Nonsplit domsaturation number of a graph

Y. Therese Sunitha Mary * and R. Kala **
*Department of Mathematics, St. Xavier's College Palayamkottai 627 002, Tamil Nadu, India
**Department of Mathematics, Manonmaniam Sundaranar University Tirunelveli 627 012, Tamil Nadu, India

The nonsplit domsaturation number of a graph $G, d s_{n s}(G)$ is the least positive integer k such that every vertex of G lies in a nonsplit dominating set of cardinality k. In this paper, we obtain certain bounds for $d s_{n s}(G)$ and characterize the graphs which attain these bounds.

I. Introduction

By a graph $G=(V, E)$ we mean a finite, undirected graph without loops or multiple edges.The order and size of G are denoted by p and q respectively. For graph theoretical terms we refer to Harary [6] and for terms related to domination we refer Haynes et al.[7]
A subset D of V is said to be a dominating set in G if every vertex in $V-D$ is adjacent to at least one vertex in D.

Kulli and Janakiram introduced the concept of nonsplit domination in graphs [9]. A dominating set D of a graph G is a nonsplit dominating set if $\langle V-D\rangle$ is connected. The nonsplit domination number $\gamma_{n s}(G)$ of G is the minimum cardinality of a nonsplit dominating set. A nonsplit dominating set with cardinality $\gamma_{n s}(G)$ is called a $\gamma_{n s}$-set.

Acharya[1] introduced the concept of domsaturation number of a graph. The least positive integer k such that every vertex of G lies in a dominating set of cardinality k is called the domsaturation number of G and is denoted by $d s(G)$. A detailed study of this parameter was already done by Arumugam and Kala[2]. In this paper, we define nonsplit domsaturation number of a graph. We determine the value of this parameter for several classes of graphs, obtain bounds for this parameter and also characterize the graphs which attain these bounds.

II. Main Results

Example 2.1 (i) If $G \cong K_{p}$ then $d s_{n s}(G)=1$.
(ii) If $G \cong K_{m, n}(2 \leq m \leq n)$ then $d s_{n s}(G)=2$.

Proposition 2.2 For any connected graph $G, \gamma_{n s}(G) \leq p-1$. Further equality holds if and only if G is a star.

Proof. Every set $S \subseteq V(G)$ with $|S|=p-1$ is a nonsplit dominating set of G and so $\gamma_{n s}(G) \leq p-1$. If G is a star, clearly $\gamma_{n s}(G)=p-1$. Suppose $\gamma_{n s}(G)=p-1$. If G is not a star, then G has an edge $e=u v$ such that both u and v are non-pendent vertices. Now $V(G)-\{u, v\}$ is a nonsplit dominating set of G and so $\gamma_{n s}(G) \leq p-2$ which is a contradiction. Hence G is a star.

Corollary 2.3 For any graph $G, \gamma_{n s}(G)=p-1$ if and only if G is a galaxy.

Proposition 2.4 For any graph $G, \gamma_{n s}(G) \leq d s_{n s}(G) \leq \min \left\{\gamma_{n s}(G)+\Delta(G), p-1\right\}$ and these bounds are sharp.

Proof. Lower bound is obvious. Suppose $d s_{n s}(G)=\gamma_{n s}(G)+\Delta(G)+k$, where $k \geq 1$. Then there exists a vertex $v \in V(G)$ such that the minimum cardinality of a nonsplit dominating set A containing v is $\gamma_{n s}(G)+\Delta(G)+k$. If S is any $\gamma_{n s}-$ set, then $v \notin S$. Also $S \cap N(v) \neq \varnothing$. As $|A|=\gamma_{n s}(G)+\Delta(G)+k$, by choice of $v,\langle V-(S \cup\{v\})\rangle$ has $\Delta(G)+k-1$ isolated vertices so that $|N(v)| \geq \Delta(G)+k \quad, \quad$ which is a contradiction. Hence $\quad d s_{n s}(G) \leq \gamma_{n s}(G)+\Delta(G)$. Always $d s_{n s}(G) \leq p-1$ and so $d s_{n s}(G) \leq \min \left\{\gamma_{n s}(G)+\Delta(G), p-1\right\}$.
If $G \cong C_{p}, d s_{n s}(G)=\gamma_{n s}(G)=p-2$ and so the lower bound is sharp. If $G \cong B(2,2)$, then $d s_{n s}(G)=5$ and $\min \left\{\gamma_{n s}(G)+\Delta(G), p-1\right\}=\min \{7,5\}=5$. Thus the upper bound is also sharp.

