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The nonsplit domsaturation number of a graph G , dSns(G) is the least positive integer K such that every

vertex of G lies in a nonsplit dominating set of cardinality K .In this paper, we obtain certain bounds for
ds,.(G) and characterize the graphs which attain these bounds.

I.  Introduction
By agraph G =(V,E) we mean a finite, undirected graph without loops or multiple edges. The order

and size of G are denoted by P and Q respectively. For graph theoretical terms we refer to Harary [6] and
for terms related to domination we refer Haynes et al.[7]
Asubset D of V s said to be a dominating set in G if every vertex in V — D is adjacent to at least one
vertexin D.

Kulli and Janakiram introduced the concept of nonsplit domination in graphs [9]. A dominating set D
of a graph G is a nonsplit dominating set if <V —D > is connected. The nonsplit domination number

yns(G) of G is the minimum cardinality of a nonsplit dominating set. A nonsplit dominating set with
cardinality 7,,(G) iscalleda y,-set.

Acharya[1] introduced the concept of domsaturation number of a graph. The least positive integer K
such that every vertex of G lies in a dominating set of cardinality K is called the domsaturation number of G
and is denoted by dS(G) . A detailed study of this parameter was already done by Arumugam and Kala[2]. In this

paper, we define nonsplit domsaturation number of a graph . We determine the value of this parameter for several
classes of graphs , obtain bounds for this parameter and also characterize the graphs which attain these bounds.

Il.  Main Results
Example2.1 (i) If G =K then ds (G)=1.
(i) If G=K  (2<m<n) then ds (G)=2.

Proposition 2.2 For any connected graph G,}/ns(G) < p—1. Further equality holds if and only if G isa
star.

Proof. Every set S <V (G) with |S|= p—1 isanonsplit dominating setof G andso y,.(G)< p-1.
If G isastar, clearly y,(G)= p—1.Suppose 7,,(G)=p—1.1f G isnotastar,then G hasan edge
e =uv suchthatboth U and Vv are non - pendent vertices. Now V (G)—{u,V} is a nonsplit dominating set
of G andso y,(G) < p—2 whichisacontradiction. Hence G is a star.

Corollary 2.3 Foranygraph G, 7,.(G)=p—1 ifandonlyif G isa galaxy.

Proposition 2.4 For any graph G, 7,.(G) <ds.(G) <min{y,.(G) + A(G), p—1} and these bounds
are sharp.
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Proof. Lower bound is obvious. Suppose ds . (G) = y,(G) +A(G) +k, where k >1. Then there exists a
vertex VeV (G) such that the minimum cardinality of a nonsplit dominating set A containing V is
7.(G)+AG)+k . If S is any y, - set, then veS . Also SANN\V)=J . As
| Al= 7,.(G) + A(G) + K, by choice of v, <V —(SwU{Vv})> has A(G)+k —1 isolated vertices so that
IN(V)2A(G)+k , which is a contradiction. Hence ds (G)<y, (G)+A(G) . Always
ds,(G)< p-1 andso ds, (G) <min{y,,(G)+A(G), p—1}.

If G=C,, ds(G)=7,(G)=p—2 and so the lower bound is sharp. If G=B(2,2), then

ds.(G) =5 and min{y,(G) +A(G), p—1}=min{7,5}=5. Thus the upper bound is also sharp.

Theorem 2.5 Let G be a connected graph. Then ds (G) = p—1 ifandonlyif G=G,(1<i<2)
where G;(1<1<2) are given in Fig. 1.

