called Lagrangian function which is now unconstrained. We now state the necessary conditions for 

stationarity as follows: 
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  ∑   

 
   

   

   
                                                                                            2.15 

 
  

   
   ( )                                                                                                                2.16 

(      )            2.17 

(2.15) and (2.16) yield a set of       equations in       unknowns (   ) to be solved for the (2.17). 

 (      )           2.18 

 

Remark 2: The condition (2.16) guarantees that (1.2) is satisfied at (2.18). 

  (  )                                                                                                                                           2.19 

where  (2.17), (2.18) and (2.19) are optimal value, optimal solution and optimal returns respectively. In this 

case, (1.2) and (2.17) of (2.14) is equal to (2.19) for (1.1). 

 

Case 2: Inequality constraint 

In this case, (1.1) and (1.3) are to be considered only. Here, a real-valued slack variable    is been 

defined for each (1.3) such that: 

   
    ( )                         2.20 

(1.3) is satisfied by satisfying (2.20) for all real-valued    . Applying the Lagrange necessary conditions by [4] 

and [5], we obtain: 

 

 (     )    ( )    ∑   (  ( )     
 ) 
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    ( )      

              

  

   
                     }

  
 

  
 

         2.21 

 From (2.21), either   
     or    

    or both. 

Having gotten the clear knowledge of independent solution of this class of problems, we now want to 

see if giving a problem that comprises both cases discussed earlier in this paper, can be solved using the same 

method. Base on this, we state the MLM algorithm and procedure in the next section. 

 

III. The MLM Algorithm for solving Equality and Inequality Optimization Problems 

Step 1: Change the inequality constraints into equality by introduction slack variables as in (2.20) 

Step 2: Equate the equality constraints to zero. 

Step 3: Introduce Lagrange multipliers as in (2.12) 

Step 4: Formulate Lagrangian function as in (2.14) 

Step 5: Apply the Lagrange multiplier method’s necessary conditions (2.21) to the formulated Lagrange in  

step 4.  

Step 7: Hence, determine the optimal value, optimal solution and optimal function return as in (2.17), (2.18) and 

(2.19) respectively. 

 

Remark 3: (1) The slack variable can either tend to or equal to zero. Also, either addition or subtraction can be 

used when converting the constrained to unconstrained problem by the Lagrange multiplier. 

 

IV. Computational Results 

The following problems were evaluated using the MLM algorithm thus: 

Problem (P1): 

          ( )  = 7  
  + 6   + 5  

 , 

Subject to:    + 2   ≤ 10, 

     - 3   =  9, 

             ≥  0. 

Problem (P2): 

          ( )   =  2   -   
  +   , 

Subject to: 2   + 3   =  6, 

  2   +      ≤  4, 

                ≥  0. 
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Problem (P3): 

          ( ) = 2   + 3   - (  
     

     
 ), 

Subject to:        +    ≤ 1, 

  2   + 3   = 6, 

               ≥ 0. 

Problem (P4): 

          ( ) = 4   + 9   -   
  -   

 , 

Subject to: 4   + 3   = 15, 

  3   + 5   ≥ 14, 

                                          ≥ 0. 

 

Problem (P5): 

          ( )  = 4  
  + 2  

  +   
  - 4    , 

Subject to:       +    +    ≥ 15, 

  2   -    + 2   = 20, 

                      ≥ 0. 

Problem (P6): 

          ( )  =   
  +   

  +   
 , 

Subject to:       +    +3   ≤ 2, 

  5   + 2   +    = 5, 

                     ≥ 0. 

 

V. Conclusion 
In this paper, the algorithm developed has been tested on some problems with corresponding results 

shown in Table1 below. From the table, problem 1 with numerical result         coincide with the analytical 

result which is        ,  problem 2 with numerical result       is close to the analytical result which is      ,  

problem 5 with the numerical result        is less than the analytical result which is       , also,  problem 6 

with numerical result of       is close to the analytical result which is      . However, problem 3 and 4 with 

numerical results       and       are greater than the analytical results       and        respectively. This 

shows that the method has worked for problem 1, 2, 5, 6 and is been violated slightly by problem 3 and 4. With 

these, it is invariably justified clearly that, the MLM can be used to solve optimization problems of both equality 

and inequality type. 
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Table of Results: 

Table 1: 
Problems Numerical Results Analytical Results 

          ( )            ( ) 
1 9.600 0.200       -  702.920  9.600 0.200        - 702.920 

2 1.500 1.000       - 1.750  0.667 1.556        - 2.444 

3 0.462 0.693 0.000 2.309  0.250 0.750 0.000 2.125 

4 0.960 3.720      - 22.56  3.000 1.000        - 11.000 

5 2.000 0.000 8.000 32.000  3.667 3.333 8.000 91.111 

6 0.808 0.323 0.162 0.783  0.804 0.348 0.283 0.847 

 