Theorem 2.5 Let G be a connected graph. Then $d s_{n s}(G)=p-1$ if and only if $G \cong G_{i}(1 \leq i \leq 2)$ where $G_{i}(1 \leq i \leq 2)$ are given in Fig. 1.

$$
\begin{gathered}
(2,-1)(3,2)[\text { dotscale }=1](-2.3,0)(-2,-2)(0,-1.5)(-4.3,-1.5)(6,0)(4,-2)(3,-4)(5,-4.3)(6,-2)(5.5,-4.1)(7.5, \\
-4.3)(8,-1.7)(9.2,-3.4)(9.5,-1)(4.6,1)(7,1)(-4.3,-1.5)(-2.3,0)(-2,-2)(-2.3,0)(0,-1.5)(6,0)(4,-2)(3,-4)(4, \\
-2)(5,-4.3)(6,0)(6,-2)(5.5,-4.1)(6,-2)(7.5,-4.3)(6,0)(8,-1.7)(9.2,-3.4)(8,-1.7)(9.5,-1)(4.6,1)(6,0)(7,1) \\
{[\text { dotscale }=.65](-1.5,-1.9)(-1,-1.8)(-.5,-1.64)[\text { dotscale }=.65](5.1,1)(5.8,1)(6.5,1)[\text { dotscale }=.65](9.275,} \\
-2.9)(9.35,-2.2)(9.425,-1.5)[\text { dotscale }=.65](3.5,-4.075)(4,-4.15)(4.5,-4.225)[\text { dotscale }=.65](6,-4.15)(6.5, \\
-4.2)(7,-4.25)[\text { dotscale }=.65](6.5,-1.9)(7,-1.8)(7.5,-1.7)
\end{gathered}
$$

Proof. If $d s_{n s}(G)=p-1$ then there exists at least one vertex $v \in V(G)$ such that the only minimal nonsplit dominating set containing v is of cardinality $p-1$.
Case(i): v is a pendent vertex.
In this case, we have $\gamma_{n s}(G)=p-1$ by choice of v. Hence by Proposition 2.1 $G \cong G_{1}$.
Case (ii): v is a non-pendent vertex.
Let $N(v)=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}(k \geq 2)$. If there exists an edge $\left(v_{i}, v_{j}\right) \in<N(v)>,(1 \leq i, j \leq k)$ then $V(G)-\left\{v_{i}, v_{j}\right\}$ is a nonsplit dominating set containing v and so $\langle N(v)\rangle$ is independent.
We now claim that every vertex in $V(G)-N[v]$ is a pendent vertex. Suppose there exists $u \in V(G)-N[v]$ such that $d(u) \geq 2$. Since G is connected, there exists a $u-v$ path P with length at least 2. Let $w \in N(u) \cap P$. Then $V(G)-\{u, w\}$ is a nonsplit dominating set containing v and hence $G \cong G_{2}$.
Converse is obvious.
The following is immediate.
Corollary 2.6 Let G be any graph. Then $d s_{n s}(G)=p-1$ if and only if every component of G is isomorphic to any one of the graphs in Fig. 1.

Theorem 2.7 For any tree $T, d s_{n s}(\bar{T})=\gamma_{n s}(\bar{T})=2$ if and only if T is not isomorphic to $B(r, s)$ where at least one of r or s equals 1 .

