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Abstract: In this paper, we constructed a control operator, G, which enables an Extended Conjugate Gradient 

Method (ECGM) to be employed in solving for the optimal control and trajectories of  continuous time linear 

regulator problems. Similar operators constructed in the past by various authors have limited application. This 

call for the construction of the control operator that is aimed at taking care of any of the Mayer’s, Lagrange’s 

and Bolza’s cost form of linear regulator problems. The authors of this paper desire that, with the construction 

of the operator, one will circumvent the difficulties undergone using the classical methods and its application 

will further improve the result of the Extended Conjugate Gradient Method in solving this class of optimal 

control problem.  
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I. Introduction 
Consider the linear regulator problem of the Bolza type as in [6] and [1]: 

Problem (P1): 
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∫ {                            }  

  
 

    1.1 

subject to the differential state equation  

 ̇                                         1.2 

where H and      are real symmetric positive semi-definite     matries.      is a real symmetric positive 

definite     matrix, the initial time, and the final time,     are specified.      is an n-dimensional state 

vector,      is the m-dimensional plant control input vector.               are not constrained by any 

boundaries.         are specified constants which are not necessarily positive.For H = 0, (1.1) is called a 

Lagrange problem, but if Q(t) = R(t) = 0, it is called a Mayer problem. 

 The form (1.1) may be rewritten as: 
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     1.4 

As customary with penalty function techniques, constrained problem equations (1.2) and (1.4) may be put into 

the following equivalent form:  
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      ‖ ̇                     ‖ }        1.5 

where     is the penalty parameter and  ‖ ̇                     ‖  is the penalty term. Let us denote by 

 ̃ the product space 

 ̃    [    ]    [    ]          1.6 

is the product space of Sobolev space  [    ] of absolutely continuous function      such that, both 

         ̇    are square integrable over the finite interval [      and the Hilbert space   [     of equivalence 

classes of real valued functions on [     with norm defined by:  

‖    ‖  [      (∫ |    |   
 

 
)

 
 
           [    .       1.7 

Then, the inner product       ̃ on  ̃ is given by  

      ̃         [    ]          [    ]         1.8 

Suppose       ̃ denotes the ordered pair 

      (         )        [    ]        [    ],      1.9 

then, we seek to determine the operator G on  ̃ such that 
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       ̃   ∫{       ̇    
 

 
               

 

 
             

  

 

 

            ‖ ̇                     ‖ }       1.10 

where  ̃ is suitably chosen Hilbert space.The control operator, G, is then utilized in the iterative framework of 

the CGM in order to arrive at a solution of problem (P1). We provide a recapitulation of the formal CGM in the 

next section for the sake of completeness. 

 

II. Conjugate Gradient Method Algorithm 
The Conjugate Gradient Method (CGM) algorithm for iteratively locating the minimum     of       in 

  as described by [4] is as follows:               

Step 1: Guess the first element    ϵ   and compute the remaining members of the sequence with the aid of the 

formulae in the steps 2 through 6. 

Step 2: Compute the descent direction               2.1a 

Step 3:  Set                 ; where    = 
        

         
      2.1b 

Step 4: Compute                             2.1c 

Step 5: Set                 ;     
             

         
      2.1d 

Step 6: If         for some i, then, terminate the sequence; else set i = i + 1 and go to step 3. 

 

In the iterative steps 2 through 6 above,     denotes the descent direction at ith step of the algorithm,  , 

is the step length of the descent sequence  {  } and     denotes the gradient of F at   . Steps 3, 4 and 5 of the 

algorithm reveal the crucial role of the linear operator G in determining the step length of the descent sequence 

and also in generating a conjugate direction of search. Applicability of the algorithm thus depends solely on the 

explicit knowledge of the operator G. Generally, for discrete optimization problems, G is readily determined 

(see [4, pp. 51-53]); and such problem enjoys the beauty of the CGM as a computational scheme since the CGM 

exhibits quadratic convergence and requires only a little more computation per iteration. [2] opined that these 

properties make the CGM a fascinating computational technique with a strong appeal for implementation on the 

digital computer.  

However, for the type of constrained continuous linear time regulator problem (P1) discussed in this 

paper, application of the CGM algorithm as presented is hindered because then, the equivalent of operator G 

which satisfies (P1) in this sense of (1.13) is not readily found and construction of such operator is the main aim 

of this paper.  The construction of such an operator is not new. For instance in [5], the authors constructed the 

control operator for the following related problem respectively as: 

 

Problem (2) 

         ∫ {              }  
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Subject to  

  ̇                                   2.3 

                     2.4 

where a, b, c and d specified constants such that a> 0, b>0;          are given,  ̇    denotes the derivative of the 

state      with respect to time, and      is the control vector. The resulting control operator G is of the form: 

          =   [ ̇               (t) +  ∫ [ ̇                      
 

 
 

       ∫ [               ̇    
 

 
            [               ̇            

                       
       

       
{               ̇            [ ̇            

        ∫ [ ̇               
 

 
         ∫ [               ̇    

 

 
            

       [               ̇           }, 0         2.5 

          =             ̇(t), 0             2.6 

 

          =                  ∫                 
 

 
 

  ∫                 

 

 

                 

 
       

       
{                       



On Construction of a Control Operator Applied In ECGM Algorithm  

www.iosrjournals.org                                                             12 | Page 

   ∫                 

 

 

   ∫                  

 

 

 

                   }, 0          2.7 

          =               , 0            2.8 

Based on (2.5) – (2.8) above, one can obtain the desired      to apply (2.1c) which would henceforth 

allow us to exploit the simplicity of the conjugate gradient method algorithm. 