(2, -1)(3, 2) [dotscale = 1](-2.3, 0)(-2, -2)(0, -1.5)(-4.3, -1.5)(6, 0)(4, -2)(3, -4)(5, -4.3)(6, -2)(5.5, -4.1)(7.5,
-4.3)(8, -1.7)(9.2, -3.4)(9.5, -1)(4.6, 1)(7, 1) (-4.3, -1.5)(-2.3, 0)(-2, -2) (-2.3, 0)(0, -1.5) (6, 0)(4, -2)(3, -4) (4,
-2)(5, -4.3) (6, 0)(6, -2)(5.5, -4.1) (6, -2)(7.5, -4.3) (6, 0)(8, -1.7)(9.2, -3.4) (8, -1.7)(9.5, -1) (4.6, 1)(6, 0)(7, 1)

[dotscale = .65](-1.5, -1.9)(-1, -1.8)(-.5, -1.64) [dotscale = .65](5.1, 1)(5.8, 1)(6.5, 1) [dotscale = .65](9.275,
-2.9)(9.35, -2.2)(9.425, -1.5) [dotscale = .65](3.5, -4.075)(4, -4.15)(4.5, -4.225) [dotscale = .65](6, -4.15)(6.5,

-4.2)(7, -4.25) [dotscale = .65](6.5, -1.9)(7, -1.8)(7.5, -1.7)

Proof. If ds,(G) = p—1 then there exists at least one vertex V €V (G) such that the only minimal nonsplit
dominating set containing V is of cardinality p—1.

Case(i) : V isapendent vertex.

In this case, we have 7,,(G) = p—1 by choice of V. Hence by Proposition 2.1 G =G, .

Case (ii) : Vv isanon-pendent vertex.

Let N(V) ={V;,V,,...,V, }(K > 2) . If there exists an edge (Vv;,V;) e<N(v)>, (1<i, j<Kk) then
V(G) —{v;,v;} is anonsplit dominating set containing v andso < N(V) > is independent.

We now claim that every vertex in V(G)—N[v] is a pendent vertex. Suppose there exists
uUeV(G)—N[v] suchthat d(u)>2.Since G is connected, there existsa U—V path P with length at
least 2. Let We N(U)NP . Then V(G)—{u,w} is a nonsplit dominating set containing vV and hence
G=G,.

Converse is obvious.
The following is immediate.

Corollary 2.6 Let G be any graph. Then ds (G) = p—1 if and only if every component of G is
isomorphic to any one of the graphs in Fig. 1.

Theorem 2.7 Foranytree T , dsns(f) =)/ns(f) =2 ifandonlyif T isnotisomorphicto B(r,s) where
atleastoneof I' or S equals 1.

Proof. Suppose T = B(r,s) where r=s=1.Then T =P, and 7,.(P,) =2.But ds (P,) = 3. Hence
T®B(r,s) where r=s=1.1f T =B(r,s) with exactly one of {r,S} having value 1, then there is no
Vs St of T of cardinality 2 containing U . These contradictions exhibit that T is not isomorphicto B(r,S)

where at least one of I' and S equals 1.
Conversely assume that T is a tree not isomorphic to B(r,S) where at least one of I' and S equals 1. If

T =K, then 7o(T)=2=0ds (T).1f T® Ky 1, then there exists at least 2 pendent vertices U and
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v with distinct supports u, and v, respectively such that deg(u,) < p—3 and deg(v,) < p-3.
Case(i) : deg(u,) = p—3 and deg(v,) = p—3.
If u, and v, areadjacentthen T =T, where T, isgiven inFig. 2.

(3, -1)(3, 1) [dotscale = 1.5](0, 0)(2, 0)(-1.5, -1)(-1.5, 1)(3.5, 1)(3.5, -1) (-1.5, 1)(0, 0)(2, 0)(3.5, 1) (1.5, -1)(0, 0)
(2, 0)(3.5, -1)

v 1AV, v, }{u,u}{u,,u} are all minimum nonsplit dominating sets of T and so

7.(T)=ds,(T)=2.1f u, and v, are non-adjacentthen T =P, andso 7, (T)=ds (T)=2.

Case(ii) : deg(u,) = p—3 and deg(v,) = p—3.

If u, and v, are adjacent, then T =T, where T, isgiveninFig.3.