Proof. Suppose $T \cong B(r, s)$ where $r=s=1$. Then $T \cong P_{4}$ and $\gamma_{n s}\left(\overline{P_{4}}\right)=2$. But $d s_{n s}\left(\overline{P_{4}}\right)=3$. Hence $T ® B(r, s)$ where $r=s=1$. If $T \cong B(r, s)$ with exactly one of $\{r, s\}$ having value 1 , then there is no $\gamma_{n s}$-set of \bar{T} of cardinality 2 containing u. These contradictions exhibit that T is not isomorphic to $B(r, s)$ where at least one of r and s equals 1 .
Conversely assume that T is a tree not isomorphic to $B(r, s)$ where at least one of r and s equals 1 . If $T \cong K_{1, p-1}$ then $\gamma_{n s}(\bar{T})=2=d s_{n s}(\bar{T})$. If $T ® K_{1, p-1}$, then there exists at least 2 pendent vertices u and
v with distinct supports u_{1} and v_{1} respectively such that $\operatorname{deg}\left(u_{1}\right) \leq p-3$ and $\operatorname{deg}\left(v_{1}\right) \leq p-3$.
Case(i): $\operatorname{deg}\left(u_{1}\right)=p-3$ and $\operatorname{deg}\left(v_{1}\right)=p-3$.
If u_{1} and v_{1} are adjacent then $T \cong T_{1}$ where T_{1} is given in Fig. 2.

$$
\begin{aligned}
(3,-1)(3,1)[\text { dotscale }=1.5](0,0)(2,0)(-1.5,-1)(-1.5,1)(3.5,1)(3.5,-1)(-1.5,1)(0,0)(2,0)(3.5,1)(-1.5,-1)(0,0) \\
(2,0)(3.5,-1)
\end{aligned}
$$

$\left\{v, v_{1}\right\},\left\{v_{2}, v_{1}\right\},\left\{u, u_{1}\right\},\left\{u_{2}, u_{1}\right\}$ are all minimum nonsplit dominating sets of \bar{T} and so $\gamma_{n s}(\bar{T})=d s_{n s}(\bar{T})=2$. If u_{1} and v_{1} are non-adjacent then $T \cong P_{5}$ and so $\gamma_{n s}(\bar{T})=d s_{n s}(\bar{T})=2$.
Case(ii): $\operatorname{deg}\left(u_{1}\right)=p-3$ and $\operatorname{deg}\left(v_{1}\right) \neq p-3$.
If u_{1} and v_{1} are adjacent, then $T \cong T_{2}$ where T_{2} is given in Fig. 3 .
$(-1,-1)(3,0)[$ dotscale $=1.5](-2,0)(2,0)(2,-1.5)(-1,-1.5)(-3,-1.5)(3.5,-.7)(.2,-1.5)(2,-1.5)(2,0)(-2,0)(-1,-1.5)$ $(-2,0)(-3,-1.5)(2,0)(3.5,-.7)(-2,0)(.2,-1.5)[$ dotscale $=.65](-.7,-1.5)(-.4,-1.5)(-.1,-1.5)$

Since $d\left(v_{1}\right) \neq p-3, d\left(v_{1}\right) \geq 4$. For every $u^{\prime} \in N\left(u_{1}\right),\left\{u_{1}, u^{\prime}\right\}$ is a $\gamma_{n s}$ - set of \bar{T} and for every $v^{\prime} \in N\left(v_{1}\right),\left\{v_{1}, v^{\prime}\right\}$ is a $\gamma_{n s}$-set of \bar{T} and so $\gamma_{n s}(\bar{T})=d s_{n s}(\bar{T})=2$. If u_{1} and v_{1} are non-adjacent then $T \cong T_{3}$ where T_{3} is given in Fig. 4 .

```
(-1.5,-1)(3,.5)[dotscale = 1.5](-2, 0)(0,0)(2, 0)(2,-1.5)(-1,-1.5)(-3,-1.5) (2,-1.5)(2,0)(0,0)(-2,0)(-1,-1.5) (-2,
    0)(-3,-1.5)[dotscale =.65](-1.5,-1.5)(-2,-1.5)(-2.5,-1.5)
```