Similarly, Aderibigbe, (1993), constructed a control operator for a linear regulator problem with delay 

parameter as:  

 

Problem (3) 

         ∫ {              }  
  
  

       2.9 

Subject to   

  ̇                                           2.10  

                            2.11 

where         the delay parameter     and     are given;             are specified constants which are 

not necessarily positive and      is a given piecewise continuous function which is of exponential order on 
[     . For detail, see [2]. 

 

III. Main Result 
 Our results for problem (P1) are contained in the following theorem: 

 

3.1 Theorem 1 

Let us denote by   ̃ the product space 

 ̃       [     ]    [     ]        3.1  

of the Sobolev space of absolutely continuous function      on [     ] and the usual Hilbert space   [     ] of 

Lebesgue measurable, real-valued functions which are square integrable on the closed interval         Then ,for 

    there exists a control operator,G, with     ̃    ̃     such that 

              ̃   ∫{       ̇    
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where                     Furthermore, G is explicitly given by  
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where the composite operators             are given as follows: 
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Proof of Theorem 3.1 

In an attempt to proof the above theorem, we need the following fundamentals: 

 

3.2  Lemma 1: 

Let     be an integer and suppose         denotes the space of all real-valued functions  

            which are n-times continuously differentiable on  [       with the norm ‖ ‖  given by 

‖ ‖   ∑         | 
      |  

            3.8 

where |       | denotes the ith derivative of       Then if                are continuous in [     and if 

∫ [               ̇        
 

 
 for every function              such that             then      is 

differentiable and 
 

  
(    )        for all   [    . 

 

 Proof: 

For our subsequent development we shall associate with the right hand side of (1.10) the functional 

          defined by  

          ∫{
 

 
             

 

 

  

 

                      ̇       ̇     ̇     

           ̇             ̇             ̇                   

                         ̇                                }    3.9 

where  
  (           )   

  (           ) are the ordered triple pair which belong to the space  ̃ defined 

by (3.1). It follows that; the form (3.9) is equivalent to (3.2) under the equivalent relationships: 
                         

 ̇      ̇      ̇           

                         

}        3.10 

For proof, see [7]. We then have the following proposition: 

 

3.3 Proposition 1: 

         is a bounded, bilinear, self-adjoint form on  ̃  

Proof: 

 Bilinearity and self-adjointness of           is clear from its definition; and its boundedness follows 

from the fact that       (           )
 
       is bounded. 

 

3.4  Remarks: 

By virtue of proposition above and a consequence of the Reiess representation theorem on Hilbert 

spaces [8], it follows that           induces a uniquely determined, bounded linear operator G say on  ̃ with the 

representation  

                    ̃            ̃                    3.11 

where it is clear that G is also self-adjointness on  ̃  since           is.  

Let us now consider the equivalence 

                            3.12 

This is convenient for our subsequent developments.  

Then, let       (           )
 
  then we can write 

 (G  (t))  (
      

      
) (

     

     
)   (

                   

                   
)      3.13 

On setting          then (3.14) will implies 

(G  (t))  (
        

        
)   (

      
      

)         3.14 

where the functions                  must be determined in order to know                         . By 

virtue of the equivalence (3.10), we set         in (3.9) as: 

              ∫{
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            ̇             ̇                           ̇    }    3.15 

On simplifying (3.15) further, we obtain 
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               ∫ {             ̇     ̇                 }   
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The quantities                   which satisfy (3.17) have to be determined. Towards this, we set 

       
 

 
                    ̇           3.18 

         ̇               3.19 

Where       is the derivative of       from (3.16) and               while         ̇      then, 

                       ̇      are continuous functions on [      and for          [      such that 

          (     we have 

∫ {     [               ̇    [       ̇      }     
  
 

      3.20 

so that by Lemma 1,        ̇      is differentiable on [      with  
 

  
[       ̇                             3.21 

This implies that 

 ̈               ̇                  3.22 

Using (3.18) and (3.19) in (3.22), we obtain 

 ̈                ̈     [(
 

 
     )               ̇          3.23 

Now from (3.17), we obtain  

                 [     ̇              3.24 

From which we obtain by virtue of (3.14) 

                       ̇                    3.25 

To determine         the second order differential equation (3.23) must be solved. For this purpose, let  

        ̈     [(
 

 
     )               ̇           3.26 

Then, (3.23) takes the form 

 ̈                                 3.27 

and in order to obtain a unique solution of (3.27), we append the initial conditions 

               ̇                  3.28 

where the quantities           need to be determined. 

 In view of this, let        {    }             {      } denote the Laplace transforms of       and        

respectively, then by taking the Laplace transform of (3.27) and (3.28), we get  

                                   3.29 

 

We proceed to determine the quantities                  appearing in (3.29) solving (3.29) and the resulting 

constants therein eliminated, we obtain the following tidier form: 
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Thus, the first column of the operator,            are uniquely determined by virtue of (3.30) and 

(3.25) respectively.  

 Repeating the same arguments, we obtain the second column of the operator,               by 

setting        in (3.9) from which we obtain 

                       ∫              (    )  
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 This concludes the proof of Theorem 3.1. 
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IV. Conclusion 
It follows from here that, while [5] constructed an operator for CLRP, [2] focuses on same class of 

optimal control problem but with delay parameter in the state variable. The construction of this control operator, 

G, helps to bridge the gap between Bolza problems and CLRP. This makes the construction of the operator very 

important and relevant in that, it takes cares of the variations in CLRP with or without boundary penalty 

variable.     

In future, we hope to devote more attention on the application of this operator to CGM algorithm in 

solving Continuous-Time Linear Regulator Problems of the Mayer’s, Langrage’s and the Bolza’s form. 
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