(-1, -1)(3, 0) [dotscale = 1.5](-2, 0)(2, 0)(2, -1.5)(-1, -1.5)(-3, -1.5)(3.5, -.7)(:2, -1.5) (2, -1.5)(2, 0)(-2, 0)(-1, -1.5)
(-2, 0)(-3, -1.5) (2, 0)(3.5, -.7) (-2, 0)(.2, -1.5) [dotscale = .65](-.7, -1.5)(-.4, -1.5)(-.1, -1.5)

Since d(v,))= p—3, d(v,)=>4. For every U"' e N(u,), {u,,u} is a y,,- set of T and for every

V'eN(v,), {v,,v} is a y,-set of T and so 7,o(T)=ds,(T)=2.If u, and v, are non-adjacent

then T =T, where T, isgiveninFig. 4.

(-1.5, -1)(3, .5) [dotscale = 1.5](-2, 0)(0, 0)(2, 0)(2, -1.5)(-1, -1.5)(-3, -1.5) (2, -1.5)(2, 0)(0, 0)(-2, 0)(-1, -1.5) (-2,

0)(-3, -1.5) [dotscale = .65](-1.5, -1.5)(-2, -1.5)(-2.5, -1.5)
Asabove deg(u,)>3.Forevery u'e N(u,), {u’,u} isa y,-setof T . Also {u,,v} and {v,,u} are

Vs - Set of T andso yns(f) = dsns(f) =2.

Case(iii) : deg(u,) = p—3 and deg(v,) = p—3.

This is analogous to case(ii).

Case(iv) : deg(u,) = p—3 and deg(v,) = p—3.

If u, and v, are adjacent then deg(u,) >4 and deg(v,) >4 and for every u’e N(u,), {u,u} isa
¥ s -Set Of T and for every V' e N(v,), {v,V} isa y, -setof T sothat dsns(f) = yns(f) =2.
Suppose U, and v, are non-adjacent. Then deg(u,) >3 and deg(v,)>3. For every X €V (T) with
d(u,x) =2, {x,u} isa y,,-set of T containing X and if d(u,x)=2, {X,u} isa y,,-set of T

containing X . The 7, -sets containing neighbours of U, and v, areas above. Thus ds,(T) = 7,.(T)=2.

Theorem 2.8 There exists a graph G for which dS,(G) —ds(G) can be made arbitrarily large.

Proof. Let P, ={u,U,,...,u, } be a path on p—Kk vertices where 1<k<p-1 and let
S ={v,v;,V,,...,V, ,}. Join the vertex V to each of the verticesin P, ; and to each vertexin S —{V}. The
resulting graph G isof order P and »(G)=1.Also {v,u}(1<i<p-k) and {v,v;}(1< j<k-1)

are minimal dominating sets containing U, U respectively so that ds(G) = 2.

i
S is a minimum nonsplit dominating set of G and so y,(G)=k. If kK=p-1 or p-2,
ds,(G)=k . suppose k<p-3 . Su{u} . Su{u,} . S-{PHu{u,u,..}
(S —{v}) {u,u,,ug,..} and (S —{v}){u,u,,Uu,,..} areall nonsplit dominating sets of G and so
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ds,(G) =k J{pT_kJ or k +[ P ; k—‘ according as p—k =0,1(mod 3) or p—k=2(mod 3) .

Thus ds.(G)—ds(G) =k + {pT_kJ -2 or k+ { P ; K —l —2 where K can be chosen arbitrarily large.

Theorem 2.9 For any connected graph G, ds,((G) +diam(G) <2p—2 and equality holds if and only if
G=P,(p<)H).

Proof. Since G is connected, diam(G)<p-1 . Always ds (G)<p-1 and so
ds.(G) +diam(G) <2p—2. Suppose ds (G)-+diam(G)=2p—2. Then ds (G)=p—-1 and
diam(G) = p—1. since ds,(G) = p—1, by Theorem ?? we observe that diam(G) <4 andso p <5.
For any graph on P vertices other than P, we have ds (G)+diam(G)=2p—2 and so

G = P,(p <5). Converse is obvious.