As above $\operatorname{deg}\left(u_{1}\right) \geq 3$. For every $u^{\prime} \in N\left(u_{1}\right),\left\{u^{\prime}, u_{1}\right\}$ is a $\gamma_{n s}$ - set of \bar{T}. Also $\left\{u_{1}, v\right\}$ and $\left\{v_{1}, u\right\}$ are $\gamma_{n s}$ - set of \bar{T} and so $\gamma_{n s}(\bar{T})=d s_{n s}(\bar{T})=2$.
Case(iii): $\operatorname{deg}\left(u_{1}\right) \neq p-3$ and $\operatorname{deg}\left(v_{1}\right)=p-3$.
This is analogous to case(ii).
Case $(\mathbf{i v}): \operatorname{deg}\left(u_{1}\right) \neq p-3$ and $\operatorname{deg}\left(v_{1}\right) \neq p-3$.
If u_{1} and v_{1} are adjacent then $\operatorname{deg}\left(u_{1}\right) \geq 4$ and $\operatorname{deg}\left(v_{1}\right) \geq 4$ and for every $u^{\prime} \in N\left(u_{1}\right),\left\{u_{1}, u^{\prime}\right\}$ is a $\gamma_{n s}$-set of \bar{T} and for every $v^{\prime} \in N\left(v_{1}\right),\left\{v_{1}, v^{\prime}\right\}$ is a $\gamma_{n s}$-set of \bar{T} so that $d s_{n s}(\bar{T})=\gamma_{n s}(\bar{T})=2$.
Suppose u_{1} and v_{1} are non-adjacent. Then $\operatorname{deg}\left(u_{1}\right) \geq 3$ and $\operatorname{deg}\left(v_{1}\right) \geq 3$. For every $x \in V(T)$ with $d\left(u_{1}, x\right) \neq 2,\left\{x, u_{1}\right\}$ is a $\gamma_{n s}$-set of \bar{T} containing x and if $d\left(u_{1}, x\right)=2,\{x, u\}$ is a $\gamma_{n s}$-set of \bar{T} containing x. The $\gamma_{n s}$-sets containing neighbours of u_{1} and v_{1} are as above. Thus $d s_{n s}(\bar{T})=\gamma_{n s}(\bar{T})=2$.

Theorem 2.8 There exists a graph G for which $d s_{n s}(G)-d s(G)$ can be made arbitrarily large.
Proof. Let $P_{p-k}=\left\{u_{1}, u_{2}, \ldots, u_{p-k}\right\}$ be a path on $p-k$ vertices where $1 \leq k \leq p-1$ and let $S=\left\{v, v_{1}, v_{2}, \ldots, v_{k-1}\right\}$. Join the vertex v to each of the vertices in P_{p-1} and to each vertex in $S-\{v\}$. The resulting graph G is of order p and $\gamma(G)=1$. Also $\left\{v, u_{i}\right\}(1 \leq i \leq p-k)$ and $\left\{v, v_{j}\right\}(1 \leq j \leq k-1)$ are minimal dominating sets containing u_{i}, u_{j} respectively so that $d s(G)=2$.
S is a minimum nonsplit dominating set of G and so $\gamma_{n s}(G)=k$. If $k=p-1$ or $p-2$, $d s_{n s}(G)=k$. Suppose $k \leq p-3 . S \cup\left\{u_{1}\right\}, S \cup\left\{u_{p-k}\right\}, ~(S-\{v\}) \cup\left\{u_{2}, u_{5}, \ldots\right\}$, $(S-\{v\}) \cup\left\{u_{1}, u_{3}, u_{6}, \ldots\right\}$ and $(S-\{v\}) \cup\left\{u_{1}, u_{4}, u_{7}, \ldots\right\}$ are all nonsplit dominating sets of G and so
$d s_{n s}(G)=k+\left\lfloor\frac{p-k}{3}\right\rfloor$ or $k+\left\lceil\frac{p-k}{3}\right\rceil$ according as $p-k \equiv 0,1(\bmod 3)$ or $p-k \equiv 2(\bmod 3)$. Thus $d s_{n s}(G)-d s(G)=k+\left\lfloor\frac{p-k}{3}\right\rfloor-2$ or $k+\left\lceil\frac{p-k}{3}\right\rceil-2$ where k can be chosen arbitrarily large.