Theorem 2.10 For any connected graph G with at least two pendent vertices,
ds(G) +ds(G) <ds,((G) +ds,,(G) < p+2. Also the bounds are sharp.

Proof. For any graph G , ds(G)<ds (G) ., ds(G)<ds (G) and so
ds(G) +ds(G) < ds..(G) + dsns(é) . Always ds (G) < p—1. To establish the upper bound it is enough
to prove that dSnS(G)SB. Let P={u,u,,...,u.} be the set of pendent vertices of G and
S={v, (1<i1<m)} be the set of corresponding supports (not necessarily distinct). If m >3 and there exists
anindex i such that {V (G)—{u,,v;}} has two distinct supports then A={u.,Vv,} is a nonsplit dominating
setof G .If w isthe unique supportin <V (G) —{u,,v.}> then {U.,v,,W} isanonsplit dominating set of
G . Otherwise V; is the only support of G and A:{ui,vi} is a nonsplit dominating set of G . For every
other vertex x, AU{X} is nonsplit dominating set of G . Hence ds, (G) < 3.

Suppose M = 2. Let the two pendent vertices be U and Vv with supports u, and Vv, respectively.
Case(i): U, =v,

Let D=V (G)—{u,v,u}. If D=¢ then {u,v,} and {v,v,} are nonsplit dominating sets of G.If
D=#¢ then {u,v,;}, {v,v,} and {u,v,,x} [where x €V (G)—{u,v,u,}] are nonsplit dominating sets
of G.

Case(ii) : U, #Vv,.

If (u,v,) & E(G) then {v,u}{u,v,} and {u,v;,x} [where x eV (G)—{u,v,u,,Vv,}] are nonsplit
dominating sets of G . Suppose (u,v;) € E(G) and let B=V(G)—{u,v,u,v,}. If B=¢ then
{v,v,,u} and {v,,u,u} are nonsplit dominating sets of G . Suppose B=& . If |B[>2 then
v,v.}{u,u}.{x,u}(x € B) are nonsplit dominating sets of G . If |B|=1 and B={w} then
{u,v,w}, {u,u,v}{u,v,Vv} are nonsplit dominating sets of G . Hence dsns(é)SS. Thus
ds,.(G)+ds, (G)< p+2.

Lower bound is attained for K, and upper bound for P,. Hence the bounds are sharp.

Definition 2.11 Let G=(V,E) be a graph. The maximum order of a partition of V into nonsplit
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dominating sets of G is called the nonsplit domatic number of G and is denoted by d, . (G).
Definition 2.12 Agraph G with d ((G) =(G)+1 is said to be nonsplit domatically full.
Theorem 2.13 If G isa K -regular graph which is nonsplit domatically full then ¥, (G) =ds,(G).

Proof. Since G is nonsplit domatically full, d ((G) =k +1. Let {D,,D,,...,D,,;} be a nonsplit domatic
partition of G . Any set D, either contains a vertex U or exactly one of its neighbours. Hence, each D, is
independent. Also, forall 1< j<k+1, i# j,everyvertexin D, is adjacent to exactly one vertex in D;.

Hence all sets D, are of equal cardinality and | D, |= ,,(G). Hence 7,(G) =ds (G).

Remark 2.14 The converse of theorem 2.13 is not true. The 3-regular graph G given in Fig.5 is not nonsplit
domatically full.

(-5, -1)(3, 2) [dotscale = 1.5](-3.5, 0)(4, 0)(-1.5, 1)(1.5, 1)(-1.5, -1)(1.5, -1)  (-3.5, 0)(4, 0) (-3.5, 0)(-1.5, 1)(1.5,
1)(4, 0) (-3.5, 0)(-1.5, -1)(1.5, -1)(4, 0) (-1.5, 1)(-1.5, -1) (1.5, 1)(1.5, -1)

We observe that ds,(G) =7,.(G) =2.
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