Theorem 2.9 For any connected graph $G, d s_{n s}(G)+\operatorname{diam}(G) \leq 2 p-2$ and equality holds if and only if $G \cong P_{p}(p \leq 5)$.

Proof. Since G is connected, $\operatorname{diam}(G) \leq p-1$. Always $d s_{n s}(G) \leq p-1 \quad$ and so $d s_{n s}(G)+\operatorname{diam}(G) \leq 2 p-2$. Suppose $d s_{n s}(G)+\operatorname{diam}(G)=2 p-2$. Then $d s_{n s}(G)=p-1$ and $\operatorname{diam}(G)=p-1$. Since $d s_{n s}(G)=p-1$, by Theorem ?? we observe that $\operatorname{diam}(G) \leq 4$ and so $p \leq 5$. For any graph on p vertices other than P_{p} we have $d s_{n s}(G)+\operatorname{diam}(G) \neq 2 p-2$ and so $G \cong P_{p}(p \leq 5)$. Converse is obvious.

Theorem 2.10 For any connected graph G with at least two pendent vertices, $d s(G)+d s(\bar{G}) \leq d s_{n s}(G)+d s_{n s}(\bar{G}) \leq p+2$. Also the bounds are sharp.

Proof. For any graph $\quad G \quad, \quad d s(G) \leq d s_{n s}(G) \quad, \quad d s(\bar{G}) \leq d s_{n s}(\bar{G}) \quad$ and \quad so $d s(G)+d s(\bar{G}) \leq d s_{n s}(G)+d s_{n s}(\bar{G})$. Always $d s_{n s}(G) \leq p-1$. To establish the upper bound it is enough to prove that $d s_{n s}(\bar{G}) \leq 3$. Let $P=\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ be the set of pendent vertices of G and $S=\left\{v_{i}(1 \leq i \leq m)\right\}$ be the set of corresponding supports (not necessarily distinct). If $m \geq 3$ and there exists an index i such that $\left\{V(G)-\left\{u_{i}, v_{i}\right\}\right\}$ has two distinct supports then $A=\left\{u_{i}, v_{i}\right\}$ is a nonsplit dominating set of \bar{G}. If w is the unique support in $\left\langle V(G)-\left\{u_{i}, v_{i}\right\}\right\rangle$ then $\left\{u_{i}, v_{i}, w\right\}$ is a nonsplit dominating set of \bar{G}. Otherwise v_{i} is the only support of G and $A=\left\{u_{i}, v_{i}\right\}$ is a nonsplit dominating set of \bar{G}. For every other vertex $x, A \cup\{x\}$ is nonsplit dominating set of \bar{G}. Hence $d s_{n s}(\bar{G}) \leq 3$.
Suppose $m=2$. Let the two pendent vertices be u and v with supports u_{1} and v_{1} respectively.
Case(i): : $u_{1}=v_{1}$
Let $D=V(G)-\left\{u, v, u_{1}\right\}$. If $D=\phi$ then $\left\{u, v_{1}\right\}$ and $\left\{v, v_{1}\right\}$ are nonsplit dominating sets of \bar{G}. If $D \neq \phi$ then $\left\{u, v_{1}\right\},\left\{v, v_{1}\right\}$ and $\left\{u, v_{1}, x\right\}$ [where $\left.x \in V(G)-\left\{u, v, u_{1}\right\}\right]$ are nonsplit dominating sets of \bar{G}.
Case(ii): $u_{1} \neq v_{1}$.
If $\left(u_{1}, v_{1}\right) \notin E(G)$ then $\left\{v, u_{1}\right\},\left\{u, v_{1}\right\}$ and $\left\{u, v_{1}, x\right\}$ [where $\left.x \in V(G)-\left\{u, v, u_{1}, v_{1}\right\}\right]$ are nonsplit dominating sets of \bar{G}. Suppose $\left(u_{1}, v_{1}\right) \in E(G)$ and let $B=V(G)-\left\{u, v, u_{1}, v_{1}\right\}$. If $B=\phi$ then $\left\{v, v_{1}, u_{1}\right\}$ and $\left\{v_{1}, u_{1}, u\right\}$ are nonsplit dominating sets of \bar{G}. Suppose $B \neq \varnothing$. If $|B| \geq 2$ then $\left\{v, v_{1}\right\},\left\{u, u_{1}\right\},\left\{x, u_{1}\right\}(x \in B)$ are nonsplit dominating sets of \bar{G}. If $|B|=1$ and $B=\{w\}$ then $\left\{u_{1}, v_{1}, w\right\},\left\{u, u_{1}, v_{1}\right\},\left\{u_{1}, v_{1}, v\right\}$ are nonsplit dominating sets of \bar{G}. Hence $d s_{n s}(\bar{G}) \leq 3$. Thus $d s_{n s}(G)+d s_{n s}(\bar{G}) \leq p+2$.
Lower bound is attained for K_{2} and upper bound for P_{4}. Hence the bounds are sharp.
Definition 2.11 Let $G=(V, E)$ be a graph. The maximum order of a partition of V into nonsplit
dominating sets of G is called the nonsplit domatic number of G and is denoted by $d_{n s}(G)$.

Definition 2.12 A graph G with $d_{n s}(G)=\delta(G)+1$ is said to be nonsplit domatically full.

Theorem 2.13 If G is a k-regular graph which is nonsplit domatically full then $\gamma_{n s}(G)=d s_{n s}(G)$.

Proof. Since G is nonsplit domatically full, $d_{n s}(G)=k+1$. Let $\left\{D_{1}, D_{2}, \ldots, D_{k+1}\right\}$ be a nonsplit domatic partition of G. Any set D_{i} either contains a vertex u or exactly one of its neighbours. Hence, each D_{i} is independent. Also, for all $1 \leq j \leq k+1, i \neq j$, every vertex in D_{i} is adjacent to exactly one vertex in D_{j}. Hence all sets D_{i} are of equal cardinality and $\left|D_{i}\right|=\gamma_{n s}(G)$. Hence $\gamma_{n s}(G)=d s_{n s}(G)$.

Remark 2.14 The converse of theorem 2.13 is not true. The 3-regular graph G given in Fig. 5 is not nonsplit domatically full.
$(-5,-1)(3,2)[$ dotscale $=1.5](-3.5,0)(4,0)(-1.5,1)(1.5,1)(-1.5,-1)(1.5,-1) \quad(-3.5,0)(4,0)(-3.5,0)(-1.5,1)(1.5$, 1) $(4,0)(-3.5,0)(-1.5,-1)(1.5,-1)(4,0)(-1.5,1)(-1.5,-1)(1.5,1)(1.5,-1)$

We observe that $d s_{n s}(G)=\gamma_{n s}(G)=2$.

References

[1]. B. D. Acharya, The strong domination number of a graph and related concepts, J.Math. Phys.Sci. 14(1980), No. 5, 471-475.
[2]. S. Arumugam and R. Kala, Domsaturation number of a graph, Indian J. Pure appl. Math., 33(2002), No. 11, 1671-1676.
[3]. J. R. Carrington, F. Harary and T. W. Haynes, Changing and unchanging the domination number of a graph, J. Combin. Math. Combin. Comput., 9(1991), 57-63.
[4]. E. J. Cockayne, Domination of undirected graphs - A survey. In theory and Applications of Graphs. LNM 642, Springer - Verlag, (1978), 141-147.
[5]. E. J. Cockayne and S. T. Hedetniemi, Towards a theory of domination in graphs, Networks, 7, (1977), 247-261.
[6]. F. Harary, Graph theory, Addison Wesley, Reading Mass (1969).
[7]. T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in graphs, Marcel Dekker, Inc., (1998).
[8]. T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Domination in Graphs - Advanced Topics, Marcel Dekker, (1998).
[9]. V. R. Kulli and B. Janakiram, The nonsplit domination number of a graph, Indian J. Pure Appl. Math., 31 (2000), No. 4, 545-550.
[10]. Y. Therese Sunitha Mary and R. Kala, The nonsplit domination number of a graph, Proceedings of the National Conference on Mathematical and Computational Models, December 2007, PSG College of Technology, Coimbatore, India, 218-224.

